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Abstract

Correlated amino acid substitution algorithms attempt to discover groups of residues that co-fluctuate due to either
structural or functional constraints. Although these algorithms could inform both ab initio protein folding calculations and
evolutionary studies, their utility for these purposes has been hindered by a lack of confidence in their predictions due to
hard to control sources of error. To complicate matters further, naive users are confronted with a multitude of methods to
choose from, in addition to the mechanics of assembling and pruning a dataset. We first introduce a new pair scoring
method, called ZNMI (Z-scored-product Normalized Mutual Information), which drastically improves the performance of
mutual information for co-fluctuating residue prediction. Second and more important, we recast the process of finding
coevolving residues in proteins as a data-processing pipeline inspired by the medical imaging literature. We construct an
ensemble of alignment partitions that can be used in a cross-validation scheme to assess the effects of choices made during
the procedure on the resulting predictions. This pipeline sensitivity study gives a measure of reproducibility (how similar are
the predictions given perturbations to the pipeline?) and accuracy (are residue pairs with large couplings on average close
in tertiary structure?). We choose a handful of published methods, along with ZNMI, and compare their reproducibility and
accuracy on three diverse protein families. We find that (i) of the algorithms tested, while none appear to be both highly
reproducible and accurate, ZNMI is one of the most accurate by far and (ii) while users should be wary of predictions drawn
from a single alignment, considering an ensemble of sub-alignments can help to determine both highly accurate and
reproducible couplings. Our cross-validation approach should be of interest both to developers and end users of algorithms
that try to detect correlated amino acid substitutions.
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Introduction

With the cost and speed of DNA sequencing improving each

year, the number of sequenced proteins is growing much faster

than both the number of novel protein families and representative

crystal structures. While this sequence redundancy may represent

a convergence of knowledge towards the Earth’s proteome [1]

(with the caveat of possible bias in the niches and organisms that

are being sequenced) from the point of view of finding networks of

covarying residues in multiple sequence alignments (MSAs) it

marks an increase in the number of datasets that can be analyzed.

While single-protein investigations (e.g. building a small phylogeny

or finding conserved sites) require only a modest number of

sequences, determining the strength and significance of residue-

residue couplings requires many more sequences, with a

computational lower limit of 125–150 sequences [2]. The

requirement for large sequence numbers has to do with the

underlying sources of signal and noise that exist in a multiple

sequence alignment (MSA), as observed by Atchley et al. [3]

(reviewed in [4]). Most users are interested in the part of the signal

that results from structural or functional substitutions, but in

poorly curated datasets this signal can be masked by the

phylogenetic signal [5]. How, then, does one go about assessing

correlations in MSAs?

A wide variety of algorithms for detecting correlated amino acid

substitutions from a MSA have been developed. Some are based

on quantities from information theory [2,3,6–9], others use chi-

squared tests [10], some are perturbative [11,12], still others

employ amino acid substitution matrices [13,14], and there are

many more (reviewed in [4,15]). Typically, most authors compare

their methods against a handful of other methods for a dataset, or

in some cases against collections of multiple sequence alignments,

such as the Pfam database [16]. While these studies can be

illuminating in terms of the novel couplings they reveal and

general performance of the algorithms, it is often difficult to

compare between them because notions of accuracy and

significance vary from author to author. For this reason, a unified

framework is needed for comparing and contrasting different

algorithms, as well as non-parametric choices that are made.

In some cases, a priori constraints are placed on an analysis, for

example by (i) a restriction to residues with periodicity of four for

a-helix interactions [7], (ii) consideration of only specific domain-
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domain interactions [17], or (iii) a restriction to intraprotein

couplings in concatenated alignments [18]. However, these are not

general features that may be applied to every analysis as structural

information may be unknown, and in a sense they bias the results;

one is guaranteed to find domain-domain couplings if intra-domain

pairs are excluded, but would those inter-domain couplings emerge

in a more blind approach?

The complexity of determining correlated substitutions has been

understated, as it is more than just an issue of selecting the ‘‘most

accurate’’ algorithm and proceeding to experimental validation.

Another orthogonal feature to accuracy is that of reproducibility

or precision: how similar are an algorithm’s predictions given

different equally informative alignments? This issue has heretofore

been completely ignored in the literature. Currently, all coevolving

residue studies have assumed a single error-free alignment (i.e.

statistically, a sample size of one), and thus no information is

gained about propagation of errors during the process. The

importance of reproducibility is essential if any co-fluctuating

networks were to be tested experimentally; mutagenesis of groups

of residues followed by tests of fold or function are difficult and

laborious, and experimentalists should not waste time testing non-

robust (non-reproducible) predictions.

Another area in which the ‘‘answer’’ is produced as a result of a

complex, multi-step process with a mix of parametric and

nonparametric manipulations is in analyzing medical images,

particularly those obtained via functional magnetic resonance

imaging (fMRI) [19]. The output of much of fMRI analysis is a

statistical parametric map (SPM), a spatially extended statistical

model giving information about the regional brain effects of

experimental manipulations [20,21]. The desire to uncover

features in the data robust to processing steps and parameter

choice has led some investigators to adopt a nonparametric ‘‘train-

test’’ statistical approach similar to methods used in machine

learning [22–24]. The data is split into two groups (split-half

resampling [24]) and each group sent independently through the

pipeline to produce an SPM. The quality of the data-driven model

generated by this data is determined by using the parameters from

one SPM to fit the data in the other group (accuracy, measured by

cross-validation), and the SPMs are compared between the two

groups to find features which are robust to pipeline parameters

(reproducibility, usually measured by correlation in the two output

SPMs) [23]. Indeed, one can even use this procedure to attempt to

optimize the processing pipeline [25]; any equally accurate

manipulation which is more reproducible should be adopted in

analyzing the data. We take these studies as inspiration and

present our own variations on these themes in what follows, in an

effort to determine accuracy and reproducibility in the predictions

of correlated amino acid substitution algorithms.

In this article, we first introduce a variant of mutual

information, called ZNMI (Z-scored-product Normalized Mutual

Information) that addresses many of the problems [6,8,15] that

have plagued mutual information as a metric for predicting

coevolving residues (commonly assessed as pairs of residues in

tertiary contact [8,15], though we have more to say on this in

‘‘Discussion’’). Second and of greater importance, we construct a

pipeline sensitivity analysis for testing both the accuracy and

reproducibility of coevolving residue detection algorithms. Protein

alignments are split into two equal sized sub-alignments and

processed identically in order to assess the accuracy and

reproducibility of specific algorithms as well as other inherent

parameters. Treating the process of determining correlated

substitutions as a sequential pipeline in which choices are

considered as hyperparameters (e.g. how many sequences is

enough?, what algorithm should I use?, how should I determine

significance?, etc.) in the pipeline allows users to determine the

effect of these changes on the resulting accuracy and reproduc-

ibility. This can essentially be thought of as a form of statistical

cross-validation and a thorough treatment of error propagation

when many of the processing steps are nonparametric, not unlike

procedures used in machine learning [22].

There is no clear winner among the methods we test in terms of

both accuracy and reproducibility, and our results highlight

tradeoffs between accuracy and reproducibility, which are bias–

variance tradeoffs, as well as dataset-to-dataset variability.

Furthermore, the reproducibility of the algorithms tested is very

far from ideal and in some cases highly dependent on the dataset

analyzed. This suggests that there may be no ‘‘one-size-fits-all’’

correlated amino acid substitution algorithm, or if there is, it is not

among the algorithms that we test. Although no algorithm is

clearly the best in terms of both accuracy and reproducibility, our

resampling procedure provides a unified framework and produces,

for any given algorithm, a relatively small number of maximally

reproducible disjoint couplings which are close on average in

tertiary structure.

Results

Adapting mutual information to take into account
column variability

Mutual information (MI) [26,27], a generalization of linear

correlation between random variables, has been at the heart of

many algorithms for correlated substitution analysis for a number

of reasons. Mutual information is naturally defined on symbolic

sequences, whereas the application of standard statistical correla-

tions (like Pearson correlation) requires a residue-to-real-number

mapping (based on some chemio-physical property or amino acid

substitution matrices). In addition, MI has firm theoretical

foundations, is relatively easy to calculate as only the individual

and joint frequencies of amino acids between columns are needed,

and for discrete distributions there is no subtlety in how to bin the

values.

