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to solve for the spatio-temporal neural activity patterns using Electroencepha-
logram (EEG) and Functional Magnetic Resonance Imaging (fMRI) data. EEG-only source localization is an
inherently underconstrained problem, whereas fMRI by itself suffers from poor temporal resolution.
Combining the two modalities transforms source localization into an overconstrained problem, and produces
a solution with the high temporal resolution of EEG and the high spatial resolution of fMRI. Our first method
uses fMRI to regularize the EEG solution, while our second method uses Independent Components Analysis
(ICA) and realistic models of Blood Oxygen-Level Dependent (BOLD) signal to relate the EEG and fMRI data.
The second method allows us to treat the fMRI and EEG data on equal footing by fitting simultaneously a
solution to both data types. Both techniques avoid the need for ad hoc assumptions about the distribution of
neural activity, although ultimately the second method provides more accurate inverse solutions.

© 2008 Elsevier Inc. All rights reserved.
Introduction

Electroencephalogram (EEG) and Functional Magnetic Resonance
Imaging (fMRI) are two commonly used modalities for investigating
human brain states in cognitive neuroscience experiments. Both are
noninvasive, but in other respects they are complimentary. EEG
measures voltage changes in electrodes placed on the scalp, whose
number ranges commonly from 32 to 256. EEG has millisecond time
sensitivity, but spatial information must be inferred through an
inversion process, and has at most as many independent spatial
measurements as there are electrodes (there may be fewer due to
correlations between nearby electrodes) (de Peralta-Menendez and
Gonzalez-Andino, 1998; Michel et al., 2004). fMRI measures changes
in blood oxygen level (Ogawa et al., 1990; Jens Frahm,1992) (called the
BOLD signal) throughout the brain. It produces a 3D image with a
spatial resolution of roughly a few millimeters, but temporal
resolution is on the order of a few seconds. Furthermore the BOLD
signal is a complicated convolution of brain activity because the blood
oxygen level takes several seconds to rise and even longer to fall in
response to an impulse of activity. Thus EEG provides an excellent
measure of temporal dynamics but a poormeasure of spatial locations,
and fMRI provides an excellent measure of spatial locations but a poor
measure of temporal dynamics.
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In this paper we develop two novel methods for source localization
using both EEG and fMRI data. By combining the two modalities, the
high temporal resolution of EEG can be augmented with the high
spatial resolution of fMRI. Existing literature has established the
potential gains from combining EEG and Positron Emission Tomo-
graphy (Heinze et al., 1994), as well as EEG and fMRI (Whittingstall et
al., 2007; Gerloff et al., 1996; Dale and Halgren, 2001). However, in
past studies the difficulties inherent in combining such dissimilar
modalities have led to a reduced scope of the analysis: inclusion of
data from only one EEG lead (Calhoun et al., 2006), or avoiding the EEG
inverse by using ICA to analyze EEG and fMRI data simultaneously, and
thereby obtaining ICA sources that have related EEG and fMRI signals
(Moosmann et al., 2008). Other techniques use fMRI to constrain the
location of likely sources (Liu et al., 1998, 2006), fitting for the location
of dipoles seeded within active fMRI regions (Stancák et al., 2005), or
employ an adaptiveWiener filter (Liu and He, 2008) that is updated by
EEG and fMRI data.

Here we present two techniques for working with full EEG and
fMRI data sets and solving to obtain neural activities throughout the
cortex at high spatial and temporal resolution. Our first method uses
standard techniques to invert EEG data, but employs fMRI data to
constrain the free components of the solution. Throughout this paper,
we refer to this technique as our “fMRI regularized inverse”, and we
describe it in the fMRI regularized inverse Section. The secondmethod
uses model reduction algorithms (Principle Component Analysis, or
PCA; and Independent Component Analysis, or ICA) to decrease the
size of the inverse problem, and a detailed model of the BOLD signal
(discussed in the Model-reduced joint inverse Section) to relate EEG
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Fig. 1. Lead field from structural MRI. A structural MRI (top) captures a high resolution
3D image of the brain. This image can be used to identify regions of grey matter within
the cortex, which are likely locations for EEG sources (bottom, lateral projection).
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and fMRI data. This enables us to simultaneously fit the EEG and fMRI
data. We refer to this method as our “model-reduced joint inverse”,
and it is described in the Model-reduced joint inverse Section. The
model-reduced joint inverse has the additional advantage of treating
the EEG and fMRI data on equal footing, instead of using the fMRI
merely as a constraint. In the Testing the algorithms Section, we
evaluate and contrast the effectiveness of these techniques on
synthetically generated data to demonstrate the potential effective-
ness of using this methodology to analyze data recorded from human
subjects.

