Generalized Coordinates

• “State” of system of \(N \) particles (Newtonian view):
 - PE, KE, Momentum, L → calculated from \(m_i, r_i, \dot{r}_i \)
 - Subscript \(i \) covers: 1) particles – \(N \) 2) dimensions – 2, 3, etc.
 \[
 PE \equiv U(r_i) = U(x_1, y_1, z_1, x_2, y_2, z_2, ...)
 \]
 \[
 KE \equiv T(\dot{r}_i) = T(\dot{x}_1, \dot{y}_1, \dot{z}_1, \dot{x}_2, \dot{y}_2, \dot{z}_2, ...)
 \]

• Calculating \(U(r_i) \) and \(T(\dot{r}_i) \) can often be simplified
 - Using a different set of “coordinates” \((q_n)\) for the system
 - Examples: Pendulum and “Double Pendulum”
 - KE and PE easily expressed in terms of \(\theta_1 \) (and \(\theta_2 \))
 - Example: marble sliding in hemispherical bowl
 - What are some possible generalized coordinates?
 - Express \(U \) and \(T \) in terms of \(q_n \) and \(\dot{q}_n \)
Newton's 2nd Law – Another View

- Derive $\mathbf{F}_{\text{net}} = \mathbf{ma}$ from energy conservation ($\frac{dE}{dt} = 0$)
 - Can get EOM from knowing only U and T (don't need forces!)

\begin{align*}
\text{Cartesian Coordinates} \\
U (r_i) & \quad T (\dot{r}_i) \\
\text{Chain Rule:} & \\
\frac{dE}{dt} &= \sum_i \left[\frac{\partial U}{\partial r_i} \dot{r}_i + \frac{\partial T}{\partial \dot{r}_i} \ddot{r}_i \right] = 0 \\
T &= \frac{1}{2} \sum_i m_i \dot{r}_i^2 \rightarrow \frac{\partial T}{\partial \dot{r}_i} = m_i \ddot{r}_i \\
\frac{dE}{dt} &= \sum_i \left[\frac{\partial U}{\partial r_i} + m_i \dot{r}_i \right] \dot{r}_i = 0 \\
\frac{dE}{dt} &= \sum_i \left[\frac{\partial U}{\partial r_i} + \frac{d}{dt} \left(\frac{\partial T}{\partial \dot{r}_i} \right) \right] \dot{r}_i = 0 \\
\text{Newton's 2nd Law → EOM}
\end{align*}

\begin{align*}
\text{Generalized Coordinates} \\
U (q_n) & \quad T (q_n, \dot{q}_n) \\
\text{Chain Rule:} & \\
\frac{dE}{dt} &= \sum_n \left[\frac{\partial U}{\partial q_n} \dot{q}_n + \frac{\partial T}{\partial q_n} \dot{q}_n + \frac{\partial T}{\partial \dot{q}_n} \ddot{q}_n \right] = 0 \\
T &= \sum_i \frac{1}{2} m_i \dot{r}_i^2 \rightarrow \frac{\partial T}{\partial q_n} = ? \ ? \\
\frac{dE}{dt} &= \sum_n \left[\text{a bunch of derivatives} \right] \dot{q}_n = 0 \\
\text{“Generalized” Newton's 2nd Law → EOM}
\end{align*}
Example: Mass-Spring System

- Spring has equilibrium length \(L \)
 - Cartesian: \((x_1, x_2)\) Generalized: \((r, R)\)
 - Find “transformation equations” between coordinate systems
 - In each coordinate system:
 - Express \(U \) and \(T \) in terms of coordinates
 - Calculate the equations of motion \(\rightarrow \) interpret the results
Constraints

- Systems often have “forces of constraint”
 - e.g. normal force on marble in bowl
 - Mathematically described by “constraint equations”

- Cartesian constraints → often cumbersome
 - Example: Calculate $T(x, y, z, \dot{x}, \dot{y}, \dot{z})$ for marble in bowl

- Generalized coordinates → can “include” constraints
 - Keeping T and U in simpler forms

- System with N particles and M constraint equations
 - Would require $3N - M$ generalized coordinates
Constraint Example: Pendulum

Cartesian
\[r_i = (x, y) \]

Constraint:
\[x^2 + y^2 = L^2 \]

\[U = mgy \]
\[T = \frac{1}{2} m (\dot{x}^2 + \dot{y}^2) \]

Generalized
\[q_n = (\theta) \]

(Constraint already included)

“transformation equations”

\[x = L \sin \theta \]
\[y = -L \cos \theta \]

\[U = -mgL \cos \theta \]
\[T = \frac{1}{2} m L^2 \dot{\theta}^2 \]

- In each coordinate system:
 - Calculate the EOM → interpret the results

- How many generalized coordinates if pendulum moves in 3-D?
Coordinate Transformations

- **Goal**: use chain rule to plug into $\frac{dE}{dt} = 0$ and construct a generalized way to get equations of motion

$$T = \sum_i \frac{1}{2} m_i \dot{r}_i^2$$

Now must use chain rule some more to evaluate these derivatives

$$\frac{\partial T}{\partial q_n} = \sum_i m_i \dot{r}_i \frac{\partial \dot{r}_i}{\partial q_n}$$

$$\frac{\partial T}{\partial \dot{q}_n} = \sum_i m_i \dot{r}_i \frac{\partial \dot{r}_i}{\partial \dot{q}_n}$$

- From the transformation equations:

<table>
<thead>
<tr>
<th>$r_i (q_1, q_2, \ldots)$</th>
<th>$\dot{r}_i (q_1, q_2, \ldots, \dot{q}_1, \dot{q}_2, \ldots) = \sum_n \left(\frac{\partial r_i}{\partial q_n} \right) \dot{q}_n$ (Chain rule)</th>
</tr>
</thead>
</table>

- Viewing \dot{r}_i as a sum of terms, can take derivative $\rightarrow \frac{\partial \dot{r}_i}{\partial \dot{q}_n} = \frac{\partial r_i}{\partial q_n}$

- Also:

$$\frac{\partial \dot{r}_i}{\partial q_n} = \frac{\partial}{\partial q_n} \left(\sum_p \left(\frac{\partial r_i}{\partial q_p} \right) \dot{q}_p \right) = \sum_p \frac{\partial}{\partial q_p} \left(\frac{\partial r_i}{\partial q_n} \right) \dot{q}_p = \frac{d}{dt} \left(\frac{\partial r_i}{\partial q_n} \right)$$

"Cancellation of dots"
Generalized Newton's 2nd Law

- Plugging in:
 \[
 \frac{\partial T}{\partial q_n} = \sum_i m_i \dot{r}_i \frac{\partial \dot{r}_i}{\partial q_n} \quad \text{(chain rule)}
 \]

 \[
 \frac{\partial T}{\partial q_n} = \sum_i m_i \dot{r}_i \frac{d}{dt} \left(\frac{\partial r_i}{\partial q_n} \right) \quad \text{(from transformation equations)}
 \]

 \[
 \frac{\partial T}{\partial q_n} = \frac{d}{dt} \left(\sum_i m_i \dot{r}_i \frac{\partial \dot{r}_i}{\partial q_n} \right) - \sum_i m_i \ddot{r}_i \left(\frac{\partial r_i}{\partial q_n} \right) \quad \text{(product rule)}
 \]

 \[
 \frac{\partial T}{\partial q_n} = \frac{d}{dt} \left(\sum_i m_i \dot{r}_i \frac{\partial \dot{r}_i}{\partial q_n} \right) + \sum_i \frac{\partial U}{\partial r_i} \left(\frac{\partial r_i}{\partial q_n} \right) \quad \text{(from transformation equations)}
 \]

 \[
 \frac{\partial T}{\partial q_n} = \frac{d}{dt} \left(\frac{\partial T}{\partial \dot{q}_n} \right) + \frac{\partial U}{\partial q_n} \quad \text{(chain rule)}
 \]

This differential equation is a “factory” for equations of motion

Once \(T \) and \(U \) are expressed in generalized coordinates → just plug in
The Lagrangian Function

- Conservative forces → **U** is a function of \(q_n \) only \(\left(\frac{\partial U}{\partial \dot{q}_n} = 0 \right) \)
 - "Generalized Newton's 2\(^{nd}\) Law" can be re-written as:

\[
\frac{\partial (T - U)}{\partial q_n} - \frac{d}{dt} \left(\frac{\partial (T - U)}{\partial \dot{q}_n} \right) = 0
\]

\[
L(q_n, \dot{q}_n) \equiv T - U
\]

"Lagrangian"

\[
\frac{\partial L}{\partial q_n} - \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_n} \right) = 0
\]

“Euler-Lagrange equations of motion” (one for each n)

- Lagrangian named after Joseph Lagrange (1700's)
 - Fundamental quantity in the field of Lagrangian Mechanics
 - Example: Show that this holds for Cartesian coordinates
Examples

• Mass-spring on table-top (top view)
 - Spring has equilibrium length r_0
 - Calculate EOM in polar coordinates
 - Is circular motion possible? Is it stable?
 - Find frequency of small oscillations in r

• Double Pendulum
 - Calculate the EOM for θ_1 and θ_2
 - Approximate EOM's for small θ_1 and θ_2
 - Does motion have \textit{consistent} frequencies?
Symmetry and Conservation Laws

- Euler-Lagrange equations of motion: \[\frac{\partial L}{\partial q_n} - \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_n} \right) = 0 \]

 - Notice that if \(\frac{\partial L}{\partial q_n} = 0 \) \(\rightarrow \) \(\frac{\partial L}{\partial \dot{q}_n} \) is a conserved quantity

\(\frac{\partial L}{\partial \dot{q}_n} \) is called the generalized momentum in the \(q_n \) “direction”

- Common Examples:
 - Conservation of linear momentum: \(\frac{\partial L}{\partial \dot{x}_{CM}} = m \dot{x}_{CM} = \text{Constant} \)
 - Conservation of angular momentum: \(\frac{\partial L}{\partial \dot{\theta}} = m r^2 \dot{\theta} = \text{Constant} \)
 - Conservation of energy: \(\frac{\partial L}{\partial t} = 0 \) (assumed previously)
Lagrangian/Hamiltonian “Revolution”

• Dynamics of a physical system
 – Can be described by energy functions T and U in state space
 – Mathematically → system need not be divisible into “particles”

• This opens possibilities for new “models” of matter
 – Matter distributions $\rho(q_n)$ with equations of motion
 – i.e. “generalized Newton's 2nd Laws”
 – Idea eventually led to the development of Quantum Mechanics

• Generalized coordinates: good for describing “fields”
 – Value of field (at one point) → generalized coordinate(s)
 – Scalar/vector field $f(x,y,z)$ → “state vector” in state space
 – Points in physical space $(x,y,z) → “unit vectors” in state space