K&K Problem 4.1

If the box pushes against the track with a force \(mg \), the track pushes back with a normal force \(mg \).

\[
F_r = -w - F_N = -mg - mg = -2mg
\]

\[
= ma_c = -\frac{mv^2}{R}
\]

\[\Rightarrow v_{\text{top}}^2 = 2gR\]

Conservation of Energy

\[
(K.E. + P.E.)_{\text{initial}} = (K.E. + P.E.)_{\text{top of track}}
\]

\[
o + mgZ = \frac{1}{2}mv^2 + mg(2R)
\]

\[
mgZ = \frac{1}{2}m(2gR) + 2mgR
\]

\[
mgZ = mgR + 2mgR
\]

\[Z = 3R\]
K & K Problem 4.2

Let v_f and x_f be the velocity and position when it first is at rest. Thus $v_f = 0$.

The force is

$$F(x) = F_{\text{spring}} + F_{\text{friction}} = -kx - \frac{1}{M} \frac{d}{dx}$$

$$= -kx - b x M g$$

$$\Delta (\text{K.E.}) = \int_0^{x_f} F(x) \, dx$$

$$\frac{1}{2} M \frac{v_f^2}{x_f} - \frac{1}{2} M v_0^2 = \int_0^{x_f} -kx - b x M g$$

$$- \frac{1}{2} M v_0^2 = -\frac{1}{2} (k + b M g) x_f^2$$

$$x_f^2 = \frac{M v_0^2}{k + b M g}$$
Initially there is only kinetic energy

\[E_0 = \frac{1}{2} Mv_0^2 \]

When it is at rest there is only potential

\[E_f = \frac{1}{2} kx_f^2 \]

Thus

\[E_f - E_0 = \frac{1}{2} \left(Mv_0^2 - \frac{kMv_0^2}{(k + bMg)} \right) \]

\[= \frac{1}{2} Mv_0^2 \left(1 - \frac{kM}{k + bMg} \right) \]

\[= \frac{1}{2} Mv_0^2 \left(\frac{k + bMg}{k + bMg} \right) \]

\[\Delta E = \frac{1}{2} \frac{bM^2v_0^2}{k + bMg} \]
K & K Problem 4.3

a) Conservation of momentum

\[mV = (M+m)V' \]

\[V' = \frac{m}{M+m}V \]

b) Conservation of energy

\((K.E. + P.E.)_{\text{after collision}} = (K.E. + P.E.)_{\text{at angle } \phi} \)

\[\frac{1}{2}(M+m)V'^2 + 0 = 0 + (M+m)gh \]

\((v')^2 = 2gh \)

The height is

\[h = l - l \cos \phi \]

\[v' = V' \left(\frac{M+m}{m} \right) \]

\[V = \frac{(M+m)}{m} \sqrt{2gl(1-\cos \phi)} \]
K&K Problem 4.4

Initially both blocks are at rest, so \(P_i = 0 \).
Call \(V \) the velocity of \(M \).

Conservation of momentum:

\[
P_i = P_f
\]

\[
0 = mv - MV
\]

\[\Rightarrow V = \frac{mv}{M}\]

Conservation of energy:

\[
E_i = E_f
\]

\[
mgr = \frac{1}{2}mv^2 + \frac{1}{2}MV^2
\]

\[
= \frac{1}{2}mv^2 + \frac{1}{2}M \left(\frac{mv}{M} \right)^2
\]

\[
= \frac{1}{2}mv^2 \left(1 + \frac{m}{M} \right)
\]

\[\Rightarrow V = \sqrt{\frac{2gr}{\sqrt{1 + \frac{m}{M}}}}\]
Initially the mass has velocity v_1 at radius l_1. Then the rope is pulled with a force F until it is moving at v_2 with radius l_2.

The acceleration is:

$$a = a_r \hat{r} + a_\theta \hat{\theta} = (\ddot{r} - r \dot{\theta}^2) \hat{r} + (\ddot{\theta} + 2r \dot{r} \dot{\theta}) \hat{\theta}$$

with $a_\theta = 0$. The force is:

$$\vec{F} = -ma_r \hat{r}$$

$$F_r = -m(\ddot{r} - r \dot{\theta}^2)$$

If the string is pulled really slowly then $\ddot{r} = 0$.

$$F_r = +mr \dot{\theta}^2$$

If we call v_r the velocity at radius r, then

$$\omega = \frac{v_r}{r}$$

and

$$F_r = -m \frac{v_r^2}{r}$$
We also have
\[F_\theta = m (r \ddot{\theta} + 2 \dot{r} \dot{\theta}) \]
\[= m \frac{1}{r} \frac{d}{dt}(r^2 \dot{\theta}) = 0 \]

Thus, \(r^2 \dot{\theta} \) is constant in time.

\[r^2 \omega = r v_r = b_1 v_1 = b_2 v_2 \]
\[\Rightarrow v_r = \frac{b_1 v_1}{r} \quad v_2 = \frac{v_1 b_1}{b_2} \]

The force is \(F_r = -\frac{mv_1^2 b_1}{r^3} \)

