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Abstract

Microstructure and Modeling of Granular Materials

Gregg Lois

Granular materials are ubiquitous in natural and technological settings, but a
predictive theory linking the microscopic grain-interactions with observed behav-
ior remains elusive. Of particular interest are theories of constitutive relations,
which challenge conventional models of statistical physics due to the athermal and
amorphous nature of granular media. Here we explore properties of granular mate-
rials undergoing shear deformation, emphasizing how macroscopic properties arise
from the microscopic interactions between grains. This is carried out using numer-
ical simulations, which confirm that there is indeed a bulk rheology, independent,
of boundary conditions, that can be modeled using only the characteristics of
the granular packing. In these simulations we measure spatial force correlations
to demonstrate that long-range correlation exists and arises from clusters of si-
multaneously contacting grains in dense regimes. The size of the clusters defines
an important microscopic length-scale £ that diverges at the jamming transition,
where the material first acquires a yield stress, and reveals the nature of grain-

interactions. For small £ grains interact solely through binary collisions whereas
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for large & we observe that clusters of simultaneous contacts, along with complex
force-chain networks, spontaneously emerge. This network transition occurs at a
well-defined value of £ and is accompanied by a dramatic transformation in the
distribution of contact forces between grains that has been observed in previous
simulations and experiments.

These basic results regarding the microscopic grain-interactions are generic to
granular media and have important consequences for constitutive modeling. In
particular we show that kinetic theories, which assume binary collisions, only ap-
ply below the network transition. In this regime we show that Enskog kinetic
theory agrees with data from the simulations. We then proceed to introduce
two analytical theories that use the observed microscopic grain-interactions to
make predictions. First we propose a new constitutive model- the Force-Network
model— that quantitatively predicts constitutive relations using properties of the
force-networks for all values of £&. Second we demonstrate that STZ theory, which
predicts constitutive relations by assuming certain dynamical correlations in amor-
phous materials, is in agreement with both the microscopic motion of grains and

measured constitutive relations for large €.
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Preface

A great deal of progress has been made in statistical physics since Boltzmann first
considered the properties of non-interacting gases over a century ago. Boltzmann’s
methods have been refined to include interactions between molecules in dense
systems, and generic procedures have been developed to calculate the likelihood
of microscopic configurations. These methods allow for a multitude of predictions
that have been tested extensively and hold to a high degree of precision.

Equally impressive are more recent advances in understanding the nature of
phase transitions. For a large class of materials that undergo a phase transi-
tion, e.g. when water changes from a liquid to a solid, a global symmetry is
spontaneously formed and the amorphously arranged liquid phase is transformed
into a solid phase with long-range order. A deep understanding of this process
has been obtained using the renormalization group, where it is established that
magnified copies of the material become interchangeable at the transition point.
This approach predicts that many seemingly disparate phenomena have universal
properties near their respective transition points, as has been observed.

Despite these extraordinary triumphs, many discoveries remain to be made.

This can be appreciated by anyone who has ever walked along the beach on a



sunny day. When you take a step on the dry sand, there is the sensation that
the grains of sand move slightly, and eventually come to rest. Because the grains
ultimately support your weight, the sandpile is behaving like a solid, albeit with-
out long-range order. But if you make a sudden run for the water, the sand
under your feet gives way and begins to flow! This phenomenology— easily trans-
forming between solid-like and liquid-like behaviors without any ordering of the
constituent molecules— does not fit nicely into renormalization group theories of
phase transitions.

Moreover, because the grains of sand on the beach are large (compared to
typical molecules), their behavior is not affected by how hot it is outside. This
invalidates the assumptions used to formulate Boltzmann-like theories of statisti-
cal physics, which rely heavily on certain properties provided by temperature. In
the limit when temperature is turned off, the microscopic assumptions in these
theories must be revisited and new conceptions of statistical physics must be for-
mulated.

While the behavior of sand challenges current methods used to statistically
describe physical systems, it is not a singular example. Sand is one element in a
large class of systems called granular materials, which are very common and play
an important role in our everyday lives. For example, think of the last time you

were on the freeway and noticed, to your great dismay, that the density of cars
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was increasing. Soon enough the traffic slowed and, as cars kept streaming in, you
were stuck in a traffic jam. In this case the liquid-like phase of traffic flow was
replaced by the solid-like phase of traffic jam, all without any sudden ordering in
the positions of cars— only an increase in density. Also, because the motion of any
individual car is controlled by an independent driver, the homogenizing concept
of temperature does not apply. This results in a heterogeneous system that can be
described, at a fundamental level, using theories established for granular media.

