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Velocity alignment leads to high persistence in confined cells
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Many cell types display random motility on two-dimensional substrates but crawl persistently in a single
direction when confined in a microchannel or on an adhesive micropattern. Does this imply that the motility
mechanism of confined cells is fundamentally different from that of unconfined cells? We argue that both free-
and confined-cell migration may be described by a generic model of cells as “velocity-aligning” active Brownian
particles previously proposed to solve a completely separate problem in collective cell migration. Our model
can be mapped to a diffusive escape over a barrier and analytically solved to determine the cell’s orientation
distribution and repolarization rate. In quasi-one-dimensional confinement, velocity-aligning cells maintain their
direction for times that can be exponentially larger than their persistence time in the absence of confinement.
Our results suggest an important connection between single- and collective-cell migration: high persistence in
confined cells corresponds with fast alignment of velocity to cell-cell forces.
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I. INTRODUCTION

In traveling through the body, cells move through pro-
foundly complex environments, interacting with nearby cells
and extracellular matrix. By contrast, experiments on cell
motility primarily study cells on two-dimensional homoge-
neous substrates. Understanding how cells alter their motility
in response to confinement is an ongoing and crucial problem
in biology that may be relevant to cancer cell migration,
where cancer cells may follow preexisting structures or push
through tissue [1,2]. Confinement of cells may determine
invasiveness [3] as well as changing cell motility modes [4]. To
study confinement and adhesion in cell motility, controllable in
vitro environments have been developed, including adhesive
micropatterned substrates [5–7] and microchannels [2,8,9].
Cells in confinement can have strikingly different motion
than cells on a substrate [5,7,10]. In particular, confinement
can change the persistence of the cell’s orientation: many
cell types undergo persistent directed migration on narrow
micropatterned adhesive stripes [5] and within small mi-
crochannels [2], even though they undergo primarily random
motility on two-dimensional substrates.

Do these remarkable changes in the character of cell
persistence necessarily require free and confined migration
to have different biophysical mechanisms? No! We show that
a single minimal model of cell motility originally proposed to
describe a completely independent situation in collective cell
migration describes both regimes. Our model has the critical
benefit of an analytic solution, permitting simple comparison
to experiment. This minimal approach has been historically
crucial in cell motility, where persistent random walks, run-
and-tumble dynamics, and generalizations [11–13] have been
used to successfully describe and fit experimental eukaryotic
and bacterial cell trajectories. Generic models are also favored
here, as different cell types display similar behavior.

Confined cells are also an important example of boundaries
altering the behavior of active matter [14], an area of physics
that is only beginning to be understood. Boundaries may
induce spontaneous circulation [15], rectification [16,17],
driving of gears [18], aggregation at edges [19–21], and other
complex dynamics [22–25].

Recently, “velocity-aligning” (VA) active particles and
related models have been proposed to describe the collective
motility of keratocytes [26], endothelial monolayers [27],
wound healing [28], and more [29–32]. VA creates collective
motion even though a cell does not “sense” its neighbor’s
orientation. We use a minimal VA model of a cell as an active
Brownian particle that aligns its polarity (internal compass)
with its velocity [26]. We show analytically that under strong
confinement, velocity alignment significantly increases a cell’s
persistence. Surprisingly, the polarity of a confined VA cell
can be mapped to a diffusion-over-a-barrier problem. This
minimal model demonstrates that physical confinement can
dramatically alter a cell’s type of motility without requiring a
different mechanism for free- and confined-cell migration.

II. VELOCITY ALIGNMENT INCREASES PERSISTENCE

In the overdamped active Brownian particle model we study
here [26], a velocity-aligning cell’s position r̃ = (x̃,ỹ) and
polarity p̂ = (cos θ, sin θ ) follow ∂t̃ r̃ = v0p̂ + μF and ∂t̃ θ =
1
T

arcsin[(p̂ × v̂)z] + ζ (t̃), where v̂ = (∂t̃ r̃)/|∂t̃ r̃| is the cell’s
velocity direction, μ is the cell’s mobility, v0 is the cell’s speed
in the absence of external force, and F the external force. The
noise ζ (t̃) has variance 〈ζ (t̃)ζ (t̃ ′)〉 = 2P −1δ(t̃ − t̃ ′), where
P is the cell’s angular persistence time. The aligning term
T −1 arcsin[(p̂ × v̂)z] = T −1 arcsin[cos θv̂y − sin θv̂x] makes
the polarity direction θ relax to the velocity direction, θv =
arg v with a time scale T ; it is a periodic extension of
−T −1(θ − θv) [29]. We describe a single velocity-aligning
cell confined within a harmonic potential of stiffness ks in
the x direction. We rescale lengths and times as t = t̃/P and
x = x̃/(v0P ). In these units,