EEG source localization

We begin with a brief, general description of EEG source
localization (Michel et al., 2004). This background provides the
starting point for our first method of combining EEG and fMRI (fMRI
regularized inverse Section) which begins with EEG, but makes use of
the fact that the basic problem of EEG source localization is
underconstrained. When EEG is considered alone, different methods
employ different techniques for regularization —selecting a particular
solution out of an infinite family of possibilities, which would
otherwise share an equal quality of fit. In the fMRI regularized inverse
Section, we introduce a specific method of regularization which uses
complementary fMRI data. Our solution optimizes agreementwith the
fMRI data without altering the quality of fit to EEG data.

To perform source localization and thus obtain spatial informa-
tion from EEG data, one must model the effect that currents within
the brain produce on voltages measured at the scalp. Sources in
different regions of the brain contribute to electrode voltages by
summing linearly. Thus, given a set of source currents, the measured
EEG signal can be calculated with a linear Green's function matrix
(or lead field).

This matrix is typically calculated by modeling the head as a series
of concentric regions with different conductivities, and solving
Maxwell's equations for dipole current sources. Often the head
model is quite simple, although it is possible to incorporate 3D
images from a structural MRI (as in Fig. 1) of the subject's head. More
complicated head models may produce a more accurate lead field
matrix, but the resulting matrices are used the same way. Since the
EEG sources are dipoles, they possess a magnitude and an orientation.
Thus typically the lead field maps vector sources to scalar EEG
measurements. However, it is possible to calculate a scalar lead field
(Grave de Peralta Menendez et al., 2004) and invert to obtain cortical
current density, or to reduce a vector lead field to a scalar lead field by
using anatomy to fix the orientation of the dipoles (Dale and Sereno,
1993; Liu et al., 1998), and invert to obtain the dipole magnitude.

Once the lead field L has been calculated, if the neural sourcesYS are
known, then the expected EEG signals YE can be computed simply
through the linear forward model

YE = LYS: ð1Þ

Source localization is then a matter of inverting the linear equation
relating the unknown source currents to the known EEG signal via the
Green's function. Therefore for some generalized inverse L−, we have

YS = L−YE: ð2Þ

This system is highly underdetermined. If the brain is divided up
into regions similar in size to fMRI resolution, there are tens of
thousands of voxels, but there are only of order one hundred EEG
signals to constrain the solution. With no additional constraints, it is
possible to add to any solution a set of sources in the null space of the
Green's function and obtain another valid solution. Although it is
possible to decrease the extra degrees of freedom by appealing to
physiology (Phillips et al., 2002) or careful treatment of the electric
field, as in ELECTRA (de Peralta-Menendez et al., 2000) and LAURA (de
Peralta-Menendez and Gonzalez-Andino, 2002), ultimately the EEG
data cannot produce a unique solution by itself.

To produce a unique solution, the problem must be regularized.
This is typically accomplished through a simplifying hypothesis: the
solution is of minimum norm (Hmlinen and Ilmoniemi, 1994), or
constrained by a prescribed tradeoff between quality of fit and
smoothness as in LORETA (Pascual-Marqui et al., 1994), or by imposing
covariance constraints on the solution as in Beamformer (Sekihara et
al., 2001) techniques, etc. Alternatively, Bayesian methods (Friston et
al., 2008; Kiebel et al., 2008; Karl Friston, 2006; Phillips et al., 2005)
incorporate hypotheses through the introduction of explicit priors.
These priors are used as a starting probability distribution for source
activities, and this distribution is updated by EEG data in a manner
consistent with Bayesian statistics. However, none of these hypoth-
eses are guaranteed to be correct. Thus, aside from convenience, there
is little reason to suppose that they are more “correct” than the
infinitely many other solutions that equally agree with data (including
those produced by different regularization schemes). More proble-
matically, these regularization techniques actually exclude reasonable
source distributions from possible solutions when those source
distributions do not conform to the regularizing hypothesis. Because
of this, for any given EEG-only regularization technique, there are
distributions of sources that can never be found as a solution, no
matter what the experiment is, or what EEG data is produced (de
Peralta-Menendez and Gonzalez-Andino, 1998, 2000). If the true
source distribution is one of those unobservable distributions, the
solution may bear little resemblance to the true sources.
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fMRI regularized inverse

One way to improve upon regularization schemes is to use an
independent source of data (in our case, fMRI) to choose between the
infinitely many solutions allowed by the EEG data. Our regularization
strategy is to start with a minimum norm inverse of EEG data, and
then alter it in ways that improve agreement with fMRI data, without
altering the quality of the fit to EEG data. We accomplish this by
adding vectors in the null space of the lead field matrix (Ahlfors and
Simpson, 2004). We still arrive at a unique solution, but we do so with
more principled assumptions, and it is not a priori guaranteed that
some source distributions are unobservable.