Still, MI suffers from a hard to control sources of error, and

many authors have pointed out spuriously large MI couplings that

aren’t likely to be true couplings. Martin et al. were the first to use

normalized variants of mutual information to correct for bias

coming from variable alphabet size among columns [2].

Subsequent work showed that MI suffers from an exceptionally

strong linear correlation to the product of the average column

mutual information [6,8]. Together, these two observations imply

that pairs of columns with a high MI (i) come from columns with a

larger alphabet size and (ii) come from columns which have on

average high MI with all the other columns in the MSA.

Correcting for the alphabet size by normalizing by the joint

entropy [2] reduces the correlation, but doesn’t entirely remove

the bias. Dunn et al. corrected for this bias with a simple

multiplicative correction [8], while Little and Chen corrected for

this bias via linear regression followed by a two-dimensional z-

scoring procedure [6] (see Zres and MIp below).

In order to address these bias issues in a straightforward way, we

introduce a variant of MI known as ZNMI (see ‘‘Methods’’ and

Figure 1). Given that mutual information is highly correlated to

the product of the average column mutual information (Pearson’s

r = 0.97, Figure 1A), we also asked whether mutual information is

linearly correlated to the product of higher moments of column

mutual information. Striking correlation (Pearson’s r = 0.96,

Figure 1A) does exist between the MI and product of the standard

deviations of the column mutual information; hence columns

whose average MI is larger and more widely distributed tend to end
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up with a high MI when paired. Normalizing by the joint entropy

reduces this correlation, but does not remove it (Figure 1B). In an

effort to further remove this bias, we approximate the column

normalized mutual information distributions as Gaussian distri-

butions (Figure 1C). Because Gaussian distributions are closed

under products, the product of these two distributions is again a

Gaussian distribution (see ‘‘Methods’’). We use this product

distribution to calculate a z-score for the normalized mutual

information originating from the original two columns. This

treatment amounts to asking: how significant is the normalized

mutual information between two columns given the background

normalized mutual information column distributions? A pair

which is an outlier in MI should be in the tails of both column

distributions, and our procedure takes into account the width of

both tails.

Datasets and pipeline
We chose three diverse protein families to study: chorismate

synthases (CS), G-protein coupled receptors (GPCR), and the PDZ

domain (PDZ) [28–30] (see ‘‘Methods’’). All three of these datasets

have been the focus of other correlated substitution studies

[6,9,11,17,31–33]. We investigate each dataset in our statistical

pipeline and tweak various parameters. Figure 2 shows a flow

diagram of the generalized steps in our analysis pipeline; a full

description of each step as it was implemented by the authors can

be found in ‘‘Methods.’’ What follows is a general summary of the

pipeline framework.

Sequence selection and preprocessing are the initial two steps.

Following this, sequences are aligned and partitioned many times

into two disjoint sets (a 2-split); each partition contains half of the

sequences in the full alignment. For a given 2-split, pair scoring

methods are computed for each subalignment and the results

visualized as an undirected, dense, weighted graph in which

residues are nodes and edge weights between nodes correspond to

the pair score. The resulting dense graphs are pruned and are

subsequently compared to obtain measures of accuracy and

reproducibility. By considering all 2-splits, we can construct a

consensus network whose edge weights correspond to the number

of times (or frequency) that edge was present in a subalignment’s

pruned graph. This cross-validation scheme involving 2-splits

of the MSAs yields measures of accuracy and reproducibility that

can be compared between different datasets, across different

procedures.

Pipeline sensitivity
Scoring method comparison. Figure 3 shows reproducibility

and accuracy results for the CS, PDZ, and GPCR protein families

for many different scoring methods (see ‘‘Methods’’). We show the

results of constructing the consensus network via both maximal

spanning trees (MST) and simply selecting the largest scoring N{1
edges (TNm1) (Figure S1). Although in this paper we force all

algorithms to make roughly N predictions (for comparison reasons),

this overlooks an important point about thresholding. Generally,

each algorithm will make a different number of statistically

significant predictions and a proper threshold should be

established for subsequent reproducibility and accuracy

calculations (see ‘‘Discussion’’ for more details). Still, algorithm

performance is extremely consistent over both consensus network

construction methods and protein family. We first notice that Rand

always performs extremely poorly at finding residues close in

tertiary structure, and is utterly irreproducible, as we expect.

Surprisingly, oSCA, while more reproducible than Rand, is

typically (in four of the six panels in Figure 3) less accurate,

indicating that it tends to assign high scores to pairs of residues

which are further apart in tertiary sequence than if they were picked

at random.

Another consistency is the performance of ZNMI. ZNMI is

consistently one of the most accurate methods, and never fares

very poorly in terms of reproducibility. However, the most

reproducible algorithm is almost always OMES, though nSCA is

Figure 1. Improving upon mutual information by removing column bias. Mutual information and normalized mutual information is shown
for the PDZ dataset. A. The distribution of mutual information is shown for each column in the multiple sequence alignment. As can be seen, mutual
information is highly correlated to both the product of the mean column mutual information (scatter plot, upper inset) and the product of the
standard deviation of column mutual information (scatter plot, lower inset). B. The distribution of normalized mutual information (i.e. mutual
information normalized by joint entropy) is shown for each column in the multiple sequence alignment. The normalization reduces both the
correlation between the product of the mean column mutual information (scatter plot, upper inset) and the product of the standard deviation of
column mutual information (scatter plot, lower inset), but doesn’t remove it entirely. C. ZNMI approximates the column normalized MI distributions
(solid red line and solid blue line) as Gaussian distributions (dashed red line and dashed blue line), calculates a closed-form expression for the product
of the two distributions (solid green line: kernel density estimate of product), and then z-scores the normalized mutual information (black solid
vertical line) based on the Gaussian approximation of the product (dashed green line).
doi:10.1371/journal.pone.0010779.g001

Coevolving Residue Validation

PLoS ONE | www.plosone.org 3 June 2010 | Volume 5 | Issue 6 | e10779



usually quite close. We also wondered whether other newer MI-

based algorithms that try to improve upon the performance of MI,

namely MIp [8] and Zres [6], perform similarly to ZNMI. As can

be seen in Figure S2, while ZNMI and MIp preform similarly for

the three datasets, Zres outperforms both algorithms for two of the

three datasets (excepting the GPCR dataset). Taken all together, a

tradeoff is seen between highly accurate algorithms, such as ZNMI

and Zres, and highly reproducible algorithms, such as OMES.

These analyses highlight an important message: reliable calcula-

tions of co-fluctuating networks of residues from multiple sequence alignments

may introduce a reproducibility/accuracy tradeoff in addition to dataset-to-

dataset variability, and there may be no ‘‘one-size-fits-all’’ method. We don’t

know the conversion or tradeoff between accuracy and reproduc-

ibility, known as the reproducibility-accuracy Pareto surface or

frontier in optimization theory [34], and consequently cannot

declare a clear methodological winner for the GPCR dataset. For

Figure 2. Overview of the statistical pipeline. Determining intra/inter-protein coevolving residues can be thought of as a complex, mulit-step
optimization process. Initial sequences, as many as possible, are collected for a protein of interest (Sequence Retrieval). The sequences are pruned
by similarity and length in order to filter the starting dataset of sequence fragments and sequences that heavily bias the phylogeny (Preprocessing).
The sequences are then aligned by available methods, and many independent disjoint splits of the dataset are made so that half of the aligned
sequences are in one split and the other half are in the other split (Alignment & Partition). From this point on the two splits of the data are
processed equivalently. A coevolving residue algorithm is then used to convert a split of the data (sub-alignment) into a correlation matrix that can
be analyzed as an undirected weighted graph (Network). The resulting graph can then be pruned to remove insignificant edges or highly gapped
columns (Pruning & Cutoffs). Finally, the independent splits are compared and result in measures of accuracy and reproducibility
(Reproducibility & Accuracy).
doi:10.1371/journal.pone.0010779.g002
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the other two datasets, PDZ and CS, we find tradeoffs between

accuracy and reproducibility between most methods, with the

exception of Zres, which seems to be the clear winner (Figure 3,

Figure S2).

