
Homework 5 Solutions

1. (a) To estimate the total amount of hydrogen consumed over the past 4.56 billion
years, we first need to obtain the total energy lost over the past 4.56 billion years,
E. Since the Sun’s luminosity L�, which is the rate of energy radiated, is assumed
to be constant, we simply multiply L� by the length of time t = 4.56 billion years
to get E:

E = L� × t

= (3.90× 1026 W)× (4.56× 109 yr)×
(

3.15× 107 s

1 yr

)
= 5.602× 1043 J

This energy radiated must be equal to the energy released from hydrogen burning.
Now, in hydrogen burning, 4 hydrogen atoms produces a helium atom, and it is
the mass difference between the helium atom and the four hydrogen atoms that
is converted to energy. The total mass difference over the past 4.56 billion years,
Mdiff, is related to the total energy released in this period via the mass-energy
relation, E = Mdiffc

2.

We can relate this to the total mass of hydrogen consumed since in hydrogen
burning, for each 1 kg of hydrogen being consumed, only 0.007 kg is converted
to energy. In other words, the total mass difference is 0.7% of the total mass
of hydrogen consumed, Mdiff = 0.007MH. Thus, the total amount of hydrogen
consumed is

E = Mdiffc
2 = 0.007MHc

2

MH =
E

0.007c2

=
5.602× 1043 J

0.007(3× 108 m/s)2

= 8.89× 1028 kg

Alternatively, one can read from Box 16-1, and multiply the rate of hydrogen
consumption 6×1011 kg/s by 4.56 billion years to get the total amount of hydrogen
consumed:

MH = (6× 1011 kg/s)× (4.56× 109 yr)×
(

3.15× 107 s

1 yr

)
= 8.62× 1028 kg

where we note that the numerical value of MH obtained here is slightly different
from that obtained in the first method, because the rate of hydrogen consumption
6× 1011 kg/s is a rounded number.

The total mass lost over the past 4.56 billion years is what we called Mdiff

previously, which is related to the total mass of hydrogen consumed MH via
Mdiff = 0.007MH. Thus,

Mdiff = 0.007MH = 0.007(8.89× 1028 kg) = 6.22× 1026 kg
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(b) Our answers to part (a) are an overestimate . Since the Sun’s luminosity was
lower in the past than in the present, the rate of hydrogen burning required to
power the Sun’s luminosity was also lower in the past. Therefore, the total amount
of hydrogen lost and the total amount of mass lost are both overestimated.

2. We use the Doppler shift equation, which says that the ratio of the wavelength shift
∆λ = λ− λ0 to the unshifted wavelength λ0, is proportional to the ratio of the source
velocity along the line of sight v to the speed of light c:

∆λ

λ0

=
v

c

We only need the magnitude of the maximum wavelength shift, so we take the absolute
value of the wavelength shift and of the velocity:

|∆λ| = |v|
c
λ0 =

0.1 m/s

2.9979× 108 m/s
(557.6099 nm) = 1.86× 10−7 nm

3. We know that the blackbody temperature of the umbra of a sunspot is typically
Tumbra = 4300 K, that of the penumbra of a sunspot is typically Tpenumbra = 5000
K and that of the Sun’s photosphere is about Tphotosphere = 5800 K. We can relate the
blackbody temperatures T to the energy flux F via the Stefan-Boltzmann law, which
says the energy flux is proportional to the fourth power of the blackbody temperature,
F ∝ T 4.

(a) The ratio of energy flux from a sunspot’s penumbra Fpenumbra to the energy flux
from an equally large patch of photosphere Fphotosphere is therefore

Fpenumbra

Fphotosphere

=

(
Tpenumbra

Tphotosphere

)4

=

(
5000 K

5800 K

)4

= 0.552

Since Fpenumbra/Fphotosphere < 1, the photosphere is brighter.

(b) The ratio of energy flux from a sunspot’s penumbra Fpenumbra to the energy flux
from an equally large patch of umbra Fumbra is

Fpenumbra

Fumbra

=

(
Tpenumbra

Tumbra

)4

=

(
5000 K

4300 K

)4

= 1.83

Since Fpenumbra/Fumbra > 1, the penumbra of a sunspot is brighter.

4. (a) From Box 17-1, the tangential velocity of a star vt (in km/s) is related to its
proper motion µ (arcsec/yr) and distance d (in parsec) via vt = 4.74µd. We first
want to obtain d in parsec, from the parallax (in arcsec), via

d =
1

p
=

1

0.255
= 3.922 pc

and thus the tangential velocity is

vt = 4.74µd = 4.74(8.67)(3.922) = 161 km/s
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(b) The actual speed v can be obtained from the tangential speed vt and radial speed
vr by the Pythagorean theorem,

v =
√
v2

t + v2
r =

√
(161 km/s)2 + (246 km/s)2 = 294 km/s

(c) The radial velocity is the component of velocity along the observer’s line-of-sight
and is related to the Doppler shift via (λ − λ0)/λ0 = vr/c. Since vr > 0 for
Kapteyn’s star, then λ > λ0 which means there is a redshift in spectral lines. The
star is thus moving away from the Sun.

5. (a) The brightest star in Figure 17-6b has an apparent magnitude of mbright = +2.84,
and the dimmest has an apparent magnitude of mdim = +9.53 (recall that a star
with a higher apparent brightness has a lower apparent magnitude). We can relate
the apparent magnitude m to the absolute magnitude M if we know the distance
d in parsec, via m−M = 5 log d− 5. Using d = 110 pc, the absolute magnitude
of the brightest star is

Mbright = mbright − 5 log d+ 5 = 2.84− 5 log(110) + 5 = −2.37

and that of the dimmest star is

Mdim = mdim − 5 log d+ 5 = 9.53− 5 log(110) + 5 = +4.32

(b) The limiting apparent magnitude for the naked eye is m = +6. Using again
d = 110 pc, the absolute magnitude for such a star is

M = m− 5 log d+ 5 = 6− 5 log(110) + 5 = +0.793

The Sun has an absolute magnitude of M� = +4.8. Since a more luminous star
has a lower absolute magnitude, the Pleaides star at the naked eye limit is more
luminous.

6. (c) The spectra of very hot stars peak in the blue visible or the ultraviolet and radiate
progressively less flux in longer wavelengths, as shown in the figure for the 12,000 K
star. There is more flux in the U band than in the B band, and more in the B band
than in the V band, and so bV/bB and bB/bU are less than 1.

Similarly, very cool stars peak in the red visible and even the infrared, and radiate
progressively less flux in shorter wavelengths, as shown in the figure for the 3000 K
star. There is less flux in the U band than in the B band, and less in the B band than
in the V band, and so bV/bB and bB/bU are greater than 1.

7. (a) Singly ionized helium lines start to form for temperatures hotter than 30,000 K, so
we would expect to find them in the spectrum of a star with a surface temperature
of 35,000 K.

(b) We expect to find prominent molecular lines such as titanium oxide (TiO) in a
star with surface temperature of 2800 K.
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Figure 1: Problem 6a and 6b.

(c) We expect to find prominent ionized and neutral metal lines in a star with surface
temperature of 5800 K.

These stars have such different spectra because their surface temperatures excite dif-
ferent atomic/molecular species. A 35,000 K star is hot enough to singly ionize helium,
and excite singly helium lines. A 5800 K star is not hot enough to excite helium atoms
so as to produce prominent helium lines, but it is hot enough to excite ionized and
neutral metal lines. A 2800 K star is not hot enough to excite helium or metal lines,
but it is cool enough to allow formation of molecules and produce prominent molecular
lines.
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