To construct our fMRI regularized inverse, we begin by considering
solutions of the form

YS = L−YE +NL
Yα ; ð3Þ

where L− is the Moore–Penrose generalized inverse (Menke, 1984),
and NL is a matrix whose columns are vectors in the null space of L.
With this form, the unknown vector Yα controls the projection of the
solution into the null space. Thus, our solution is the minimum norm
solution, plus some unknown vector in the null space of L. Fig. 2
Fig. 2.Matrix sizes by inversion method. Here we depict (heuristically, not to scale) the sizes
matrices used in both the fMRI regularized inverse and the model-reduced joint inverse.
interpolated. One consequence of the different strategies is that theModel-Reduced Joint Inve
in the calculation of the fMRI regularized inverse (but is referred to in the fMRI regularized
schematically illustrates the sizes of the matrices used by our two
inversion methods.

Here we briefly justify this choice for the solution form. We choose
our sources to minimize disagreement between the actual EEG data
and our modeled EEG data. We obtain the modeled EEG data Esolution
with the lead field matrix and the forward model (Eq. (1)). Thus, we
define the solution error as

σYE = ‖
YEsolution−YE ‖ = ‖LYS −YE ‖: ð4Þ

Here ‖M‖ denotes the sum of the squares of all the elements of
matrixM. Substituting the form of our solution from Eq. (1), we obtain

σYE = ‖L L−YE +NL
Yα

� �
−YE ‖: ð5Þ

Then since NL is a matrix of columns in the null space of L, LNL=0,
and therefore

σYE = ‖LL
−YE−YE ‖: ð6Þ

Thus the error is independent of the value of Yα — adding the null
vector to the solution does not affect the quality of the EEG fit.
Regularization is then a process whereby we choose a specific Yα (for
and shapes of the matrices used by the different inversion methods. “Common” denotes
Note that the B matrix is much larger in the fMRI regularized inverse because it is
rse solves for a much smaller (in terms of matrix size) solution. The vectorYα is not used
inverse Section). It corresponds to a single column of the matrix Pα .
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each time step) and arrive at a unique solution. Our goal is to choose
an Yα that causes our solution to be maximally consistent with
accompanying fMRI data. Since the fMRI data will vary with different
experiments, the constraints placed on the solution will vary as well.
Thus, this technique dramatically decreases the number of solutions
that in principle cannot be found, and thereby avoids eliminating from
consideration potentially valid solutions.

Any attempt at combining information from EEG and fMRI
invariably confronts theproblem that EEGand fMRI data aremeasuring
fundamentally different quantities. fMRI measures blood oxygen level,
which is affected by blood volume, flow rate, and of course the oxygen
content of the blood. The various factors contributing to the BOLD
signal are directly or indirectly related to themetabolism of brain cells,
and thusneural activity. On the other hand, the currents responsible for
EEG are ionic currents produced when neuronal activity causes
alterations in the flow of ions into and out of neurons. Since this
activity varies spatially, currents are produced in the brain fluid,
roughly synchronous with and proportional to activity. Additionally,
current is fundamentally a vector quantity, although as mentioned
previously, it is possible to describe the EEG sources as scalars by fixing
the direction of the currents (e.g. by anatomical constraints), or by
working with current source density, or local field potential (voltage as
measured by an electrode inserted into the brain).

Several studies by different researchers have shown that BOLD
signal and neural activity are correlated — in fact, if the frequency of
the neural activity is fixed, the BOLD signal is roughly linearly
proportional to the neural activity (Heeger et al., 2000; Heeger and
Ress, 2002; Shmuel et al., 2006; Logothetis et al., 2001). BOLD signal
has also been shown to be proportional to local field potential (Shmuel
et al., 2006; Logothetis et al., 2001). Since the current sources should
be proportional to neural activity (and local field potential) it is
reasonable to expect the sources of the EEG signal to be proportional
to the BOLD signal. This is the basis of our regularization scheme:
modes from the null space of the lead field are added to ensure that
the solution is proportional to the BOLD signal YB.

To regularize, weminimize the disagreement between the solution
and linearly-scaled fMRI at each time. We introduce the unknown
constants λ (which describes the proportionality between fMRI signal
and neural activity) and κ (which is an offset). While we do not expect
introducingλ and κ to literally “convert” BOLD signal into EEG signal or
even to fully capture the relationship between the twomeasures, doing
so nonetheless provides a concrete relationship between them thatwe
can use to obtain a unique solution to our minimization problem:

σYB = min
λ;κ;Yα

� � ‖jL−YE +NL
Yα j−λYB−κ‖; ð7Þ

with jMj used to denote the matrix whose elements are the absolute
values of the elements of M. The parameters λ and κ are unknown a
priori because they vary from machine to machine (and even between
trials on a single machine). Thus λ, κ, and Yα are determined by our
minimization procedure. Since we assume the proportionality con-
stants are not changing over the course of a brief period of time, we
obtain a single set of values forλ and κ that characterize the relationship
between BOLD and neural activity for the entire experiment.