A more accurate method could simply be finding residues closer

in linear sequence, thus guaranteeing their proximity in tertiary

structure. A simple example of this would be for an algorithm to

return nearest-neighbors in linear sequence. This would result in

trivially ‘‘close’’ residues in tertiary structure. In order to rule-out

this trivial determinant of accuracy, we calculated the average

linear sequence separation versus accuracy for each of the datasets.

While for the PDZ dataset, increasing accuracy does mean a

decline in the average linear sequence separation, for both the

GPCR and CS datasets linear sequence separation for all methods

(except Rand) varies by 10–15% but accuracy can be increased by

up to a factor of 5 by using ZNMI (Figure S3). Even for the PDZ

dataset, one can gain a factor of 2 in accuracy over OMES or

nSCA while only being on average 4 residues closer in linear

sequence (Figure S3).

Effects of sequence selection and alignment method.

One expects that both accuracy and reproducibility should

increase as more informative sequences are added to the

alignments. In order to check that this is the case, we used three

nested subsets of sequences for each of the three protein families

and calculated the resulting reproducibility and accuracy (see

‘‘Methods’’). Consistent with what one would expect, increasing

the number of informative sequences does increase the resulting

reproducibility and accuracy for all three datasets (Figure S4).

There is a subtle caveat with respect to the concept of just how

‘‘informative’’ a sequence is: because sequence conservation can

stem from two extremes (i.e. conservation amongst

phylogenetically distinct sequences or merely redundancy due to

phylogenetic/sampling bias), the sensitivity tools we present here

are not completely adequate to decide whether an initial dataset is

optimized. Although this issue has only been touched upon in the

literature [4], we feel it is an important open question and leave it

as a future research direction (see ‘‘Discussion’’).

A final parameter to investigate is the influence of different

alignment methods. Figure S5 shows the influence of using two

different alignment methods (MUSCLE [35] and MAFFT [36]) on

the resulting accuracy and reproducibility. A quick comparison of

the scatterplots for these three datasets shows that the choice of

alignment method has little affect on the resulting accuracy and

reproducibility for any of the methods. This is not to say that one

shouldn’t take care in curating a good starting alignment. Although

the resulting accuracy and reproducibility remain almost invariant,

it is not the case that each alignment method leads to the exact same

edges in the consensus network; the Jaccard index (see ‘‘Methods’’)

is less than 1 even at a very high frequency cutoff in the consensus

network (data not shown). This behavior can easily be explained by

the fact that the canonical sequence (i.e. the sequence that is used for

numbering the final graphs) is slightly perturbed between the two

different alignments, and thus edges with slightly different nodes (off

by one or two in linear sequence) are present.

Effects of network pruning. While the reproducibility and

accuracy results are similar for consensus network construction via

Figure 3. Reproducibilty and accuracy for published algorithms on three different families. Scatterplots and histograms of
reproducibility and accuracy for the three protein families (PDZ, 1256 sequences, CS, 765 sequences, GPCR, 2476 sequences) we consider in the text.
The methods are Random (red), MI (green), old SCA (yellow), new SCA (black), OMES (cyan), ELSC (magenta), and ZNMI (blue). The top row shows the
results when we construct the consensus network using MST, and the bottom with TNm1. The y axes on the reproducibility histograms have been
rescaled to allow better visualization of the shapes of the distributions. The line colors shown in the GPCR MST panel are used consistently
throughout. The old version of SCA often produces accuracies below that of random (near zero, left side of each plot); see the text for further
discussion on this point.
doi:10.1371/journal.pone.0010779.g003
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MST and TNm1 (Figure 3), we wondered whether a pruning step

is imperative (i.e. are the lowest scoring couplings as reproducible

and accurate as the top ones or are they generally noisy and

inaccurate?). To investigate this we calculated the reproducibility

and accuracy by selecting the bottom N{1 scoring couplings

(BNm1) to construct the consensus network (Figure S6). Notice

that all methods suffer a huge penalty in accuracy, confirming as

one suspects that the weakest couplings are essentially noise. Not

only are these weak couplings inaccurate, they are generally

irreproducible, which can be seen by comparing to Figure 3.

Interestingly, oSCA is more reproducible for the GPCR dataset

when selecting the lowest scoring edges than when selecting the

highest scoring edges; this combined with its odd accuracy

behavior in Figure 3 suggest that oSCA is not a promising

method, perhaps leading to the development of nSCA.

Consensus network as a function of cutoff. The consensus

network calculated by any of the methods we have described

(MST, TNm1, BNm1) is a weighted graph; each edge has a weight

equal to its frequency of occurrence during the resampling

procedure (e.g. if an edge appeared in 240 of the 300 graphs

(resulting from 150 splits), then it would have a weight of
240

300
~0:8). Figure 4 shows the largest connected component of the

consensus network (Figure 4A) and the mean tertiary distance of

the predictions (Figure 4B), as a function of pruning by increasing

edge weight. For three pruning values (0.25, 0.5, and 0.75),

additional information is provided above the plots.

As Figure 4A shows, a steep decline in the size of the largest

subgraph component is seen for all methods, but especially for

ZNMI and oSCA. Above, Jaccard index heatmaps compare the

overlap in predicted edges for all pairwise method comparisons

(see ‘‘Methods’’). Several features of these heatmaps are of note.

First, no two methods produce terribly similar consensus networks,

at least when considering all edges. The overall degree of inter-

method similarity rises marginally as the least robust edges are

removed; the heatmaps aren’t becoming substantially more

yellow-red as the cutoff is increased, except for a few instances.

Also, the two most similar methods are MI and ZNMI, which is

expected given that ZNMI has MI at its core. Figure 4B shows that

edges of higher frequency (i.e. more reproducible) are close in

tertiary structure, so that pruning the consensus graph at a higher

cutoff results in more residues proximal in tertiary structure, as

measured by their mean Cb{Cb distance. While all methods with

exception of Rand are monotonically decreasing functions of

frequency cutoff (with respect to mean Cb{Cb distance), ZNMI

performs best. Above, the consensus network produced for the CS

dataset by ZNMI at cutoffs of 0.25, 0.5, and 0.75 are shown.

Simply using a frequency cutoff of 0.5 versus 0.25 vastly simplifies

the resulting co-fluctuating residue networks, and truncating to

edges that only occur in 75% or more of the splits results in

primarily isolated couplets of residues with a few larger groups

(upper right panel; recapitulated in the size of the largest

connected component in the lower left panel). However, even at

a stringent 0.75 cutoff there are co-fluctuating residue networks

with nontrivial structure; they are not simply pairs. Still, as

Figure 4B shows these edge weights decay dramatically; the

number of robust edges (those with a weight near unity) is a very

small fraction of the total number of edges in the dense consensus

graph.

