

Physics TA Observations & Feedback

TA :		TA Mentor:	
Date:		Course:	

Teaching Aspects	Comments
Planning: <ul style="list-style-type: none">• Choice of material• Use of commentary• Knowledge of material• Time management	
Audience Interactions: <ul style="list-style-type: none">• Quality of questions directed to students• Waiting time• Ability to engage various students• Awareness of student comprehension• Ability to address student questions	
Teaching Mechanics <ul style="list-style-type: none">• Physics pedagogy• Eye contact• Board skills• Speech• Mobility	
General Comments	

Teaching Aspects

Planning

- *Choice of material:* When selecting material to present to students, focus on the most relevant or fundamental concepts. The material you choose to present should be at an appropriate level for your students.
- *Use of commentary:* 'Raw material' will be more readily absorbed by students if placed within a familiar context. Plan to link material to prior course content or everyday experience. Try to motivate the material with potential applications or examples.
- *Knowledge of material:* It is often said that teaching a subject is the best way to truly learn it. Make sure you are familiar and comfortable with the material before arriving to class.
- *Time management:* Choose the right amount of content given the time allotted. Plan time for student questions. Try to go at a pace that is appropriate for the majority of students.

Audience Interactions

- *Quality of questions directed to students:* Questions posed to students should address key concepts and encourage thought at the three levels of understanding (see "Questioning" handout). Avoid yes-or-no questions.
- *Waiting time:* After asking a question, wait at least 20 seconds for students to respond. If they do not respond, try giving a hint or rephrasing the question and allow another 20 seconds to pass. This wait time will feel like an eternity to you, so try counting in your head, or watching a clock.
- *Ability to engage students:* It is very important to involve all students in class. When interacting with students, try to encourage each of them to participate. Present material using a variety of techniques that are appropriate for different learning styles.
- *Awareness of student comprehension:* Look for clues from students to judge if you are going at the right pace and teaching at the right level. If students look disinterested, you may be going too fast or too slow. Adjust your pace, or adapt material.
- *Ability to address student questions:* Before answering student questions, ensure that you understand what is being asked. Refer to "Questioning" handout for tips on answering questions.

Teaching Mechanics

- *Physics specific pedagogy:* Be sure to define variables, include units, label coordinates and vectors, and keep consistent and clear notation.
- *Eye contact:* Remember to make eye contact with students. This can help you judge if students are following you or are confused.
- *Board skills:* Write legibly, and large enough for students to read. Make sure you move back and forth to allow students to read what you have written. Keeping the board organized (working from top to bottom, left to right) helps students follow your work.
- *Speech:* Speak loudly enough so that all students can hear you. Speak clearly and at a moderate pace.
- *Mobility:* Moving around the classroom helps encourage all students to participate.