∂tr = p̂ − κxx̂, (1)

∂tθ = 1

τ
arcsin[(p̂ × v̂)z] + ξ (t). (2)

Here κ is the unitless measure of the strength of the cell’s
confinement, κ = μksP ; τ = T/P is the ratio of the time
required to align the cell’s polarity to its velocity to the time
scale for the cell’s orientation to randomly reorient. A smaller
value of τ implies a more effective aligning mechanism. The
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FIG. 1. (Color online) (a) Velocity-aligning cell model originally
proposed by Szabo et al. [26]. The cell is propelled along its internal
polarity p̂; this polarity aligns itself to the direction of the cell’s
velocity v. The cell moves under the combination of its motility
and the force from confinement [Eqs. (1) and (2)]. Dashed lines
indicate the stall point x = ±κ−1 that the cell cannot cross. (b)
Fibroblast on narrow adhesive microstripe; adapted from [5]; C© Doyle
et al. 2009. Originally published in J. Cell. Biol. (c) Human breast
adenocarcinoma in microchannel; adapted from [2] with permission
of The Royal Society of Chemistry.

Gaussian Langevin noise ξ (t) has zero mean and variance
〈ξ (t)ξ (t ′)〉 = 2δ(t − t ′).

We can solve the x component of our position equation,
∂tx = cos θ − κx, for x(t) as a functional of the angle θ (t),
x(t) = ∫ t

−∞ dt ′e−κ(t−t ′) cos θ (t ′). We model strongly confined
cells (Fig. 1) and thus assume κ � 1. In this limit, e−κ(t−t ′) →
1
κ
δ(t − t ′) and κx(t) ≈ cos θ (t); i.e., the cell quickly crawls

to its stall point where vx = 0. We make the approximation
that vx = 0, v̂ = sin θ

| sin θ | ŷ. Our equation for θ thus becomes

∂tθ = 1
τ

arcsin[ cos θ sin θ
| sin θ | ] + ξ (t). Using standard trigonometric

identities, we can show that for θ ∈ [−π,π ], arcsin[ cos θ sin θ
| sin θ | ] =

−∂θW (θ ), where

W (θ ) = −π

2
|θ | + 1

2
θ2. (3)

For strong confinement, θ thus follows

∂tθ = −τ−1∂θW (θ ) + ξ (t), (4)

where now we interpret W (θ ) as the periodic extension of its
definition in Eq. (3).

Equation (4) provides us with a great deal of insight into the
dynamics of the cell’s polarity θ : it is precisely the dynamics of
a Brownian particle with unit temperature diffusing passively
in a potential τ−1W (θ ). The potential W (θ ) has minima at
±π/2, when the cell polarity is aligned in the ±ŷ direction
(along the channel). The velocity alignment parameter τ

acts as an effective temperature: as τ → 0, θ becomes
increasingly localized to the minima of W (θ ), e.g., the ±ŷ
directions. The distribution of angles (modulo 2π ) is just the
standard Boltzmann distribution, p(θ ) ∼ exp[−W (θ )/τ ]. We
show these distributions, and corresponding ones from direct
Brownian dynamics simulation of Eqs. (1) and (2), in Fig. 2.
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FIG. 2. (Color online) Probability distribution of cell polarity
angles θ (modulo 2π ) are given by the Boltzmann-like distribution
p(θ ) ∼ exp[−W (θ )/τ ]. Symbols are Brownian dynamics simula-
tions of our full model [Eqs. (1) and (2)]; lines are the Boltzmann
distribution. Simulations performed with κ = 1000, 
t = 1 × 10−4,
and a simulation time of 1 × 106.