Granular materials are also important in many natural and technological set-
tings. One example particularly relevant to life in Southern California is the
behavior of earthquake faults. Earthquakes occur when faults are forced to move
due to the steady continental drift. Although the forcing is steady, the motion
of the faults is not. The faults are stationary for long times (when there are no
earthquakes) and dynamic for short times (during an earthquake). This is a prime
example of a granular system where external forcing causes a transition between
solid-like behavior and liquid-like behavior. Upon careful examination of the fault
surfaces, it is observed that they are rough and separated by a layer of ground
rock. This has led to the hypothesis that a better understanding of granular media
could aid in predicting, or even controlling, earthquakes.

In addition to earthquakes, the study of granular materials can be used to gain

insight into other natural phenomena such as avalanches, the formation of galax-
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ies, and asteroid impacts. Also, techniques and ideas from research on granular
media have been applied to a variety of materials, such as glasses, foams, and
emulsions. From a technological vantage point, a better understanding of how
granular materials behave has a large impact in the pharmaceutical and chemical
industries where the handling of granular materials is commonplace. In fact, it
has been estimated that in the chemical industry, approximately one-half of the
products and at least three-quarters of the raw materials are in granular form.
Moreover, in 1994, the chemical industry in the United States alone invested over
$61 billion to transport, process, and handle granular media.

Current research into the properties of granular materials can be roughly di-
vided into three categories: the solid-like behavior, the liquid-like behavior, and
the transition between the two. Investigations into the solid-like behavior be-
gan in 1773 when Coulomb used granular piles to formulate his famous friction
law. Modern day research focuses on the heterogeneous nature of force trans-
mission and its connection to macroscopic theories of elasticity. Unlike other
solids that react to an external load by partitioning it homogeneously over all of
the constituent molecules, with any molecule experiencing only Gaussian fluctu-
ations about the mean, granular systems have heterogeneous force networks with
grain forces distributed exponentially. This means that a significant number of

grains experience forces much larger than the average. Microscopically, this is due
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Figure I: Force chains in a static granular pile, from Ref. [39]. Photoelastic
grains in the pile emit light depending on the magnitude of the force. Large forces
create thick red lines, while smaller forces create thin green lines. The granular
material, which is a collection of spheres, can also be seen in the pictures. (a) is a
configuration under gravity and (b) is a configuration under gravity with a point
force applied on the surface.

to force chains, which are linear excitations carrying larger than average forces.
These force chains can be visualized using photoelastic grains, as was originally
demonstrated by Dantu in 1957. A picture of the force chains in a static granular
pile are shown in Figure I.

Investigations of the fluid-like properties of granular media were pioneered
by Reynolds in 1885 with the observation that granular piles must first dilate
in order to shear. More recent studies concentrate on either very dilute or very
dense flows. In dilute regimes, researchers are interested in testing Boltzmann-
like kinetic theory approaches. This is complicated by dissipation that occurs

whenever grains interact. Because the dissipation occurs locally, grains that have
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Figure II: Left: The clustering instability due to inelastic collapse in a dilute
granular flow, from Ref. [66]. Each dot represents a particle, which tend to cluster.
Right: Force chains in a dense granular flow, from Ref. [40]. The system is
undergoing shear flow, with the top plane is forced to the right and the bottom
plane held stationary. Force chains emerge and intensify as shearing proceeds
from 1-4.

contacted have a higher probability to contact again. This leads to clustering
and eventually inelastic collapse, where an infinite number of collisions occur in a
finite amount of time. The presence of inelastic collapse has led many to suggest
that conventional hydrodynamics might not be applicable to granular materials.
In the dense flowing regime, force chains reemerge and there is a yield stress below
which flow ceases. A great deal of research is focused on understanding how these
properties affect the dynamics of the flow. Pictures of flowing granular materials,
which illustrate the clustering due to inelastic collapse in dilute flows and the

appearance of force chains in dense flows, are shown in Figure II.
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Finally, there is much interest in understanding the transition between solid-
like and liquid-like properties. Most of the research in this area is focused on
regimes very close to the transition, and borrows ideas from critical phenomena.
The “jamming” (or “rigidity”) transition has been shown to be accompanied by
power-law scalings and diverging length scales, as expected from a renormalization
group analysis. However, the absence of an order parameter makes the transition
novel. Theoretical investigations have focused on lattice models such as rigidity
percolation, k-core percolation, and kinetically constrained models in attempts to
explain the integral properties of the transition. These models fail to incorporate
the amorphous structure of granular materials, but do mimic features of the actual
transition.