An additional issue is that the BOLD signal is temporally very
different from the EEG signal. We will discuss this in detail in the
Testing and algorithms Section, but it can be thought of (as a simple
approximation) as following neural activity, but delayed by roughly
4 s. Also, fMRI data is sampled at a much lower rate than EEG data (a
typical fMRI machine may record a new image every 2 s, whereas EEG
is often sampled every 2 ms), and therefore most EEG data will not
have accompanying BOLD signal at precisely the same time.

Typically analysis involves creating a poststimulus time histogram
(PSTH) collecting all images taken after a trial of a certain type: for
example, a subject may look at pictures of spiders or puppies, inwhich
case all “spider” images would be grouped together and categorized
by the relative time since themost recent spider picturewas displayed
(EEG data is averaged through a similar process). If there is a variable
inter-trial interval that is not synchronous with the image acquisition,
then the BOLD signal is effectively sampled several times per second.
Because the actual signal is changing much more slowly than this
(over the course of a few seconds), it can be interpolated or shifted in
time with a Discrete Fourier Transform or a Fourier Series without
missing features. Thus we shift the transformed signal to account for
the temporal delay. We group vectors together so that for each time t,
Yα tð Þ for that time is a column in a matrixPα . Similarly,YB is replaced by

PB and YE is replaced by PE . Then Eq. (7) becomes a single equation to
simultaneously solve for λ, κ, and the matrix Pα (i.e. we solve for every
vector Yα tð Þ simultaneously):

σB = min
λ;κ;α―f g

‖jL−PE +NLPα j−λPB−κ‖: ð8Þ

Eq. (8) is not a linear equation. The EEG source currents are
inherently signed — large positive and large negative currents both
indicate large neuronal activity, but they contribute oppositely to
measured EEG signal. Thus it is the absolute value of the EEG currents
that is proportional to the BOLD signal. However, this nonlinearity is
mild enough that Eq. (8) can be solved iteratively through the
following program:

P
S0 = L−PE
Repeat increasingnð Þ

min λn ;κnf g‖jPSn−1 j−λnPB−κn‖

define
P
Fn s:t:jPFnj = jλnPB + κnj and

sign
P
Fn

� �
=
�
P
Sn−1

�

P
αn = arg min

Pα
‖
P
S0 +NLPα−PFn ‖

P
Sn =P

S0 +NLP
αn

Stop when ‖
P
Sn−PSn−1‖bTolerance

Once the difference between consecutive iterations of this
procedure falls below the prescribed tolerance, PSuP

Sn is a solution to
the nonlinear minimization problem. Each of the minimization steps
is linear, and reasonably fast. The first, minimizing over λ and κ, is
merely a best-fit line (albeit onewith many data points). The second is
solved to obtain

P
αn as:

P
αn =N−

L P
Fn−PS0

� �
; ð9Þ

and NL
− need only be calculated once in advance. We continue the

iteration until the change in
P
Sn from one iteration to the next is below

our specified tolerance. The result of this algorithm,
P
Sn is the fMRI

regularized inverse solution PS that we sought. We present the results
from tests of the fMRI regularized inverse in the Testing the algorithms
Section.

Model-reduced joint inverse

To better incorporate fMRI data into source localization, we next
incorporate a model that provides detail beyond merely noting that
the BOLD signal is proportional to neural activity. As mentioned
previously, the BOLD signal response is delayed (by roughly 4 s for a
brief impulse of neural activity). Our fMRI regularized inverse takes
advantage of the correlation between BOLD signal and neural activity,
but using the correlation alone is not ideal because the BOLD signal
does not simply mirror lagged neural activity. The signal is also
temporally broadened, and therefore simply shifting BOLD to
eliminate the time lag does not result in a signal that matches neural
activity. By incorporating a detailed model of BOLD into an inversion
algorithm, we obtain closer agreement between our model and data,
and thus a more accurate inverse.
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Detailed models of the BOLD response exist — we use a variant of
the Balloon/Windkessel model (Buxton et al., 1998). Themodel we use
(Robinson et al., 2006) is a set of coupled nonlinear differential
equations that start with neural activity as an input, and model
physical changes in the blood vessels, changes in the blood oxygen
content, and the measured response of these changes in an fMRI
machine. The result is shown in Fig. 3. The differential equations are
nonlinear, but over a range of input activities the amplitude of the
BOLD response varies approximately linearly with the amplitude of
the neural activity. Thismust be the case, because we know that BOLD
is proportional to neural activity.