We can use Eq. (4) to compute the rate of spontaneous
repolarization of our cells. In order for a cell to change its
direction θ from π/2 to −π/2, it must cross the barrier at
θ = 0. This rate decreases strongly with decreasing τ , leading
to increased persistence of cell motion. Determining the rate
of escape over a barrier is a classic problem; in one dimension,
the mean first-passage times (MFPTs) can be found exactly up
to quadrature via the Smoluchowski equation corresponding
to Eq. (4) and its adjoint [33–35]. The mean first-passage time
from θ = π/2 to absorbing boundaries at θ = 0,π is given by

tMFPT = 1

2

∫ π

0
dz eW (z)/τ

∫ z

0
dy e−W (y)/τ

−
∫ π/2

0
dz eW (z)/τ

∫ z

0
dy e−W (y)/τ , (5)

using the symmetry of W (z) about π/2. This integral may be
evaluated exactly using Mathematica,

tMFPT = π2

8
2F2

(
1,1;

3

2
,2;

π2

8τ

)
, (6)

where 2F2(a1,a2; b1,b2; z) is the generalized hypergeometric
function. A more convenient and intuitive form that is asymp-
totically correct in the limit of τ → 0 can be found by applying
the method of steepest descent to the integrals in Eq. (5),

tMFPT ≈
√

2

π
τ 3/2 exp

(
π2

8τ

)
. (7)

As expected from our analogy with diffusion over a barrier,
the time to repolarize increases exponentially in 1/τ : the
faster the cell aligns to its local velocity, the longer it takes
to turn around. We compare Eqs. (6) and (7) with mean
first-passage times (escape rates) observed in Brownian
dynamics simulations of Eqs. (1) and (2) in Fig. 3 and find
excellent agreement [36]; see Appendix A for a discussion of
how we measure turnaround times.
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FIG. 3. (Color online) When the alignment parameter τ is small,
the time required for the cell to repolarize becomes extremely
large. Top: Repolarization times from simulation of Eqs. (1) and (2)
(symbols) and theory; MFPT result is Eq. (5), steepest-descent result
is Eq. (7). Bottom: Typical time trace for θ (modulo 2π ) for τ = 0.1.
Dashed lines indicate ±π/2. Simulations performed with κ = 1000,

t = 1 × 10−4, and a simulation time of 1 × 106.

While our MFPT theory very accurately predicts the
Brownian dynamics simulation, there is some discrepancy
at large values of τ . Here, the MFPT theory overestimates
the time required to escape the potential well. This occurs
because we have assumed that the escape rate for the entire
well is effectively the same as the escape rate for the center,
π/2. As τ becomes larger, this assumption begins to break
down as the wells become “shallow” [33]. We expand W (θ )
around the minimum θ = π/2, defining δ = θ − π/2, W (δ) ≈
−π2

8 + 1
2δ2. This shows that (neglecting transitions between

the two states) the distribution of δ, P (δ) ∼ e−W (δ)/τ , is a
Gaussian, centered around zero, with a variance of τ . When
τ is of order unity, our idealized picture of hopping between
wells breaks down.

In the strong-confinement limit κ � 1, the only controlling
parameter for our model is τ . Can we estimate τ from
experimental data? To determine τ from Eq. (6), we need
to know (1) the rate of spontaneous reversals and (2) the
persistence time P that sets our unit of time. Desai et al. [37]
recently measured the rate of spontaneous reversal of NRK-
52E rat epithelial kidney cells on micropatterned adhesive
substrates, finding a rate of 0.08 ± 0.05 reversals per hour.
The characteristic persistence time P for this system has
not been measured, but we can estimate it. For a single
cell without confinement (κ = 0), the alignment term of our
model vanishes, as v̂ = p̂, and the Szabo model reduces to a
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FIG. 4. (Color online) Unitless mean-squared displacements
〈|
r|2〉 of a cell from simulation of Eqs. (1) and (2) with τ = 0.3 and
varying values of κ . The initial increase of κ from 0 to 1 decreases
the dispersal of the cell, due to its confinement. However, for larger
values of κ , the confinement-induced persistence ensures that the
cell persists in ballistic motion for a longer time before reorienting,
increasing the cell dispersal.

generic self-propelled particle model with velocity-velocity
correlation function (in dimensional units), 〈ṽ(t̃) · ṽ(0)〉 =
v2

0e
−t̃/P [12,38]. This form and the corresponding result for

the mean-squared displacement have historically been used to
analyze cell motion [11,39–41]. Persistence times range from
tens of seconds (for neutrophils [41]) to the order of hours
(for fibroblasts [39] and endothelial cells [40]). Based on this
information, and the trajectories of unconfined NRK-52E cells
shown in [37], we estimate P ≈ 1 h. Using this estimate, we fit
to kreversal = (2tMFPTP )−1, where tMFPT is given by Eq. (6) [36].
We find τ ≈ 0.3 (i.e., T ≈ 0.3 h). This is a measurement of
the cell’s internal memory as well as the strength of cell-cell
alignment in collective motility.

