1 Ch. 14, §9, 2

\[w = \frac{z + 1}{2i} = \frac{x + iy + 1}{2i} = \frac{y}{2} - i\left(\frac{x}{2} - 1\right) \]

(1.1)

Lines of constant \(u \) and \(v \) are plotted on the next page.

2 Ch. 14, §9, 8

\[w = \cosh(z) = \frac{e^x e^{iy} + e^{-x} e^{-iy}}{2} = \frac{e^x \cos(y) + e^{-x} \cos(y) + ie^x \sin(y) - ie^{-x} \sin(y)}{2} = \cosh(x) \cos(y) + i \sinh(x) \sin(y) \]

(2.1)

Lines of constant \(u \) and \(v \) are plotted on the next page.

3 Ch. 14, §9, 11

The Riemann surface for \(\log z \) is an infinite sheeted spiral, like an infinite rotelli noodle. Going from one sheet to the one above (or below) it corresponds to increasing (or decreasing) \(\Im(\log z) \) by \(2\pi \).

4 Ch. 14, §10, 4

Under the map \(w = \log z \), the quarter disk with \(r \in (0, 1), \theta \in (0, \pi/2) \) is mapped to the rectangular region \(u \in (-\infty, 0), v \in (0, \pi/2) \) in the \(u + iv \) complex plane. Thus, we have to solve the heat equation with insulating boundary conditions at \(u = -\infty, 0, T = 0 \) at \(v = 0 \) and \(T = 100 \) at \(v = \pi/2 \). The solution is given by \(T = 200v/\pi \). Thus, \(T = 200\theta/\pi = 200 \arctan(y/x)/\pi \). The isotherms are given by \(y = \tan(\pi T/200)x \), which are lines going radially outward from the origin, as you might have expected.
(*Section 9, Problem 2*)
(*Lines of constant u*)

\texttt{ContourPlot[(y/2), \{x, -1, 1\}, \{y, -1, 1\}]}
ContourPlot[(-(x + 1)/2), {x, -1, 1}, {y, -1, 1}]
(* Lines of constant v *)
(*Section 9, Problem 8*)
(*Lines of constant u*)

\texttt{ContourPlot[(\text{Cos}[y] \text{Cosh}[x]), \{x, -1, 1\}, \{y, -1, 1\}]}

\begin{center}
\includegraphics[width=\textwidth]{hw6.nb}
\end{center}
(* Lines of constant v *)
ContourPlot[Sin[y] Sinh[x], {x, -1, 1}, {y, -1, 1}]