In this thesis, the fluid-like properties of granular materials are investigated in
detail. Our analysis focuses on bridging the gap between the very dilute and/or
very dense systems that are generically studied. Some questions that we ask are:
(1) Does a hydrodynamic description hold for multiple flowing geometries? (2)
How and when does the emergence of force chains affect dynamics? (3) When is
kinetic theory viable? (4) If kinetic theory breaks down, what other theories can
we use to understand granular flows? (5) Can properties of flowing systems help

us understand jamming?
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Answers to these questions are pursued in this thesis, and the results bring us

closer to a statistical description of granular materials.
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Chapter 1

Introduction

Granular materials are collections of particles (grains) that only interact upon
contact and are too large to be affected by external temperature. This is a simple
system, devoid of long-range potentials or thermal fluctuations, that exhibits rich
behaviors [1, 2, 3, 4, 5, 6, 7]. The prototypical granular material is sand, and
initial interest in the field was primarily motivated by the need to predict the
creep motion of soils and their stability properties for geophysical and engineering
applications [8, 9, 10, 11, 12]. Recent research has focused on the more funda-
mental properties of granular media and how they are related to basic ideas of
non-equilibrium statistical physics [13, 14, 15, 16].

Two important features exhibited by all granular media are that ordinary tem-
perature is not relevant and interactions between grains dissipate energy. These
features serve as a definition of “granular media” and are motivated by the ex-

ample of sand. In this case the relevant energy scale associated with thermal



fluctuations is kg7', which should be compared with the energy needed to raise
a grain of sand one diameter in the Earth’s gravitational field. For typical val-
ues of the parameters, the grain energy scale is of order 10'? times that of the
temperature scale [3]. This means that, as a consequence of the size of the grains
(of order 1um or larger) it is always a good approximation to set 7' = 0. Also,
because grains are large, each grain contains many atoms or molecules and energy
will necessarily be lost due to heating or other effects in each interaction. Thus
the size of typical grains, combined with the large number of grains, necessitates a
statistical description in the limit of zero temperature. This statistical description
is further complicated by the energy dissipation mechanism, which is dependent
on interactions between grains and therefore heterogeneous.

The first difficulty that must be overcome to arrive at a statistical description
is the lack of thermal fluctuations. A central property enforced by thermal fluc-
tuations is that a statistical system will explore all of its possible configurations,
of the same energy, with equal probability. This ergodicity forms the foundation
of equilibrium statistical mechanics. For a granular material devoid of external
perturbation, the “equilibrium” state is one at which each grain is at rest and
there is no motion. This is obviously not an ergodic system and a particular grain
packing will not necessarily have properties consistent with an ensemble of grain

packings. Even in the case that external forcing is applied and the dynamics reach



a steady state where the dissipation at contacts is balanced by the energy injected
by external forcing, it is not obvious that ergodicity holds and it may even be
dependent on the type of forcing applied. These simple considerations call into
question the fundamental building block of equilibrium statistical mechanics and
suggest a re-evaluation of the non-equilibrium dynamical processes underlying the
macroscopic state of the material.

When considering non-equilibrium processes in granular media, it is necessary
to properly incorporate interactions between grains. These interactions arise at
contacts between grains, and are due to the visco-elastic response of the grains to
deformation [17]. The fundamental feature of grain interactions is that the interac-
tion energy increases rapidly with increasing deformation, producing a repulsive,
short-ranged, and non-conservative contact force. Nevertheless, the specifics of
the interactions are generally quite complicated and depend on many factors. A
central hypothesis is that much of the dynamical response can be understood
through generic contact-force models that produce a purely repulsive force upon
contact and provide a mechanism to dissipate energy [18]. The adjustable pa-
rameters are the dissipation per contact and the stiffness of the repulsion. The
properties of granular shear flows have been studied extensively using these mod-
els and it is found that the packing fraction and the grain stiffness play very

important roles [19].



If no external stress is applied to a granular material in the absence of gravity,
it quickly loses all of its kinetic energy in dissipative collisions, and each grain
comes to rest. If this occurs for a dilute system there will be no residual contacts
between any grains and the total energy of the system will be zero. However, if
the system is very dense, there will be contacts between grains in the relaxed state
and a non-zero residual energy will remain due to grain deformation.

If an external stress is then applied to the relaxed system, motion will only
occur if the shear stress is large enough to overcome the energy stored in the
contacts. The minimum stress needed to initiate motion is called the yield stress,
which is zero below a critical packing fraction v, and is an increasing function of
packing fraction above v, [20, 21, 22|.

