ELECTRIC POTENTIAL AND ENERGY
Electric Potential Energy

- E fields can do **work** on charged particles
 - So they must contain energy

\[F = qE \quad \rightarrow \quad \text{Work} = Fd = qEd \]

- \(\text{PE}_{\text{electric}} \) similar to \(\text{PE}_{\text{gravity}} \) (qEd vs. mgd)
 - Except it can be **attractive** or **repulsive**
 - General rule: forces push toward **lowest** possible PE

High PE | Low PE | Very Low PE
Electric Potential – “Voltage”

- Charge affects PE (which is also called U)
 - Measure the effect → one number at each point in space

- Electric potential (or “voltage”)
 - “If I put a test charge here, how much PE will it add?”
 - Measured in Volts (V)

\[V = \frac{U}{q'} \]

Point A has a large positive voltage
Point B has a large negative voltage
U and V for Point Charges

- **U needs reference point → like “floor” in PE**
 - Convention for point charges:
 - Infinite separation is the “zero” of U and V

\[
U = k \frac{qq'}{r}
\]

- U and V can be + or −, depending on charges

\[
V = k \frac{q}{r}
\]

- For more than 2 charges:
 - \(V_{\text{total}} \) = sum of V's from each charge
 - \(U_{\text{total}} \) = sum of U's from each pair of charges
Point Charge Equations

\[F = k \frac{q_1 q_2}{r^2} \]

\[U = k \frac{qq'}{r} \]

\[E = \frac{F}{q} \]

\[V = \frac{U}{q'} \]

\[E = k \frac{|q|}{r^2} \]

\[V = k \frac{q}{r} \]
Storing Electric Energy

- Must separate + and – charges
 - Like stretching an imaginary rubber band (the E field)

- Batteries
 - Place 2 different substances in contact with acid
 - + and – charges separate
 - ΔV is roughly constant for life of battery

- Capacitors
 - 2 metal plates with a gap between them
 - Place + charge on one plate and – charge on the other
 - Good for releasing energy quickly → e.g. camera flash bulb
 - ΔV depends on how much Q is on plates
Capacitors

Capacitance

\[C = \frac{Q}{V} \]

Units: Farad (F) = 1 C/V

\[C = \varepsilon_0 \frac{A}{d} \]

\[\varepsilon_0 = 8.85 \times 10^{-12} \frac{C}{V \cdot m} \]

\[E = \frac{V}{d} \]

\[V = V_b - V_a \]
Energy Storage in Capacitors

• Capacitors store potential energy in the E field
 – 3 ways to express energy:

 \[U = \frac{1}{2} CV^2 \]

 \[U = \frac{1}{2} \frac{Q^2}{C} \]

 \[U = \frac{1}{2} QV \]

• If capacitor is connected to a battery:
 – \(V \) = constant → \(Q \) can change if \(C \) changes

• If capacitor is disconnected:
 – \(Q \) = constant → \(V \) can change if \(C \) changes
Applications of Capacitors

• Quick release of stored energy

• Circuit protection

• Sensors
Dielectrics – Making Capacitors Stronger

• Put an insulator (with “bound electrons”) in an E field
 - e– are not “free” → shape of the electron cloud is affected

• Atom is now “polarized” → energy is stored like a spring
 - Can make capacitors stronger by inserting these “dielectrics”

• Too much polarization → electron separates from nucleus
 - “Dielectric breakdown” – material becomes a conductor
Capacitors with Dielectrics

• Every material has 2 dielectric properties:
 – “Dielectric constant” K
 – “Dielectric strength” → E field at which breakdown occurs

• Capacitance with dielectric
 – Is K times bigger

• Increase in C → change in U
 – Depends on whether capacitor is connected to battery

\[C = KC_0 \]
Energy Stored in E Field

- Can calculate amount of energy E field stores
 - Using parallel-plate capacitor as example

\[
U = \frac{1}{2} CV^2 = \frac{1}{2} \left(\frac{\varepsilon_0 A}{d} \right) (Ed)^2 = \frac{1}{2} \varepsilon_0 E^2 (Ad)
\]

\[
\frac{U}{Volume} = \frac{U}{Ad} = \frac{1}{2} \varepsilon_0 E^2 = \text{Energy Density} = u
\]

\[
u = \frac{1}{2} \varepsilon_0 E^2
\]

This turns out to be a general result for all E fields.