Clusters mapped to structures
Figures 5, 6, 7, 8, 9 and 10 show the most reproducible clusters

of co-fluctuating residues mapped to the corresponding canonical

structures for the PDZ, CS, and GPCR datasets. For all of these

figures, we show only couplings present at a reproducibility

Figure 4. Weights in the consensus networks decay dramatically. A. The largest connected component in the MST consensus network, for
the full CS dataset, as a function of edge weight cutoff is shown. For all of the edge scoring methods considered, but particularly ZNMI and oSCA, use
of MSTs to construct the consensus network results in small, disconnected clusters when the consensus network is relatively mildly pruned. Directly
above the plot, heatmaps are displayed for the Jaccard index (all methods vs. all methods, excluding Rand) for three points along the curve (0.25, 0.5,
and 0.75). As the network is pruned, the Jaccard indices generally remain the same with only slight increases in overlap between methods (note:
ZNMI and ELSC at a cutoff of 0.75). Note that the colorscale is given not in terms of the actual Jaccard index but the percent similarity between the
two sets of edges (see ‘‘Methods’’). B. Cutting the graph with increasing edge weight results in edges that are in fact closer in tertiary structure, as
measured by their mean Cb{Cb distance. Directly above the plot, the consensus graph is shown at three different edge frequency cutoffs. Note the
dramatic transition in the consensus graph between a weight of 0.25 and 0.5; simply removing edges which co-occur less than 50% of the time
results in a network consisting primary of small, disjoint clusters. Notice also that even at a cutoff of 0.75, many nontrivial clusters (beyond simple
pairs) remain in the network.
doi:10.1371/journal.pone.0010779.g004
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criterion of 90% or greater as calculated from the ZNMI

algorithm; that is, a link has to be present in 90% or more of

the subalignment MSTs. For most of the communities we show,

the residues appear to be in tertiary contact and the likelihood that

they represent real interactions, either functional or structural,

seems quite good. Note, for example, that for the GPCRs (Figure 9)

we find many clusters that represent interactions between helices

in the seven-helix transmembrane spanning barrel, despite not

having restricted the analysis to only pairs between these helices, as

has been done previously [17].

PDZ. Figures 6,8,and 10 show particularly interesting

communities from each protein family in detail. Although the

PDZ domain is a relatively small protein, interesting communities

are present. Figure 6 shows two communities in the PDZ network

which are disjoint at the 90% reproducibility level but which

intertwine. They are on opposite sides of the same a-helix and

have an almost perfect periodicity of three residues in sequence,

contrary to the expected periodicity of four one would find for

residues interacting through the turns of a helix.

Chorismate Synthase. Figure 8 shows a highly reproducible

community in the chorismate synthase family that is likely relevant

for the function of proteins in the family. Considered as a

monomer, the magenta community (shown first in Figure 7) looks

cryptic but when dimerization is pictured the cluster assumes an

immediate significance as part of the dimerization interface.

Viewed properly this way, the cluster’s topology even mimics the

distance topology one obtains when looking at the structure.

Chorismate synthase has been widely found to be active as a dimer

or tetramer in bacteria [37,38], fungi [37], and plants [39]. CS is

part of a pathway producing aromatic amino acids in these

organisms. The fact that mammals lack this pathway and obtain

tryptophan, tyrosine, and phenylalanine via their diets has led to

the suggestion that CS and the shikimate pathway in general

would make a good antibiotic target [38]. Disrupting the co-

fluctuating cluster in Figure 8 could accomplish this in a wide

variety of organisms, given that it came not from a single protein

structure but from a MSA. This points to the potential of using

correlated amino acid substitution detection for therapeutic

intervention. Also, we emphasize that this cluster was present in

almost all subalignments; it is one of the most robust signals in the

CS dataset.

G-Protein Coupled Receptors. Figure 10 displays an

interesting co-fluctuating cluster in the GPCR dataset. Two

segments of the cluster have been outlined in grey; the group of

four residues near the top of the picture and the pair that are quite

far away from the top four residues. Within the groups the residues

are in close contact in the tertiary structure, but notice that

between the groups there is a substantial space spanned in tertiary

structure. This result highlights an ongoing debate in the literature

about the length scale over which residue–residue couplings would

interact, especially with respect to allostery. Are long-range

interactions mediated through couplings at a distance, are there

networks of simple pairwise interactions that mediate

communication at great distances, or are these couplings simply

biologically-meaningless false positives [9–11,15,32,33]? In the

case of the GPCR dataset, we don’t find a large reproducible

Figure 5. Consensus communities at 90% reproducibility mapped to the PDZ tertiary structure. The upper left panel shows the
consensus network for the PDZ dataset at a reproducibility cutoff of 90%. The remaining three panels give three views of the consensus networks
mapped to our chosen canonical PDZ structure (PDB Identifier: 1IU0). The color coding in the upper left panel is identical when considering the
structures. While some of the consensus co-fluctuating groups are quite close in sequence (orange and dark blue), others (cyan) are quite far away. A
closer look at the red and dark purple clusters is given in Figure 6. For this figure and Figures 6–10, ZNMI is the pair scoring method and MSTs were
used to construct the consensus networks.
doi:10.1371/journal.pone.0010779.g005
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community (at the level of 90% frequency) that spans the entire

protein from the allosteric site to the intracellular G-protein

coupled site; the largest cluster shown in magenta is quite

dispersed throughout the protein, and the remaining clusters are

small and localized. This is consistent with an ensemble-based

explanation of allostery that involves perturbations to the

population of energetic states around the native state, and not

the existence of intricate pairwise-coupling pathways or sequential

conformational changes [40]. We interpret these results (as well as

the results for the preceding datasets) in two general ways. Many of

the networks that these algorithms find are presumably important

for folding (rather than function) and folding is believed to be a

process of local condensation rather than global collapse encoded

by the native state [41]. For this reason, we feel that many of the

small (composed of two to five residues) clusters may be important

for folding. Furthermore, as the community in Figure 10 may

suggest, residues at a distance may be coupled due to the inherent

dynamic nature of a protein undergoing conformational changes

that aren’t foreseeable in a single crystal structure.

Discussion

We have presented an improvement to mutual information for

use in correlated amino acid substitution analysis. More

importantly, we have cast the problem in a framework that allows

a ‘‘meta-analysis’’ of any method, and all parameters of those

methods, that simultaneously ranks algorithms on two criteria:

accuracy, defined here as closeness in tertiary structure, and

reproducibility, defined as sample-to-sample consistency. This

allows one to consider new algorithms and adjustment of

Figure 6. Two disjoint but intertwined communties mapped to
the PDZ tertiary structure. Shown here is a closeup of the red and
purple clusters from Figure 5. These two communities are disjoint at
this cutoff (90%) and on opposite sides of the pictured helix. Also of
note is that they have a periodicity of three in sequence, not four
residues as would be the case with residues interacting through the
turns of an a-helix.
doi:10.1371/journal.pone.0010779.g006

Figure 7. Consensus communities at 90% reproducibility mapped to the CS tertiary structure. The upper left panel shows the consensus
network for the CS dataset, again at a reproducibility cutoff of 90%. Several of these communities have been colored in and mapped to the canonical
structure (PDB Identifier: 1R52); the color code is consistent between the networks and the structural views. The magenta community is considered
more closely in Figure 8.
doi:10.1371/journal.pone.0010779.g007
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algorithmic parameters in an optimization framework; the goal is

simultaneous optimization of both. We hope that this will be of

interest to both methodologists and end users; methodologists can

test a new algorithm in this framework, and end users can obtain

some idea as to the confidence they should place in a cluster. One

would use datasets for which a canonical structure exists (such as

the three in this manuscript) to gain some idea of method quality,

and then apply the best method to their own dataset of interest,

possibly without structural information.

There are two highly desirable extensions to this study that are

at present unattainable. Those are (i) using our pipeline sensitivity

process to guide sequence selection itself and (ii) assessing the

utility of these algorithms for predictions of residue coevolution

(testing the so-called ‘‘covarion hypothesis’’), as completely distinct

from contact prediction. Both of these studies would be relatively

straightforward but both are at present intractable. One would like

to use the reproducibility/accuracy metrics in a ‘‘meta-optimiza-

tion’’ that not only yields robust predictions given the input data,

but also helps to select that input data in order to jointly maximize

reproducibility and accuracy. For example, simply having many

redundant sequences rather than fewer diverse sequences is likely

to negatively impact contact prediction, and one would like to

choose the optimal input alignment for this process. The

computational barriers to doing this for all but the smallest

protein fragments make this prohibitive; however as a thought

experiment, it seems to clearly be the correct thing to do.

