ELECTRIC FIELD
Electrostatic Force

- For centuries, humans observed “strange” force
 - Example: Rub amber with fur → it attracts straw

- Force cannot be due to gravity
 - Gravity between amber and straw is too weak to feel

- Amber and straw must have something
 - Other than mass...
 - Which causes a noticeable force between them
 - This “stuff” is called electric charge
 - Charge is measured in “Coulombs” (C)
Electric Charge

- Electrostatic force can be attractive or repulsive
 - There must be 2 types of charge which interact differently

- Humans named these “positive” and “negative”
 - The amber has positive charge...
 - And the straw has negative charge
 - Opposite charges attract; like charges repel

- This was the limit of our understanding for thousands of years
 - More experiments → understanding electricity in 1800's
Coulomb's Law

- After much experimenting:

 \[F = k \frac{q_1 q_2}{r^2} \]

 - \(F \) = Force
 - \(q \) = charge
 - \(r \) = distance
 - \(k = 9 \times 10^9 \) N m\(^2\) / C\(^2\)

- This is an “inverse-square law”

 - Just like gravity! (except it can **attractive** or **repulsive**)

- Note: The diagram shows two charges, \(q_1 \) and \(q_2 \), attracting each other with a force \(F \) that varies inversely with the square of the distance \(r \) between them. The constant \(k \) accounts for the strength of the interaction, with values for different units of charge and distance.
Charge and Atoms

• Today we know that matter is made up of atoms
 – Positively charged nuclei with negatively charged e–
 – Positive charge → protons in nucleus

• Charge is always “attached” to a particle
 – In increments of 1.6×10^{-19} C (the “elementary charge”)
 – If like charges repel, how do particles ever assemble?

• Charge can never be created or destroyed
 – It is conserved, just like energy!
 – Universe is electrically neutral overall...as far as we can tell!
Conductors and Insulators

- Most electrons are “bound” to the nucleus
 - i.e. They orbit around the nucleus

- Strength of this binding varies greatly
 - Some electrons are relatively easy to remove from the nucleus

- Conductors
 - Materials with lots of “free” electrons which move easily
 - Most metals are good conductors

- Insulators
 - Materials with few free electrons (rubber, glass, plastic)
Charge in Conductors

• In an ideal conductor:
 - e^- move in **response** to other charges
 - e^- have tiny mass \rightarrow can move as fast as needed

Charged conductor
- charges **repel** each other
- all the way to the **surface**

Bring charge near a conductor
- charges in conductor **move around** due to attraction and repulsion
Charging Objects

• How can we transfer charge to an object?

• Conduction
 – Put objects made of different materials in physical contact
 – If one attracts e– better than the other → it takes them

• Induction
 – Bring a charged object near an uncharged one
 – Cut uncharged object in half
Electric Field

- How can particles exert force without touching?
 - “Action-at-a-distance” → just like gravity

- Solution: The “electric field”

- A “source charge” affects the space around it
 - If a “test charge” comes into this “field”, it feels a force
 - Newton's 3rd Law: Both particles act as source and test charges
Electric Field Mathematics

• “E field” created by a source charge
 - Defined as the electric force per coulomb of test charge
 - “If I put a test charge here, how big is the force on it?”

\[E = \frac{F}{q_{\text{test}}} = k \frac{|q_{\text{source}}|}{r^2} \]

\[E = k \frac{|q|}{r^2} \]

• E field is a “Vector Field”
 - At every point in space, it produces a vector
 - Points away from + and toward –
E Fields From Multiple Sources

- Total E field is the vector sum of E fields
 - Must add horizontal and vertical components separately
Electric Field Lines

- Imaginary paths drawn along E field vectors
 - Helpful for visualizing E fields
 - E field vector is always *tangent* to lines

- Conductors always have $E=0$ inside
 - So no field lines inside the conducting material!
Gauss's Law

- E Field lines **diverge** away from + charge
 - And *converge* toward – charge

- **Gauss's Law**: for a closed volume (like a box)...
 - If field lines diverge → + charge is inside volume
 - If field lines converge → – charge is inside volume

- “Electric Flux”
 - Describes divergence/convergence of field lines
 - Will be useful later on in *electromagnetic* theory