Our fMRI regularized inverse cannot make use of the realistic
model of BOLD response because it does not have an estimate of how
the neural activity varies with time until it produces its solution. In
order to incorporate a modeled BOLD response into our inversion
procedure, we take an alternate approach that starts by identifying
candidate neural activity signals, and then fits them to data. Principle
Component Analysis (PCA) and Independent Component Analysis
(ICA) are ideally suited to this job. PCA extracts orthogonal signals that
explain themajority of variance in the data (while reducing noise) and
ICA forms linear combinations of those orthogonal vectors to produce
a basis of signals that are maximally independent of each other. PCA
associates a singular value with each signal, and more prominent
signals have larger singular values. Fig. 4 shows a typical example of
this process applied to synthetic EEG data and real experimental data.
In the inset, the two largest singular values stand out above the tail of
smaller values that correspond to noise signals. This indicates that the
optimal analysis would result from selecting two PCA/ICA signals
(although it is often advisable to redo the analysis later with one or
more additional signals, to see how it affects the final fit).

The procedure to compute our model-reduced joint inverse begins
by using PCA followed by ICA on EEG data to produce candidate EEG
signals ɛwhich are organized so that each signal makes up one row of
the matrix, and each column corresponds to an EEG sample time. Next
we use ɛ and the BOLD model to produce candidate BOLD signals β
(with a similar matrix structure, only far fewer rows because fMRI is
sampled less frequently — see Fig. 2). β therefore incorporates
distortions of the signals in ɛ that include time-shifting, broadening,
and other effects.

We simultaneously fit linear combinations of these signals to EEG
and fMRI data by solving the minimization problem:

min
fPα;λ;κg

σ = ‖ PE−LPαPe ÞnE‖ + ‖ λPB + κ−PαPβÞnB‖;ðð ð10Þ

where ξE and ξB are matrices whose entries are weights for the error
in the EEG and fMRI components of the fit, corresponding to the
Fig. 3. BOLD response. Here we show the modeled BOLD response after an impulse of
activity at t=0.
reciprocal of the measurement uncertainty for EEG data and BOLD
data respectively. They can be chosen to weight some elements of the
data set more heavily (e.g. force the fMRI discrepancy to be less than
the EEG), in accordance to prior knowledge that the experimentermay
possess. We set both ξE and ξB equal to one when inverting our
synthetic data. It should be noted that we have assumed that BOLD
data exists for each solution point. In this paper we work with
synthetic data and can make this so by fiat. However, with real data
the anatomical MRI used to obtain the lead field and solution points
has a higher resolution than the fMRI that measures the BOLD signal.
Thus with real data, one must either down-sample the number of
solution points, or interpolate the BOLD signal (e.g. by assigning each
solution point the value of BOLD at the nearest fMRI voxel).

Although superficially the minimization problem appears to be
complicated, it is linear and can be solved efficiently (the computa-
tional cost varies approximately as the cube of the number of solution
points, and amodern personal computer can invert for ≈1000 solution
points in a fraction of a second). Once Pα has been determined, the
solution is

PS =PαPe : ð11Þ
Wederive the solution to thisminimizationproblem inAppendix C.
Aside from a generally more accurate treatment of BOLD, this

technique has several specific advantages.

• Linearity guarantees a fast, exact solution.
• Since the number of temporal signals is far less than the number of
sampled times, the size of the inverse problem is dramatically
reduced.

• BOLD does not have to be interpolated or shifted in time.
• Some types of missing fMRI sources (Liu et al., 2006) are treated
appropriately. Sources with brief durations or frequencies that
evokeminimal bold responsewill (assuming the signals are found in
the EEG data by PCA) result in negligible modeled BOLD response in
β and therefore EEG data will control the fit.

• This procedure allows the EEG and fMRI data to be inverted
simultaneously, and each fMRI data point and each EEG data point
are treated procedurally the same in the inversion. Thus we treat
fMRI and EEG onmore equal footing, instead of using fMRI merely as
a constraint on an EEG solution.

The basic technique is also very flexible and can be altered to
include additional temporal signals that the experimenter may expect
to be present. For example, the experimenter could insert a cardiac
signal as a column ofPα to provide an alternative to preprocessing data.
Additionally, it is possible to group solution points together that the
experimenter may expect to have correlated activity (either due to
neurophysiological, functional, or anatomical priors, or from PCA/ICA
used on fMRI data).We have opted toweight each BOLD data point the
same as each EEG data point, but this might not be desirable, and a
better solution may be obtainable by adjusting the relative weight
assigned to the fMRI data (Liu et al., 1998). This can be accomplished
by multiplying the BOLD norm in the minimization problem by an
experimenter-chosen constant.