As for (ii), we have used distance in tertiary structure as our

accuracy metric. Some would argue that this is inappropriate

[11,32] and that residues very far apart in tertiary structure can be

coupled as strongly, or more strongly, than those nearby; yet

Figure 8. Small community in the CS consensus network
highlights a dimerization interface. Here we show a closeup view
of the CS structure from Figure 7 and the network colored in magenta.
Viewed on a single copy of the CS structure, the magenta community
seems to be meaningless. However, when CS dimerization is
considered, the magenta community shows its role as a key set of
residues mitigating an inter-subunit coupling. Also of note is that the
residue topology in the consensus network exactly mimics their
minimum distance topology in the tertiary structure.
doi:10.1371/journal.pone.0010779.g008

Figure 9. Consensus communities at 90% reproducibility mapped to the GPCR tertiary structure. The upper left panel shows the
consensus network for the GPCR dataset at 90% reproducibility, and the remaining panels show selected communities mapped onto the canonical
structure (PDB Identifier: 2VT4). The consensus network here was computed from a 1000-sequence GPCR dataset because it was more accurate than
the full 2476 sequences (an average of 10 angstroms vs 15 angstroms).
doi:10.1371/journal.pone.0010779.g009
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others would disagree [15]. We point out that our accuracy metric

is an average, and may have wide dispersion. A method with high

accuracy need not, and generally will not, entirely exclude residue-

residue couplings which are far apart in tertiary structure; indeed,

Figure 10 shows that ZNMI finds a clear signal of a cluster with

coupling at large physical distance. While couplings at large

distances could still simply be false positives, for them to appear as

robust predictions in our meta-analysis they must occur as

relatively large signals in practically all the splits of the data. This

does not rule out the false positives, but it makes it somewhat

harder to believe. If alignment errors produce them, they are

alignment errors that recur in a large fraction of the subalign-

ments. In any case, the significance of strong long range couplings

detected by correlated amino acid substitution analysis will likely

remain unresolved without an experimentally validated ‘‘co-

evolutionary’’ dataset. If we knew which networks of residues

most strongly fluctuate during evolution, even for only a single

protein or protein family, we could use the resampling framework

presented in this manuscript to determine which algorithms

robustly predict those coevolutionary networks. However, lacking

such a dataset, the only way to validate algorithms predicting co-

fluctuating positions is to use as training sets protein families for

which structural information exists.

An interesting feature of our results is the ‘‘no-man’s land’’ in

the plots in Figure 3, namely the upper right corner of the

scatterplot. An algorithm whose scores fall in that area would be

both highly reproducible and highly accurate, and none of the

methods we consider here reach that level of performance,

irrespective of the dataset in question. Therefore, it is unwise to

simply run the algorithms investigated here only once on a single

alignment. Despite the lack of a highly reproducible and accurate

algorithm, the resampling framework presented here can associate

a confidence (i.e. the frequency cutoff in the consensus network)

with individual couplings. While tradeoffs between reproducibility

and accuracy are inevitable, especially with small-to-moderate

sample sizes as one finds in realistic datasets [24], that does not

rule out pushing the boundary of algorithm performance further

into that quadrant. We only expect that at some point we will be

forced to trade bias for variance, but we do not know where that

frontier is or if we have reached it [24].

One potential issue that has been overlooked in our framework

is the issue of thresholding. In general, the number of edges should

not a priori be fixed (i.e. a MST fixes the number of edges to N{1).

Each algorithm will produce a different number of statistically

significant couplings, and proper thresholds should be established

individually for each algorithm. We did not investigate this (for

comparison reasons), but instead bring it to the reader’s attention

and leave it as a future research direction. Although each

algorithm will require a specific thresholding scheme, ZNMI

allows for a clever thresholding scheme simply by its construction

(kindly pointed out by an anonymous reviewer). Because each

normalized mutual information value is compared against a

background Gaussian expectation, then a p-value can be

associated with each column pair. Subsequently, the p-values

could be corrected for multiple hypothesis testing with a simple

Bonferroni correction. Still, the idea of setting appropriate

thresholds and combining methods (e.g. combining Zres, a MI-

based metric, with OMES, a non-MI based metric) into a ‘‘meta-

method’’ further point out the machine-learning possibilities of our

framework, and we are actively exploring these avenues.

Methods

Processing Pipeline
Figure 2 gives a schematic describing the steps in the processing

pipeline leading to predictions of co-fluctuating residue groups.

We consider each step in more detail below; some steps (like the

scoring algorithms used) are also described in much greater detail

elsewhere in the methods section. We emphasize here that many

of the hyperparameters in the analysis are nonparametric, often

amounting to ‘‘do X or Y ’’ or ‘‘do Z or not Z,’’ making a cross-

validation scheme the most effective way to understand the

propagation of errors during the calculations.

Sequence Retrieval. We chose three diverse protein families

to study: chorismate synthases (CS), G-protein coupled receptors

(GPCR), and the PDZ domain (PDZ) [28–30] (see ‘‘Datasets’’ in

this section for more details). All three of these datasets have been

the focus of other correlated substitution studies [6,11,17,31–33].

Preprocessing. Before analysis, we pruned the sequences to

remove fragments and redundant sequences [4]. It is important to

point out the effect of this filtering on the PDZ and CS datasets,

which were retrieved from the Pfam database [16]. In both

datasets, the initial number of sequences is around 5000, but after

pruning the datasets are significantly smaller, with less than one-

third of the sequences retained in the PDZ dataset and a mere

one-sixth retained in the CS dataset. While some fragmented

sequences are removed, which helps with alignment performance

by limiting the number of gaps in the MSA [4], the majority of the

removed sequences are simply highly similar (greater than 95%)

and therefore redundant. This is important to point out as it is not

a universal practice to remove redundant sequences. Many

authors use the curated alignments from the Pfam database

without parsing for redundancy; this redundancy is more harmful

than it seems as it can drastically alter the frequencies of amino

acids and the subsequent couplings between them.

Alignment and Partition. Sequences are aligned and many

2-splits are made, such that for a given split each of the two

Figure 10. One large community from the consensus network
at 90% reproducibility mapped to the GPCR tertiary structure.
We show here an enlargement of the magenta community from
Figure 9. The inset shows the cluster along with two boxes highlighting
two portions of the community. Note that this cluster shows significant
coupling at large physical distances; the four residues outlined in the
inset are at the top of the figure and the other two outlined residues are
at bottom.
doi:10.1371/journal.pone.0010779.g010
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resulting groups contains the same number of sequences and each

group contains the same canonical sequence (used for numbering

and structural mapping). There are many alignment methods

available that differ in the amount of a priori information (including

structural) they employ, computational complexity, etc.: MUSCLE

[35], MAFFT [36], HMMER [42], and T-Coffee [43] are four we

have investigated. We used MUSCLE for all of the alignments in

this manuscript, except for those compared in Figure S5, where we

investigate the influence of alignment method. For this comparison,

we also made alignments using MAFFT. For each of the datasets in

this study, 150 independent partitions were made for calculations of

accuracy and reproducibility.

Network Construction. Correlated amino acid substitution

scoring metrics produce a set of real numbers, one for each pair of

residues in the (canonical) sequence. This matrix of values can

naturally be viewed as a weighted graph, in which the nodes are

residues and the links between the residues are assigned weights

according to the results of the pair analysis. Before implementing a

more complicated pruning method (see Network Pruning below),

we first remove those nodes that are more than 10% gapped in the

MSA. For numerical reasons, we also remove any nodes whose

column entropy in the MSA isn’t greater than

{
5

100
log

5

100

� �
{

95

100
log

95

100

� �
, which ensures that enough

of the residues in a site are changing to measure a co-fluctuation

(i.e. 5%). Finally, we remove any nodes for which the canonical

sequence is gapped.

Network Pruning. When pruning a network, one would

then like to pull out groups of residues more strongly connected to

each other than to the rest of the residues in the protein, as is the

goal of all so-called ‘‘community detection’’ algorithms for

networks [44,45]. Unfortunately, the graphs resulting from co-

fluctuating residue analysis are (i) extremely dense (each residue is

connected to every other residue) (ii) weighted graphs, in which (iii)

the dynamic range of the weights is modest. These features make

existing community detection algorithms of little use; our attempts

to find communities by maximizing Newman’s modularity [46]

were fruitless (not shown). In addition, graph segmentation

algorithms are generally complex optimization procedures in

which little information about community robustness is accessible.