How does the increased persistence time alter the cell’s dis-
persal? For an unconfined cell, the mean-squared displacement
increases ballistically as 〈|
r|2〉 ∼ t2 at short times. At longer
times, reorientation leads to a diffusive motion, 〈|
r|2〉 ∼
t [38]. We show in Fig. 4 the mean-squared displacement of a
cell under increasing confinement κ . Interestingly, increasing
κ changes cell dispersal nonmonotonically. The presence of a
nonzero κ significantly decreases cell displacement (κ = 1 in
Fig. 4): confinement prevents the cell from traveling beyond
x = 1/κ . As κ is increased, the cell’s persistence increases
markedly, as studied above. The cell then maintains a steady
crawling motion for much longer without reorienting, leading
to an extended period of ballistic motion and a larger dispersal
(Fig. 4). This mean-squared displacement begins to saturate as
we reach the strong-confinement limit for κ > 100.

III. COLLECTIVE MOTILITY UNDER CONFINEMENT

Collective motion emerges in a simple extension of our
model to multiple cells in confinement. We simulate multiple
velocity-aligning cells, interacting only by a short-range
repulsion force. In unitless variables, the force between cells
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FIG. 5. (Color online) Velocity-aligning cells with cell-cell re-
pulsion develop “trains” consistent with [37]. Top: Representative
snapshots of trains of cells when τ = 0.3; circles represent cell size
while arrows represent cell polarity p̂. Each snapshot is separated by
a unitless time of 5 (e.g., 5 h if P = 1 h). Bottom: Positions of cells
are plotted over time for τ = 0.1,0.3,1. Trains are highly persistent
for τ = 0.1, occasionally reverse for τ = 0.3, and are only transient
if τ = 1. In this simulation, 25 cells of radius R = 1 are confined
in a periodic system of length L = 100. The confinement strength is
κ = 1000, and the cell-cell repulsion is κcell = 100.

i and j is Fij = −κcell(2R − |rij |)�(2R − |rij |)r̂ij , where
rij = rj − ri , R is the cell radius, and � is the Heaviside step
function. As noted by Henkes et al. [29], simple repulsive
interactions are sufficient to generate collective motion. We
find trains of cells as observed by Desai et al. [37] (Fig. 5). For
τ = 0.1, all cells quickly align into a single direction and very
rarely collectively reverse (observed once in a simulation of
unitless time 1 × 104). For the experimentally estimated value
of τ = 0.3, we see occasional reversals of trains, generally
consistent with the results of [37]. However, for τ = 1, no
persistent collective motions occur and trains are transient.
These results are similar to the observations of [37] but have
an important caveat. Our simulations predict that cells reverse
at a physical barrier; those studied in [37] do not. Our model
may therefore be more appropriate for fibroblasts as studied
in [5], which are observed to reverse at micropattern ends; we
primarily study the results of Desai et al. because they have
quantified the spontaneous repolarization rate.

Our results show that, in a velocity-aligning model, the
increase in persistence time of a strongly confined cell and
the interactions driving collective cell motility are intimately
related. Balzer et al. recently showed that human breast
carcinoma (MDA-MB-231) is highly persistent in a confined
channel, but that this persistence can be disrupted by inter-
fering with microtubule polymerization or depolymerization
by application of colchicine or paclitaxel (Taxol) [8]. This
raises an interesting question: do Taxol and colchicine disrupt
collective cell migration? Our model combined with the data

of Balzer et al. [8] suggests that Taxol and colchicine would
have similar effects on collective migration, even though they
have opposing effects on the stability of microtubules. The
idea that velocity alignment may be linked with microtubule
dynamics is perhaps not surprising, given the known roles of
microtubules in cell polarity [42].

While we have worked with the simplest possible model,
our results may be extended to more complex cellular dynam-
ics and potentially used to relate single-cell behavior under
strong confinement with cell-cell interactions. To do this, we
may have to extend this model. Experimental cell tracks show
velocity-velocity correlations with two distinct time scales,
rather than single-exponential as assumed here [11]; this fea-
ture may be added by adding a stochastic process controlling
the cell speed, i.e., v0 → v(t) [38]. In our model, v0 only
rescales the lengths involved; if v(t) does not frequently drop
to zero, we expect the varying velocity to only affect our results
minimally. We argue that the confining potential’s details
are relatively unimportant; simulations with strong hard-wall
confinement are consistent with Eq. (5) (Appendix B). Detailed
cellular simulations show adhesion to extracellular matrix also
increases persistence [43]; our results may help explain this.