For granular materials with v > v, previous research has demonstrated that
the stiffness of the grains plays an important role at all values of the shear rate [19].
This is because grains can not rearrange to a configuration with no contacts and
the system moves between different configurations with non-zero grain deforma-
tion. Shear flows with v > v, are characterized by slowly moving quasi-static
flows [23, 24|, where force balance is upheld at all times, and jamming [20, 21, 22|,
where there is no motion for stresses below the the yield stress.

Conversely, for granular media with v < v, it has been demonstrated that the

stiffness of the grains can always be taken large enough so that it plays no role
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Figure 1.1: Schematic of the phase diagram of granular shear flow as a function
of the packing fraction v. For inertial flows with v < v, there is a well defined
hard-sphere limit for infinitely stiff grains. For quasi-static flows with v > 1,
the stiffness always plays an important role. We will focus on inertial flows with
v < V.

in the dynamics [19, 25, 26]. This is because grains can always rearrange to find
free volume and the system moves between different configurations with very little
grain deformation. In this regime inertial terms are dominant and an invariance in
Newton’s equations [27] demonstrates that the dynamics are controlled exclusively
by the shear rate 7.

This phenomenology, pictured in Figure 1.1, serves as a starting point for the
ideas introduced here. A very intriguing aspect of the phase diagram is that, for
v < v, there is a well-defined rheology in the limit of infinite stiffness. This is the
limit where the grains are non-deformable and interact with a perfectly hard-core
repulsion. In this regime the non-equilibrium properties should depend only on
geometrical factors related to grain packing and the nature of energy dissipation.

Therefore, the inertial regime of granular flow will have generic properties that



can be understood using simple simulations and theoretical arguments. This is
the regime we focus on in this dissertation, which encompasses a wide range of
flows with packing fractions from zero to v,.

Previous modeling in the inertial regime has focused on kinetic theory ap-
proaches, generalized to include the dissipative interactions between perfectly rigid
grains [28, 29]. These approaches assume that the only relevant interactions are
binary collisions between grains. However, many have suggested that this as-
sumption should eventually break down as the density increases and long-lasting
contacts arise [30, 31, 32, 33]. Indeed, in the quasi-static and jammed regimes it is
observed that multi-grain contacts always occur [34, 35, 36] and contact forces are
transmitted through “force chain networks” formed by the topology of the contact
network [37, 18, 38, 39, 40, 41]. These force chains imply that multi-particle inter-
actions are taking place and, although the forces between contacting grains still
arise from grain deformation, the extent of the interactions is no longer localized
and depends on the properties of the force chains.

The nature of grain-grain interactions is a central question that we investigate
at length in this dissertation. In particular, we explore whether the microscopic
picture of binary collisions holds for all ¥ < v, or whether force chain networks

begin to grow earlier. We find that force chains emerge spontaneously at a pack-



ing fraction 1, < v, and this has important consequences that greatly affect
macroscopic observables.

The organization of the thesis is as follows. We begin in Chapter 2 by formu-
lating the basic equations of non-equilibrium transport, analogous to those from
hydrodynamics. The new feature in granular materials is that the equation for
the second moment of velocity has an additional term arising from energy dissi-
pation. In Chapter 3 we proceed to derive simple properties of granular flows in
the limit of perfectly rigid grains. These properties are a result of an invariance in
Newton’s equations and are related to the fact that interactions between perfectly
rigid grains do not introduce an independent time-scale.

We then proceed in Chapter 4 to introduce the numerical algorithm used to
simulate shear flows of perfectly rigid granular materials. This algorithm is used
to simulate simple shear flow and incline flow and we present some basic results
in each geometry. These results agree with previous simulations and experiments.
The central finding is that the macroscopic rheology in each of these shear flows,
far from the boundaries, is identical and only depends on grain properties.

In Chapter 5, we proceed to investigate the microscopic properties of the sim-
ulated shear flows. In particular we are interested in whether a theory based on
binary collisions between grains is microscopically justifiable. To carry out this

investigation we measure spatial force-force correlations between grains and find



long range correlation that decays exponentially. This defines a length-scale &,
which is equal to the size of transient force chain networks that emerge as the
density increases. We also show that contact forces are sensitive to the value of
&. This demonstrates that theories based on binary collisions are not applicable
beyond a certain packing fraction .. Associated with the network transition
between binary collisions and force networks at 1, is a signature in the contact
force distribution function that has been observed previously in both simulations
and experiments of granular flow. We end this chapter by presenting a phase
diagram of inertial granular flow in Figure 5.10, which quantitatively determines
when binary collisions occur and when transient networks emerge.