The complexity of coevolving residue networks leads most

authors to prefer some sort of ‘‘top hit’’ analysis, in which some

(often arbitrary) number or percentage of top scoring residue pairs

are selected as the most reliably predicted co-fluctuating groups.

We also prune the dense graphs, but our pipeline sensitivity

calculations allow us to compare different pruning methods. We

generally use two methods: in one, we retain the maximal

spanning tree (MST) of the full scoring graph. The MST for a

graph with N nodes is an acyclic connected graph with N{1
edges; each of the N residues in the protein will be present in the

MST, assuming they aren’t heavily gapped positions in a MSA (see

Network Construction above). We also simply keep the top scoring

N{1 edges (TNm1), and sometimes the lowest scoring N{1
edges for comparison (BNm1). An example of both an MST and a

TNm1 graph for a single subalignment of one protein family is

shown in Figure S1.

Reproducibility and Accuracy. We define the reproducibi-

lity for a split as follows. For each split, two pruned graphs are

calculated - be they MSTs, TNm1s, or BNm1s (the two graphs are

denoted below as set A and set B). We then compute the Pearson

correlation coefficient of the edges of the two graphs. Edges in the

intersection are counted in the correlation using their weight, and

edges in one graph but not the other are assigned a weight of zero

in the graph in which they are not present. We should point out

that, using this definition, it is easy to obtain a negative

reproducibilty, which simply means that the set of intersected

edges is small relative to the total number chosen. We employ this

definition, rather than restricting the correlation to only shared

edges, both because it maintains a sensible scale for the

reproducibility (Rep A,Bð Þ[ {1,1½ �) and because it allows us to

compare the value across splits and algorithms, as the number of

data points used in calculating Rep A,Bð Þ remains constant

whenever the same number of edges are retained at the pruning

step. A negative reproducibility should cause no concern; we are

simply concerned with increasing reproducibility and not its

magnitude.

Ideally, a measure of accuracy for algorithms that predict

coevolving residues would measure deviations from a validated

dataset, just as some data is reserved in machine learning problems

in order to train a classification or regression algorithm.

Unfortunately, no such dataset currently exists, and it is unclear

if one can be easily and meaningfully generated. However, if we

view this as a contact prediction problem, we can define the

accuracy as the average proximity in tertiary structure of nodes

connected by edges, weighted by the strength of the edge. These

distances are calculated using Cb{Cb distances obtained from the

canonical structure. For a given split, the accuracy is defined as

Acc A,Bð Þ~1{
1P

i[A,B edgei

X
i[A,B

edgei| Cb{Cb

� �
i

� � !
, ð1Þ

where

Cb{Cb

� �
i
~

Cb{Cb

� �
i
{min Cb{Cb

� �
mean Cb{Cb

� � : ð2Þ

Intuitively, Eqn. 1 is just reversing low values and mapping

maximal accuracy as 1, with the term inside the parentheses being

nothing more than a weighted average (i.e. algorithms that assign

large weights to residue pairs that are close in tertiary structure

result in a lower weighted average and higher accuracy). Eqn. 2 is

rescaling the residue–residue distances by the minimal attainable

value and the average value (i.e. the value that an algorithm would

achieve blindly picking residue pairs). Overall, the definition of

accuracy sets a baseline of zero accuracy for the Rand algorithm,

with a maximal achievable accuracy of 1. Note: we are only

rescaling accuracies between 0 and 1. Accuracy can be negative, as

is the case with oSCA in 4 our of 6 panels of Figure 3, but we

aren’t concerned with negative accuracies and thus algorithms that

on average perform worse than random selection of residue pairs.

We emphasize that reproducibilty and accuracy can be

completely independent; one can easily construct a perfectly

reproducible ‘‘method’’ (pick the same pairs always, regardless of

scoring metric) that is as inaccurate as possible (pick the pairs

furthest apart in tertiary space). We also emphasize that these are

the definitions of accuracy and reproducibility that we chose to

implement. These definitions can be altered to suit an end user’s

needs. For example, choosing a metric of reproducibility that uses

the intersection of splits containing differing set sizes (i.e. Fisher

transformed correlation coefficient), or a measure of accuracy that

assigns a binary classification to tertiary distance (i.e. CASP

prediction criteria) are alternative definitions and can thus be

investigated in our pipeline framework. We have chosen not to use

these alternative definitions as they introduce additional complex-

ity. For example, comparing correlation coefficients of datasets

containing a different number of points (via a Fisher transform)
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loses its correlation-type interpretation of reproducibility. Similar-

ly, allowing for a binary classification of accuracy introduces yet

another hyperparameter into the pipeline (i.e. the cutoff used for

the classification), which would need to be investigated.

Datasets
Sequence datasets were downloaded and processed as described

below. Calculations of sequence similarity and the informativeness

of sequences was done using the T-Coffee package [43]. The

number of sequences remaining after each step of the preprocess-

ing is indicated in parentheses. The canonical sequence used for

mapping the residue positions to the tertiary structure is indicated

for each dataset by its PDB identifier. For the smaller nested

datasets used in Figure S3, the N-most informative sequences were

extracted from the next largest dataset (e.g. for the CS dataset, the

200 most informative sequences were extracted from the 400

sequence dataset) using the T-Coffee package [43] and keeping the

canonical sequence.

CS. Chorismate synthase Uniprot and NCBI headers were

extracted from Pfam entry PF01264 datasets, PF01264.full and

PF01264.NCBI, respectively [16]. The full sequences were

retrieved from NCBI (4198 sequences) and Uniprot (619

sequences), then concatenated into a single file of sequences

(4817 sequences). The file was first filtered for sequences that share

more than 95% similarity (2240 sequences). After filtering by

similarity, the sequences were filtered for fragments and those of

length less than 300 amino acids were removed (764 sequences).

Finally, the canonical chorismate synthase (PDB identifier: 1R52

[28]) was added to yield a dataset of 765 sequences.

GPCR. Class-A rhodopsin-like G-protein coupled receptor

sequences were downloaded from www.gpcrs.org (5025

sequences). The sequences were first filtered to remove

sequences much longer than the average; those larger than 500

amino acids were removed (4786 sequences). Sequences more

than 95% similar were then removed (2475 sequences). Finally,

the canonical G-protein coupled receptor (PDB identifier: 2VT4

[29]) was added to yield a dataset of size 2476.

PDZ. Sequences of proteins containing PDZ domains were

downloaded from the Uniprot headers indicated in Pfam entry

PF00595 (4681 sequences) [16]. The PDZ domains were

extracted, as indicated in PF00595, and those that were smaller

than 65 residues or greater than 93 residues were removed (2561

sequences). Sequences more than 95% similar were then removed

(1525 sequences). Finally, the canonical PDZ domain (PDB

identifier: 1IU0 [30]) was added to yield a dataset of 1526

sequences.

Coevolving residue algorithms
We treat the network of interactions among all paired positions

as a weighted, undirected graph. The methods we use to obtain

edge scores are described below; many of these methods have been

previously published, and software to compute these scores is

freely available. Hence, we refer the reader to the primary

literature for the details of these methods.

Rand. Random is the simplest possible, and least likely to be

successful, algorithm and is employed primarily as a baseline for

both accuracy and reproducibility. In Rand, paired position scores

are assigned random values drawn from a uniform distribution (i.e.

every coupling lies uniformly in ½0,1�).
OMES. Observed Minus Expected Squared is described in

detail elsewhere [10,15]. It essentially performs a chi-squared test

on every possible pair of columns, looking for pairs of amino acids

that occur more frequently that expected. ‘‘Expected’’ here means

relative to the product of the frequencies of the amino acids in the

individual columns of the alignment, which is equivalent to the

assumption of no correlation between the two sites.
ELSC. Explicit Likelihood of Subset Co-variation is a

perturbative algorithm that uses combinatorial arguments to

explicitly calculate the probability that a random subset from a

parent alignment has the observed amino acid profile at a given

site. A thorough discussion of ELSC and its relation to oSCA,

another perturbative algorithm, can be found elsewhere [12].
oSCA. Statistical Coupling Analysis (old) is a previously

described method that looks for positions with changed residue

compositions in sub-alignments relative to their parent alignment

[11]. In this respect, it is a perturbative method in the style of

ELSC [12]. These sub-alignments are made with respect to the

most conserved residue in each column; hence the most conserved

residue is calculated for each column, and the sub-alignment

consists of all sequences with that conserved residue at that

position. One way in which oSCA differs from all the other

algorithms considered is that it generates a nonsymmetric score;

oSCA i, jð Þ=oSCA j,ið Þ. There are many possibilities in

symmetrizing the oSCA score, and those methods could readily

be compared via our pipeline sensitivity analysis. However, we will

simply follow previous authors [15] and calculate only oSCA i, jð Þ
for jwi.

nSCA. Statistical Coupling Analysis (new) is dramatically

different from oSCA, so much so that they are more properly

thought of as different algorithms [9]. The scoring method in

nSCA is much closer to the relative column entropies, unlike

oSCA, and is therefore symmetric.

