Physics 123B: Homework 3
due February 1, 5pm in the box at the PSR

1. **IQHE:**
 Assuming a 2d electron gas with fixed 2d electron density n and mass m, and assuming all electrons are spin polarized (i.e. they are all spin up), find the sequence of magnetic fields B_k, such that exactly k Landau levels are filled, with integer k. These fields correspond to the centers of plateaus in the IQHE.

2. **Topological insulators:**
 In class, we showed by solving the Dirac equation that the edge state on the right side of the spin-orbit-coupled graphene system with spin up, associated with the K node, had energy $\epsilon = \epsilon_0 - vq_y$, i.e. it was “left-moving”.

 (a) Show by solving the Dirac equation for the K' node that the edge state on the same edge for spin down has energy $\epsilon = \epsilon_0 + vq_y$, i.e. it is “right-moving”.

 (b) Show that the spin up edge state on the left edge of the sample propagates in the opposite direction from the one we found in class (taking the same $V > 0$ to occur outside the sample).