Testing the algorithms

We tested each source localization technique by generating a
data set with known activity patterns and then comparing the
actual activities to the solutions produced by the inversion
technique. Inversion of multiple sources was a critical test, as
many existing EEG inversion techniques (such as those based on ad
hoc regularization schemes) have particular difficulty with multiple
sources. We tested the techniques against sources that were
distributed over moderate-sized regions of the brain (roughly 10%
of its width). We chose distributed sources (instead of sources with
a single active point) because many regularization schemes have



Fig. 4. ICA basis signals. Here we show an example of how ICA extracts the critical features of EEG measurements. The top image shows synthetic EEG data from all 128 leads in black
(from the 25% noise condition), with two extracted ICA signals in blue and green. Inset is a bar plot of the magnitude of corresponding singular values: the first two clearly stand out
above the tail of noise, indicating that there are two large signals. The bottom image depicts data from a real data set. Human volunteers watched a series of movies with different
pairs of everyday objects. Either a human would be present in the scene and look at one object, or one object would be highlighted. Here we show EEG data averaged over the
conditionwhere during two sequential movies the same object is looked at by a human, but from one movie to the next the object has switched sides (e.g. from left to right). The first
two EEG signals determined by ICA are plotted in blue and red, respectively. The 128 original EEG signals are plotted in black.
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difficulty with distributed sources. Of course, the presence of multiple,
distributed sources is also to be expected in any experiment involving
human subjects.

To produce the synthetic data, we began by calculating a lead
field and an associated set of solution points from an anatomical MRI
image, using the SMAC (Spinelli et al., 2000) toolkit. We chose the
lead field to cover one thousand solution points and reduced it from
a vector lead field to a scalar by fixing the orientation of source
dipoles. We then randomly selected one or more of those solution
points to have significant activity. For the majority of our trials,
activity consisted of two randomly chosen locations, with a cluster of
nearby sites all having the same activity pattern. To produce a
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realistic time course (Robinson et al., 2006) for such a signal we used
the form

z tð Þ = ae−βt sin βδtð Þ: ð12Þ

Parameter values were randomly generated, using the 2006
Robinson et al. paper as a guide for parameter ranges. We used the
“extremely large” range of a (0–80) to ensure that the inversion
techniques were tested in the more problematic nonlinear regime
of BOLD (although note that the large amplitude did not provide a
benefit to the signal-to-noise ratio, because we scaled synthetic
noise by the maximum signal amplitude). β ranged from 1.7
to 10.0 (we increased the minimum β to guarantee that the signals
fit comfortably within our trial length) and δ ranged from 1.0 to
25.0.

Any sites in an active cluster were deemed “active sites” and
assigned an activity z(t), and all other points had an activity z(t) equal
to zero. We grouped the activities for all solution points together into
the vector Yz tð Þ. Synthetic EEG data was then generated by multi-
plying the sources Yz tð Þ by the lead field matrix L. The BOLD signal
was generated via the differential equations, acting directly on z(t)
for each solution point. The BOLD signal was sampled so as to
simulate a series of five trials with fMRI scan times not synchronized
to the trial design, collected in a post stimulus time histogram. That
is, BOLD was sampled on average five times every 2 s, but with
irregular spacing. Gaussian noise (uncorrelated in space and time)
was added to all the values for these synthetically produced EEG and
BOLD signals. As stated before, the noise level was scaled so that the
standard deviation was a pre-chosen fraction of the maximal signal
value. For example, if the noise fraction was 0.1, then the Gaussian
noise added to the EEG signal would have a standard deviation of 0.1
times the maximum EEG signal amplitude (maximum across all
channels and the whole trial), and the Gaussian noise added to the
fMRI signal would have a standard deviation of 0.1 times the maximal
fMRI signal.

After noise was added, the signals were then preprocessed (fMRI
data was whitened, and the EEG signal was passed through a notch
filter to remove signal components above 50 Hz). After performing the
inversion procedure, the solution sources were compared to the true
sources, z. The most critical comparisons were true source location
versus solution source location, and true signal time courses versus
solution time courses.

For our model reduction procedure, PCA and ICA were performed
by the FastICA algorithm (Hyvärinen, 1999), using a “skew” non-
linearity. We found that FastICA's “symmetric approach” produces
better quality solutions, but was more likely to fail to converge than
the “deflation approach”; thus our procedure made up to two
attempts with the symmetric approach, and if they both failed, used
the deflation option as a fall-back. Over the course of thousands of test
trials with synthetic data sets, this strategy was sufficient to produce a
solution in each case. Since it was impossible to manually oversee the
generation of so many solutions, invariably some low quality ICA
results were obtained. Refinements to the ICA algorithm (or finding a
more robust alternative) could further improve the quality of the
model-reduced joint inverse.

