From HR&K:

Ch. 6 Problems 3, 7, 17.
Ch. 7 Exercises 6, 20.
Ch. 12 Problem 6.
Ch. 13 Exercise 15.

From K&K:

Ch. 4 Problems 4.4, 4.20, 4.23, 4.27. Extra Credit 4.3, 4.11, 4.21

1. Consider the problem of a water droplet falling in the atmosphere. As the droplet passes through a cloud it acquires mass at a rate proportional to its instantaneous mass $M(t)$. That is, if M is the mass of the droplet at time t, then $\frac{dM}{dt} = kM$, where k is a proportionality constant. Consider a droplet of initial mass M_0 that enters a cloud with velocity v_0. Assume no resistive force and find:
 a) The mass of the droplet as a function of time.
 b) The velocity of the droplet as a function of time.

2. A lunar module of total mass M_0 is at height H above the surface of the Moon and is descending vertically at speed v_0, when a rocket is ignited to produce a soft landing. The mass of the fuel decreases at a constant rate with respect to time, and the gas is ejected at a speed of 2400 m/s relative to the module. If the module touches the lunar surface with zero velocity and the module’s mass at the end of the burn lasting 350 sec is $\frac{2}{3}M_0$, evaluate v_0 and H. (Assume that the acceleration due to gravity at the surface of the Moon is 1.62 m/s2).
3. Two railway cars of masses m_1 and m_2 are moving along a track with velocities v_1 and v_2 respectively. The cars collide, and after the collision the velocities are v'_1 and v'_2 respectively. Show that the change in kinetic energy of the system will be a maximum if the cars couple together.

4. An electron, mass m, collides head-on with an atom, mass M, initially at rest. As a result of the collision, a characteristic amount of energy E is stored internally in the atom. What is the minimum initial speed v_0 that the electron must have?