MI. Edges in the MI graph have been assigned according to

the mutual information between the two positions, defined for

columns i and j as

MI i, jð Þ~
X
a[i

p að Þlog
1

p að Þz
X
b[j

p bð Þlog
1

p bð Þ

{
X

a[i,b[j

p a,bð Þlog
1

p a,bð Þ ,
ð3Þ

where the sums are over the twenty possible residues at positions i
and j. Hence, all that matters for calculating the MI between two

positions are the individual and joint distributions of amino acids.

The MI is a symmetric quantity. It was originally used for this

purpose in [3], and many modifications of it have been proposed

for coevolution and contact prediction [2,3,6–8].

MIp. Positional mutual information takes into account the

background distributions of mutual information at two different

positions by subtracting out a factor that is the product of the

means of the two positional distributions, normalized by the

average mutual information over the entire alignment [8].
ZNMI. In order to account for different alphabet sizes among

columns in the multiple sequence alignment (i.e. columns that vary

drastically by background entropy) we first normalize the MI

(hereafter referred to as NMI) by the joint entropy (the third term

of Eqn. 3), which reduces the correlation between MI and the

product of the variances of the column MI [2]. To further correct

for the differences in mean column NMI and variance of the

column NMI, we make the assumption that the column NMI

distribution can be approximated by a Gaussian distribution,

N m,s2
� �

, parameterized by the column NMI mean and variance;

this approximation turns out to be reasonable when comparing it

to a Gaussian distribution of equivalent size using a two-sample

Kolmogorov-Smirnov test (CS, PDZ, and GPCR datasets, not

shown). Given that the NMI distribution of column i can be

written as N mi,s
2
i

� �
and the NMI distribution of column j j=ið Þ
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can be written as N mj ,s
2
j

� �
, it is straightforward to show that
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This approximation has two main advantages. The first is that the

closed-form solution makes the calculation easy to compute and

computationally fast, as only the mean and variance of the column

NMI must be calculated (L calculations where L is the length of the

pertinent columns in the multiple sequence alignment). The second

advantage is that the calculation has a very intuitive interpretation.

For columns i and j, NMI i, jð Þ is considered significant if it is

sufficiently large given that it comes from the column NMI of i and

column NMI of j. Values of NMI i, jð Þ that are found between the

column distributions of columns i and j would be insignificant,

whereas values of NMI i, jð Þ that are very far to the right of both

column distributions would be considered significant. Finally, a z-

score is calculated for the product NMI i, jð Þ in Eqn. 4, leading us to

the final metric referred to as ZNMI.

Zres. Z-scored residual mutual information first computes a

linear regression of mutual information against the product of the

means of the positional mutual information distributions.

Afterwards, the residuals are z-scored against both residual

positional distributions, and the product of those z-scores is

computed (taking into account the sign of both z-scores) [6].

Jaccard Indices
The Jaccard index is a classic, simple metric for comparing sets

[47]. For two sets A and B, it is defined as the cardinality of the

intersection divided by the cardinality of the union

J A,Bð Þ~ DA\BD
DA|BD

: ð5Þ

The index is in ½0,1�; two sets of equal size sharing half their items

have J A,Bð Þ~1=3, and two sets of equal size having a quarter of

their items in common yield J A,Bð Þ~1=7. Our application of the

Jaccard index to produce Figure 4 is as follows. We compute the

consensus, weighted graphs for two scoring metrics. We prune the

consensus graphs for different scoring methods at a given cutoff

(see ‘‘Methods’’) and ignore the weights of the remaining edges.

The two sets in this case are then the set of edges for each graph,

and the Jaccard index is readily computed. We repeat this

calculation for multiple cutoffs (0.25, 0.5, 0.75) to obtain the

heatmaps in Figure 4.

Code Implementation
All of the algorithms, pipeline framework, and plotting were

implemented in Python (www.python.org), with exception to

OMES, McBASC, ELSC, and oSCA. Java code for these

algorithms was downloaded from Anthony Fodor’s homepage

(www.afodor.net) and wrapped into our framework. All of the

other algorithms were implemented as described in the relevant

references. All of our code is available upon request, however we

will not be responsible for the prerequisite Python and Python

module implementations that our framework is dependent upon

(i.e. NumPy, SciPy, networkx, etc.).

Supporting Information

Figure S1 Comparison of MST and TNm1 graphs created from

splits of the data. The MST and TNm1 graphs for a single split of

the PDZ dataset (1526 sequences) are shown for contrast. The

graph layouts in splits A and B are approximately the same so

topological comparisons can be made by eye. Nodes that are in the

intersection of all four graphs are colored green, while any node

not in each and every graph is colored red. Similarly, edges that

are common to all four graphs are drawn with thick lines. One can

see that a common subgraph (green nodes connected by bold

edges) is present, but consists of only a small fraction of the total

number of nodes and edges. This illustrates the fact that MSTs

and TNm1 graphs are by construction composed of very different

residue-residue couplings.

Found at: doi:10.1371/journal.pone.0010779.s001 (9.44 MB TIF)

Figure S2 Reproducibilty and accuracy for four MI-based

algorithms on three different families. Scatterplots and histograms

of reproducibility and accuracy for the three protein families

(PDZ, 1256 sequences, CS, 765 sequences, GPCR, 2476

sequences) we consider in the text. The four MI-based algorithms

compared are MI (green), MIp (red), ZNMI (blue), and Zres

(black). The top row shows the results when we construct the

consensus network using MST, and the bottom row with TNm1.

The y axes on the reproducibility histograms have been rescaled to

allow better visualization of the shapes of the distributions. While

all three algorithms (MIp, ZNMI, and Zres) are improvements

upon MI, MIp and ZNMI are comparable in their performance

and Zres outperforms both ZNMI and MIp in two of three

datasets.

Found at: doi:10.1371/journal.pone.0010779.s002 (9.44 MB TIF)

Figure S3 Increasing accuracy without decreases in linear

sequence separation. Shown here is the accuracy versus mean

linear sequence separation for 150 splits for the full PDZ, CS, and

GPCR datasets using MST as the pruning method (datasets are

indicated in each plot with the number of sequences in

parentheses). The color key shown in the lower right is used

consistently throughout. While increasing the accuracy can reflect

more pairs close in sequence, the strongest effect is in the PDZ

dataset and is likely the effect of small sequence size. Note for CS

and GPCR there can be dramatically different accuracies for

roughly the same average sequence proximity.

Found at: doi:10.1371/journal.pone.0010779.s003 (9.44 MB TIF)

Figure S4 Accuracy and reproducibility increase with increasing

number of ‘informative’ sequences’. Scatterplots and histograms of

reproducibility and accuracy for 150 spits of the PDZ, CS, and

GPCR datasets with the ZNMI method (MSTs), shown as the

number of sequences used in the alignments varies. Increasing the

number of informative sequences — sequences that are dissimilar

from the sequences that are already in your dataset — increases

both the accuracy and reproducibility, though it is interesting to

note that as more sequences are used the marginal gains in

accuracy decrease faster than the marginal gains in reproducibil-

ity.