As expected, a simple minimum norm inverse produces results of
limited usefulness. While some high activity areas overlap the true
sources, there are high activity areas found far away as well (Fig. 5),
and also there are true sources that are not found. The time courses of
correctly identified points are of decreased amplitude in low noise
Fig. 5. Typical location accuracy of source inversion. A lateral view of solutions found
by different inverse algorithms applied to the same synthetic data set: the minimum
norm inverse (top), fMRI regularized inverse (middle), and model-reduced joint
inverse (bottom). The different true sources are circles colored magenta and yellow,
with X's colored green and red marking the locations found by the inversion
procedure (green corresponds to magenta, and red to yellow). As was typical in our
trials with low noise data, the model-reduced joint inverse correctly identifies the
location of each solution point, while the other two techniques have false positives
and false negatives. The fMRI regularized inverse performed marginally better in this
example, which was also typical in our low noise tests.
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data (Fig. 6) and are lost altogether in high noise data (Fig. 7).
Regularizing the inversion with fMRI produces only slightly better
results. The fMRI regularized inverse solution contains false positives
and negatives, and still finds a greatly decreased signal amplitude. By
contrast the model-reduced joint inverse method correctly identifies
the true locations of the sources, and the time courses it finds are
closer to the correct amplitude.When the synthetic data has very little
noise added to it, the model-reduced joint inverse has slightly less
noise in its solution than do the other two techniques— this is because
the model-reduced joint inverse produces a solution that is a linear
combination of the (presumably smooth) signals found by ICA.
However, the model-reduced joint inverse also responds more
robustly to increased noise, producing useful solutions even after
the minimum norm and fMRI regularized inverses produce solutions
dominated by noise.

Since the fMRI regularized inverse did not represent a dramatic
improvement over the minimum norm but the model-reduced joint
inverse did, this raises the question of whether the fMRI information is
really aiding the inverse, or if the improvement is solely due to noise-
reduction from ICA. To address this issue, we can drop the fMRI term
Fig. 6. Typical time course accuracy of source inversion. In this test with low noise data,
the signals recovered from minimum norm inverse (top) and fMRI regularized inverse
(middle) are significantly reduced in amplitude compared to signals from the model-
reduced joint inverse (bottom). The true synthetic signals are in black with the inverted
signals in red and green (different colors indicate that the algorithm found two distinct
sources). In the bottom signal for the model-reduced joint inverse, the inverted signal
overlays the true signal.

Fig. 7. Time courses in a high noise test. Here are the time courses found by the
minimum norm inverse (top) and the model-reduced joint inverse (bottom) in a test
with increased noise. The minimum norm solution finds only one source, which is
dominated by noise. The model-reduced joint inverse has produced a good solution
(albeit one with a decreased amplitude). The fMRI regularized inverse (not shown here)
also produces a solution that is dominated by noise.
from the minimization problem for the model-reduced joint inverse,
leaving the simpler problem,

min
fPα;λ;κg

σ = ‖ PE−LPαPe ÞσE‖:ð ð13Þ

Without the fMRI information, the problem is once again under-
determined, and must be regularized. For purposes of comparison, we
regularize with a minimum norm. Specifically,

Pα = L−PEPe
−: ð14Þ

As before, the solution is

PS =PαPe : ð15Þ

We refer to this solution as the model-reduced minimum norm
inverse. The model-reduced minimum norm responds robustly to
increased noise, however performance at low noise levels is compar-
able to the ordinary minimum norm inverse. The model-reduced joint
inverse provides a superior solution at all the noise levels we tested,
especially when comparing solution location. This suggests that the



Fig. 8. Accuracy at progressively higher noise levels. Cumulative results for 1000 trials at
each of six noise levels. Gaussian noise (uncorrelated in space and time) was added to
the synthetic EEG and fMRI data, with the noise amplitude scaling as a fraction of the
maximal EEG and fMRI signal strength respectively. The top graph shows area under the
ROC curve (for identifying source locations), and the bottom graph shows signal error
normalized to signal magnitude (taken in the frequency domain). The results are color-
coded by inversion algorithm, with minimum norm inverse as cyan, fMRI regularized
inverse as black, model-reduced minimum norm as blue, and model-reduced joint
inverse as red. The bars indicate a 90% confidence interval. Note that an ROC area of 0.5
indicates that a test has provided no information, while an ROC area of 1.0 indicates
perfect discrimination.
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ICA procedure helps to smooth out errors in the signal time course, but
the fMRI adds crucial information about source location. Fig. 8 shows
plots of the receiver operating characteristic (ROC) analysis of source
location, as well as signal error at increasing values of noise.