In this paper, we have shown that, even in a very
simple model, cell motility in confinement can take on a
profoundly different character than on a two-dimensional
substrate, without invoking different mechanisms for free- and
confined–cell motility. There may, of course, be other reasons
to argue for biophysical differences between free and confined
motility [4,44]. Our results may explain the origin of large
persistence times experimentally observed for confined cells.
We believe that these results are useful as a baseline model
for the analysis of cell crawling in confinement, as well as
for making connections between single- and collective-cell
motility. In particular, our technique provides an in principle
straightforward way to determine the velocity-alignment time
scale that is important for collective cell motion [26–29,31]
by the analysis of single-cell trajectories under strong confine-
ment. This allows an interesting test of these minimal models
of collective cell motions.
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APPENDIX A: DETERMINING TURNAROUND TIMES

We are interested in characterizing the typical time required
for the cell to orient itself from the ŷ direction to the −ŷ
direction. This value should be directly comparable to the
MFPT result derived in the main paper. In the MFPT result,
we calculate the rate for the cell’s orientation to move from
θ = π/2 to θ = 0 or θ = π , and we assume that θ = π/2 and
θ = π are absorbing boundaries. By symmetry, this will be
precisely twice the actual rate, because a cell with orientation
θ = 0 is equally likely to transition to the “potential wells” at
θ = π/2 and θ = −π/2.
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FIG. 6. (Color online) Distribution of turnaround times com-
puted for simulation with κ = 1000 and τ = 0.5: 
t = 1 × 10−4,
total simulation time 1 × 106 (unitless).

In our simulations, it is convenient to track these transitions
with a similar absorbing boundary condition assumption. In
order to do this, we track the times between turnaround events,
i.e., events where sin θ changes sign. A histogram of these
events is shown in Fig. 6. If the transition between directions is
characterized by a simple rate, we would expect an exponential
distribution of transition times. We see that the tail of this
distribution is very well fit by an exponential; however, there
is a peak at small times. This peak arises from events where
the cell’s orientation remains close to sin θ = 0 and mostly
depends on the time step we use. We therefore fit to the
exponential tail to find the turnaround time, as shown in Fig. 6.

APPENDIX B: TURNAROUND TIMES UNDER
HARD-WALL CONFINEMENT

Our results for the turnaround time in the limit κ � 1 do not
depend on the strength of confinement κ; we would therefore
expect them to apply for strong confinement in other potentials.
Here, we show that this is true for a velocity-aligning particle
confined by hard walls at x = ±w/2. In this case, the strong
confinement limit occurs when w � 1; i.e., the cell does not re-
orient quickly before it impacts a wall. This strong confinement
limit was recently explored by Fily et al. [20] for many confin-
ing geometries, though in the absence of velocity alignment.

Our model for hard-wall confinement is

∂tr = p̂ + Fwall, (B1)

∂tθ = 1

τ
arcsin[(p̂ × v̂)z] + ξ (t), (B2)
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FIG. 7. (Color online) Turnaround times for strongly confined
velocity-aligning particles under harmonic and hard-wall confine-
ment are the same. Harmonic confinement simulations performed
with κ = 1000, 
t = 1 × 10−4, and a simulation time of 1 × 106;
hard-wall simulations performed with w = 4 × 10−4, 
t = 1 × 10−4

and simulation times of 1 × 106 (for τ = 0.1–0.25) or 1 × 105 (for
τ = 0.3 and larger). Error bars are computed by the bootstrap method;
see text.

where, as in [20], Fwall = −p̂x x̂ = − cos θ x̂ when the particle
is on the wall (x = ±w/2) and the polarity is pointing toward
the wall, and zero otherwise; i.e., the wall exerts a force
sufficient to keep the particle from penetrating it. In practice,
we evolve this with an adaptive step algorithm. This takes the
following form:

(1) Attempt to evolve Eqs. (B1) and (B2) forward by 
t .
Here, and throughout the paper, we use the simplest
possible Euler-Maruyama method to integrate our
equations of motion [45].

(2) If the new position crosses x = ±w/2, solve for the
time α at which this occurs, α = [±w/2 − x(t)]/vx .

(a) Evolve Eqs. (B1) and (B2) forward by α.
(b) Set Fwall = −p̂x x̂ and therefore vx = 0.
(c) Evolve Eqs. (B1) and (B2) forward by 
t−α.

We show in Fig. 7 that the turnaround times are con-
sistent with those from our harmonic confinement simu-
lations presented in the main paper. Error bars in Fig. 7
are computed by applying the bootstrap method [46] to
the fitting approach shown above; error bars for τ > 0.1
are on the order of symbol size or smaller, and are not
shown.
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