Found at: doi:10.1371/journal.pone.0010779.s004 (9.44 MB TIF)

Figure S5 Changing the alignment method has minimal change

on the resulting accuracy and reproducibility. Scatterplots and

histograms of reproducibility and accuracy for 150 spits of the

PDZ, CS, and GPCR datasets using MST as the pruning method

(datasets are indicated in each plot with the number of sequence in

parentheses) are shown for an initial alignment made with

MUSCLE (top row) and MAFFT (bottom row). A quick

comparison between the top row and bottom row shows that the

changing between these two alignment methods has little affect on

the accuracy and reproducibility for most of the algorithms.

Found at: doi:10.1371/journal.pone.0010779.s005 (9.44 MB

TIF)
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Figure S6 Weak couplings are generally noisy and inaccurate.

In this analysis we subjected the three full protein family datasets

(PDZ, 1526 sequences, CS, 765 sequences, GPCR 2476

sequences) to our pipeline analysis, but in constructing the

consensus network we have chosen the smallest N-1 edges, rather

than using the MST or largest N-1 edges. oSCA has been omitted

from the CS panel, as it could not be calculated due to numerical

instability. For all algorithms and all three protein families, the

accuracy suffers. In general, the reproducibility is also quite a bit

lower. However, it is interesting to note that oSCA is more

reproducible in this case, and OMES in the GPCR panel still has

high reproducibility. The first observation highlights oSCA as an

‘‘outlier’’ in terms of scoring metric, and the second points strongly

to the need to consider reproducibility and accuracy in tandem.

Found at: doi:10.1371/journal.pone.0010779.s006 (9.44 MB TIF)

Acknowledgments

The authors thank M. Laub and A. Drummond for their valuable

comments and advice. In addition, we thank one reviewer for helpful

comments about thresholding our ZNMI algorithm. CB acknowledges

financial support from the NSF, Harvard University HILS program, and a

Harvard Sheldon Traveling Fellowship.

Author Contributions

Conceived and designed the experiments: CAB KSB. Performed the

experiments: CAB KSB. Analyzed the data: CAB KSB. Contributed

reagents/materials/analysis tools: CAB KSB. Wrote the paper: CAB KSB.

References

1. Perez-Iratxeta C, Palidwor G, Andrade-Navarro M (2007) Towards completion

of the earth’s proteome. EMBO Reports 8: 1135–1141.
2. Martin L, Gloor G, Dunn S, Wahl L (2005) Using information theory to search

for co-evolving residues in proteins. Bioinformatics 21: 4116–4124.
3. Atchley WR, Wollenberg KR, Fitch WM, Terhalle W, Dress AW (2000)

Correlations among amino acid sites in bhlh protein domains: an information

theoretic analysis. Molecular Biology and Evolution 17: 164–178.
4. Horner D, Pirovano W, Pesole G (2007) Correlated substitution analysis and the

prediction of amino acid structural contacts. Briefings in Bioinformatics 9:
46–56.

5. Ashkenazy H, Unger R, Kliger Y (2009) Optimal data collection for correlated
mutation analysis. Proteins 74: 545–555.

6. Little DY, Chen L, Shiu SH (2009) Identification of coevolving residues and

coevolution potentials emphasizing structure, bond formation and catalytic
coordination in protein evolution. PLoS ONE 4: e4762.

7. Caporaso JG, Smit S, Easton BC, Hunter L, Huttley GA, et al. (2008) Detecting
coevolution without phylogenetic trees? tree-ignorant metrics of coevolution

perform as well as tree-aware metrics. BMC Evol Biol 8.

8. Dunn S, Wahl L, Gloor G (2008) Mutual information without the influence of
phylogeny or entropy dramatically improves residue contact prediction.

Bioinformatics 24: 333–340.
9. Halabi N, Rivoire O, Leibler S, Ranganathan R (2009) Protein sectors:

evolutionary units of three-dimensional structure. Cell 138: 774–786.
10. Kass I, Horovitz A (2002) Mapping pathways of allosteric communication in

groel by analysis of correlated mutations. Proteins: Structure, Function, and

Genetics 48: 611–617.
11. Lockless S, Ranganathan R (1999) Evolutionarily conserved pathways of

energetic connectivity in protein families. Science 286: 295–299.
12. Dekker J, Fodor A, Aldrich R, Yellen G (2004) A perturbation-based method for

calculating explicit likelihood of evolutionary co-variance in multiple sequence

alignments. Bioinformatics 20: 1565–1572.
13. Lena PD, Fariselli P, Margara L, Vassura M, Casadio R (2009) Algorithms in

Bioinformatics, Springer-Verlag, chapter On the upper bound of the prediction
accuracy of residue contacts in proteins with correlated mutations: the case study

of the similarity matrices. pp 62–72.
14. Gobel U, Sander C, Schneider R, Valencia A (1994) Correlated mutations and

residue contacts in proteins. Proteins: Structure, Function, and Genetics 18:

309–317.
15. Fodor A, Aldrich R (2004) Influence of conservation on calculations of amino

acid covariance in multiple sequence alignments. Proteins: Structure, Function,
and Bioinformatics 56: 211–221.

16. Finn R, Tate J, Mistry J, Coggill P, Sammut S, et al. (2007) The pfam protein

families database. Nucleic Acids Research. pp 1–8.
17. Fatakia SN, Costanzi S, Chow CC, Louis M (2009) Computing highly correlated

positions using mutual information and graph theory for g protein-coupled
receptors. PLoS ONE 4: e4681.

18. Skerker JM, Perchuk BS, Siryaporn A, Lubin EA, Ashenberg O, et al. (2008)

Rewiring the specificity of two-component signal transduction systems. Cell 133:
1043–1054.

19. Huettel S, Song A, McCarthy G (2004) Functional Magnetic Resonance
Imaging. Sunderland, MA, USA: Sinauer. 510 p.

20. Friston K, Frith C, Liddle P, Frackowiak R (1991) Comparing functional (PET)
images: The assessment of significant change. Journal of Cerbral Blood Flow and

Metabolism 11: 690–699.

21. Worsley K, Evans A, Strother S, Tyler J (1992) A three-dimensional statistical
analysis for rCBF activation studies in human brain. Journal of Cerebral Blood

Flow and Metabolism 12: 900–918.
22. Efron B, Tibshirani RJ (1998) An Introduction to the Bootstrap. CRC Press

LLC. 456 p.

23. Strother S, Lange N, Anderson J, Schaper K, Rehm K, et al. (1997) Activation
pattern reproducibility: measuring the effects of group size and data analysis

models. Human Brain Mapping 5: 312–316.

24. Strother S, Anderson J, Hansen L, Kjems U, Kustra R, et al. (2002) The

quantitative evaluation of functional neuroimaging experiments: the NPAIRS
data analysis framework. Neuroimage 15: 747–771.

25. Strother S, LaConte S, Hansen L, Anderson J, Zhang J, et al. (2004) Optimizing
the fMRI data-processing pipeline using prediction and reproducibility perfor-

mance metrics: I. A preliminary group analysis. Neuroimage 23: S196–S207.

26. MacKay DJC (2003) Information Theory, Inference, and Learning Algorithms.
Cambridge University Press. 550 p.

27. Cover TM, Thomas JA (2006) Elements of Information Theory. John Wiley &
Sons, 2nd edition. 776 p.

28. Quevillon-Cheruel S, Leulliot N, Meyer P, Graille M, Bremang M, et al. (2004)
Crystal structure of the bifunctional chorismate synthase from saccharomyces

cerevisiae. Journal of Biological Chemistry 279: 619–625.

29. Warne T, Serrano-Vega M, Baker J, Moukhametzianov R, Edwards P, et al.
(2008) Structure of a beta1-adrenergic g-protein-coupled receptor. Nature 454:

486–492.
30. Long J, Tochio H, Wang P, Fan J, Sala C, et al. (2003) Supramodular structure

and synergistic target binding of the n-terminal tandem pdz domains of psd-95.

Journal of Molecular Biology 327: 203–214.
31. Chi CN, Elfström L, Shi Y, Snäll T, Engström Å, et al. (2008) Reassessing a
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