Conclusions

The fMRI regularized inverse solution provides results that are only
a slight improvement over a simple minimum norm solution. Any
regularized solution involves selection of a single point near or within
the (very large) null space of the lead fieldmatrix. Themain advantage
of our fMRI regularized inverse is that it arrives at a unique solution in
a data-driven manner, and therefore represents an improvement
largely in conceptual framework rather than solution quality. We
suspect that any solution that takes the form of an EEG-only solution
plus a null vector will tend to be biased in the same ways that the
minimum norm solution is. Specifically, which solution points are
active will be due to influences from EEG data as well as distortions
introduced because the resolution matrix R=L−L is far from the
identity. Put another way, the EEG-only part of the solution is
distorted because the lead field matrix can only be inverted
approximately, and in a manner that biases the result towards certain
solution locations. Thus starting with the EEG-only solution and then
adjusting it through some regularization process necessarily entails a
poor starting point. The result of regularized EEG inverse solutions is
therefore likely to include false positives and false negatives.

By contrast, the model-reduced joint inverse algorithm outper-
forms minimum norm consistently, and over every range of test
parameters we tried. The model-reduced inverse has several advan-
tages, including a general reduction in noise, inherent uniqueness of
the solution, and more symmetric treatment of EEG and fMRI data via
simultaneous fitting. It is perhaps unsurprising that the more detailed
treatment of BOLD results in better determination of source location,
but using ICA to extract source signals results in superior character-
ization of signal time courses as well.

One potential source for further improvement in our algorithm is
in the ICA process itself. ICA is an iterative technique, that occasionally
fails to converge, and occasionally converges to a sub-optimal
solution. Our procedure (skew nonlinearity, two tries with symmetric
approach followed by deflation) was able to overcome this difficulty
and produce unsupervised solutions to thousands of synthetic trials.
However, further improvements are likely possible through additional
adjustment of the ICA parameters, human supervision of the process
(e.g. experimenter judgment of whether the ICA procedure has been
successful), or replacement of ICAwith another algorithm that may be
superior for this particular purpose.

The principle remaining difficulty with combined EEG-fMRI
techniques is accurate registration of the EEG solution points to the
underlying structural MRI image — a problem we avoided by dealing
with purely synthetic data. However, this subject is an active area of
research (Spinelli et al., 2000; Ermer et al., 2001) with solutions
already in existence. We expect that the advantages of the model-
reduced joint inverse as applied to synthetic data will carry over in
application to human data.
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Appendix A. The minimization problem for the model-reduced
joint inverse

In this Appendix we show the steps necessary to solve the
minimization problem presented in the Model-reduced joint inverse
Section. Although the problem and derivation are novel, the numerical
algorithms required to obtain the solution are all widely available. The
minimization problem is:

min
fPα;λ;κg

σ = ‖ PE−LPαPe ÞσE‖ + ‖ λPB + κ−PαPβÞσB‖;ðð ðA:1Þ

Henceforth we drop the underline notation — all the vectors have
been converted tomatrices. To begin, we first compute the variation of
σ with respect to α, and set it to zero:

LTEσ2
Ee−L

TLαeσ2
Ee

T + λB + κð Þσ2
Bβ

T−αβσ2
Bβ

T = 0: ðA:2Þ

Right-multiplying this equation by (ɛσE
2ɛT)− puts this equation into

the form of a Sylvester equation,

LTLα + αβσ2
Bβ

T eσ2
Ee

T� �−
+ λB + κð Þσ2

Bβ
T eσ2

Ee
T� �−

−LTEσ2
Ee eσ2

Ee
T� �−

= 0

ðA:3Þ

Sylvester equations (equations of the form Aα+αB+C=0) are
solvable numerically, and have a nice linear property. For matrices C1,
C2 and scalars u, v:

α A;B;uC1 + vC2ð Þ = uα A;B;C1ð Þ + vα A;B;C2ð Þ: ðA:4Þ
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Thus we can write

α = α0 + λαλ + κακ ; ðA:5Þ
where α0, αλ and ακ are the solutions to the Sylvester equation
considering only the constant parts, the parts with coefficient λ, and
the parts with coefficient κ respectively.

Now we substitute this form into Eq. (A.1) to obtain

min
λ;κf g

σ = ‖ E−L α0 + λαλ + κακð Þeð ÞσE‖ + ‖ λB + κ− α0 + λαλ + κακð Þβð ÞσB‖;

ðA:6Þ

In this seemingly complicated expression, we are only interested in
solving for λ and κ. Since λ and κ are linear inside the norms, this is
just a best-fit plane. The data points are organized into two separate
matrices, but that is irrelevant. We simply treat every entry in the
matrices as a separate data point, and thereby reduce the problem to
one of the form

min
a;b

kjaYx + bYy +Yz ‖: ðA:7Þ

After fitting for λ and κ, we can now substitute their values into Eq.
(A.5) and thereby obtain the solution,

S = αe: ðA:8Þ
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