The work is the integral of the force:
\[W = \int_{b_1}^{b_2} \mathbf{F} \cdot d\mathbf{r} = \int_{b_1}^{b_2} F_r dr = -mv_1^2 b_1 \int_{b_1}^{b_2} \frac{1}{r^3} dr \]
\[= -mv_1^2 b_1 \left[-\frac{1}{2r^2} \right]_{b_1}^{b_2} \]
\[= \frac{1}{2} m \left(\frac{v_1^2 b_1^2}{b_2^2} - \frac{1}{2}mv_1^2 \right) \]
\[= \frac{1}{2} m v_2^2 - \frac{1}{2} m v_1^2 = \Delta(K.E) \]
\[h = R \cos \theta \]

\[F_r = -F_{\text{grav}} + F_{\text{normal}} = ma \]
\[= -mg \cos \theta + F_N = -\frac{mv^2}{R} \]

When the block loses contact with sphere, \(F_N = 0 \), thus
\[mg \cos \theta = \frac{mv^2}{R} \]

Since there is no friction, energy is conserved.
\[E_i = E_f \]
\[mgR = mgR \cos \theta + \frac{1}{2}mv^2 \]

\[2mg(1 - \cos \theta) = \frac{mv^2}{R} \]

Using previous result
\[2mg(1 - \cos \theta) = mg \cos \theta \]

\[2 = 3 \cos \theta \]
\[\cos \theta = \frac{2}{3} \]
The distance from the top is

\[x = R - R \cos \theta \]

\[= R \left(1 - \frac{2}{3} \right) \]

\[x = \frac{R}{3} \]
K&K Problem 4.7

The forces on the ring are gravity, tension from thread, and normal force from beads.

\[F = T - Mg + 2F_N \cos \theta \]

The beads move symmetrically. The normal force \(F_N \) depends on the angle. Conservation of energy gives the velocity of each bead.

\[mgR = mgR \cos \theta + \frac{1}{2} mv^2 \]

\[v^2 = 2gR(1 - \cos \theta) \]

\[\Rightarrow a_c = \frac{v^2}{R} = 2g(1 - \cos \theta) \]

\[F_r = ma_c = -F_N + mg \cos \theta \]

\[F_N = -ma_c + mg \cos \theta \]

\[F_N = -2mg(1 - \cos \theta) + mg \cos \theta \]

\[= -mg(2 - 3\cos \theta) \]
For the ring to move upward, the force switches from negative to positive, so
\(F = 0 \) at the threshold point. The thread will go slack so \(T = 0 \) also.
From the original equation for force

\[-Mg = +2F_N \cos \theta\]

\[-2mg \cos \theta (2-3 \cos \theta)\]

This is a quadratic equation in \(\cos \theta \)

\[0 = 6mg \cos^2 \theta - 4mg \cos \theta + Mg\]

\[\cos \theta = \frac{4mg \pm \sqrt{16m^2g^2 - 24mgMg}}{12mg}\]

\[= \frac{1}{3} \pm \frac{1}{3} \sqrt{1 - \frac{3M}{2m}}\]

For \(\cos \theta \) to be real \(1 - \frac{3M}{2m} > 0 \), so

\[1 > \frac{3M}{2m}\]

\[m > \frac{3M}{2}\]

This occurs the first time \(\cos \theta \) reaches this value, so we take the positive root.

\[\theta = \cos^{-1} \left(\frac{1}{3} + \frac{1}{3} \sqrt{1 - \frac{3M}{2m}} \right)\]
K & K Problem 4.8

a) Let the amplitude for the first cycle be A.
 The work due to friction is force times distance.
 \[W = -4Af \]

 Remember friction always opposes the motion.
 The work is also the change in Kinetic Energy.
 \[W = \Delta K = \frac{k(A + dA)^2}{2} - \frac{kA^2}{2} \]

 \[= \frac{kA^2}{2} + kAdA + \frac{k(dA)^2}{2} - \frac{kA^2}{2} \]

 Since dA is very small, the second term can be ignored.
 \[W = kAdA = -4Af \]

 \[\Rightarrow dA = \frac{-4f}{k} \]

 The change in amplitude does not depend on A, so it will be the same for each cycle.

b) Each cycle, the amplitude decreases by dA.
 The number of cycles before coming to rest is:
 \[n = \frac{x_0}{|dA|} = \left[\frac{kx_0}{4f} \right] \]
K & K Problem 4.16

The work energy theorem

\[P = \frac{dK}{dt} \]

\[P_{\text{avg}} = \frac{\Delta K}{\Delta t} = \frac{1}{2}mv_f^2 - \frac{1}{2}mv_0^2 \]

\[v_0 = 0 \]

\[v_f = \left(60 \text{ mi/h}\right) \left(\frac{1 \text{ hour}}{3600 \text{ sec}} \right) \left(\frac{1609 \text{ m}}{\text{mi}} \right) = 268.8 \text{ m/s} \]

\[m = \left(1800 \text{ lbs.}\right) \left(0.454 \frac{\text{kg}}{\text{lbs.}} \right) = 817 \text{ kg} \]

\[P_{\text{avg}} = \frac{1}{2} \left(817 \text{ kg} \right) \left(268.8 \text{ m/s} \right)^2 \]

\[\frac{\text{sec}}{8} \]

\[P_{\text{avg}} = 3.67 \cdot 10^4 \text{ W} \]