1. a) A cord moving at low speed v rubs against a round post and deviates from a straight line by a small angle $\Delta \theta$. If the tension on one side of the post is $T + \Delta T$ and on the other side is T, what is the difference ΔT introduced by friction?
b) Find the ratio of tensions at the two ends of a cord wrapped around a circular post a finite angle α and pulled so as to slip.

2. The potential energy of a point particle is $U(x) = -x^2 + 2x^4$.
a) Find the force associated with this potential energy. b) Sketch $U(x)$ showing its essential features. c) Discuss the motion for the case $E > 0$. Find v at $x = 0$, where E is the total energy of the particle. d) Discuss the motion for $E < 0$.

\[T \quad T+\Delta T \]
\[\Delta \theta \]
\[o \]
3. a) Consider the force field $\vec{F} = -Ar^3\hat{r}$ where A is a constant and \hat{r} is the radial unit vector. Is this force conservative? If so, find the potential energy function associated with this force. b) Repeat for the force $\vec{F} = B(y^2\hat{i} - x^2\hat{j})$ where B is a constant. Find the work done by \vec{F} along the path shown below.