In Chapter 6 we explore the consequences of long range correlation on models
of granular shear flow. We begin by showing that kinetic theory is only applicable
for v < 1. In this range of packing fraction we test the predictions of kinetic
theory, without any fitting parameters, and find excellent agreement. Above 1,
new theories must be utilized to predict constitutive relations. We introduce a
new theory, the force-network model, which is able to predict constitutive rela-
tions for the stress tensor. These prediction, which contain no adjustable fitting
parameters, matches data from simulations over all values of v < v.. We end
this chapter by testing the predictions of the Shear Transformation Zone (STZ)

theory of amorphous solids. The STZ theory has found wide application in many



amorphous systems at low temperature and we find that both its microscopic
assumptions and macroscopic predictions are upheld for v > 1.
Finally, we end with a set of general conclusions and an outlook for the future

of research into flows of granular media.



Chapter 2

Conservation Equations for
Granular Media

A primary objective of non-equilibrium statistical mechanics is to provide
molecular justifications for macroscopic equations. In granular media, the molec-
ular or “microscopic” interactions between grains play a pivotal role, but there
are fundamental relations that hold at the macroscopic level simply due to con-
servation relations for the mass, momentum, and energy. These do not require
a detailed understanding of microscopic dynamics, although they do include un-
known terms, such as the stress tensor, that must be determined from microscopic
considerations. Here we review the conservation relations at the hydrodynamic
level, where we are interested in the macroscopic evolution of densities of the
extensive variables of mass, momentum and energy.

In granular media, mass and momentum are conserved, but energy is lost in

each grain interaction. An equation of motion for energy can still be written and

10



involves a dissipative term. For conservation of mass and momentum, the classical

forms hold [42]. Mass conservation reads:

ap 0
L= 2.1
at ara (IOVO!)’ ( )

where Greek superscripts represent components and repeated indices are summed.
The mass density is denoted as p(r,t) and the fluid streaming velocity has com-
ponents V,(r,t). These quantities are functions of the position r and time t.

Similarly, conservation of momentum reads:

0 0
a1 (pVa) = _8—7"5 [pVaV,B + Eaﬂ] ) (2.2)

which defines the stress tensor Y,s(r,t). If external forces exist, they must also
be included on the right hand side of this equation.

Energy is not conserved in granular materials. Therefore, it is not possible
to rely only on the conservation of energy to define a hydrodynamic equation.
However, the equation for the energy can be written as a “conservative” part plus

a dissipative part [43]. It takes the form:

0
ar (pe) = 87 [peva + Jo+ Eaﬂvﬂ] + Ca (2'3)

11



where e is the energy density, J, denotes the heat flux, and ( is the dissipative
term. Oftentimes for granular materials, the energy density is written in terms
of the “granular temperature” T, with e = pT'. This relates T to the mean
square of velocity in dilute regimes and we will adhere to this notation throughout.
Equation (2.3) predicts a steady state in granular materials where the energy
introduced from external perturbations exactly balances the energy lost through

interactions between grains.

2.1 The Microscopic Connection

The conservations equations introduce unknown parameters, such as the stress
tensor and the heat flux. Connecting these macroscopic fields to the microscopic
motion of individual grains in a microcanonical formulation is non-trivial and has
been the focus of recent studies [44, 45]. Ultimately, it is desirable to relate these
fields to the density, the average velocity and the granular temperature. This
is called constitutive modeling— if it is accomplished then Equations (2.1), (2.2),
and (2.3) become a closed set that can be uniquely solved for any system under
study. Here we will be interested in constitutive models of the stress tensor, and

will focus on determining its value based on microscopic considerations.
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In order to arrive at a microscopic equation for the stress tensor, it is neces-
sary to derive the conservation equations from a microscopic point of view. A
microcanonical form of conservation equations begins with the introduction of a
coarse-graining function G, which allows us to define a continuous density func-

tional:

p(r,t) = Zmi G(r—r'), (2.4)

where m’ and r! are the mass and position of grain ¢, and the sum is over all
grains in the material. At the microscopic level, mass transport corresponds to
the equation of motion for p. Taking a time derivative in Equation (2.4) and

performing elementary algebra leads to

0 0 » .
a_i = —aTZmzvfxg(r—r) (2.5)

i

where v* is the velocity of grain i. This equation, combined with Equation (2.1)

defines the momentum density

p(r, t)Va(r,t) = ;) miv G(r — ). (2.6)

In an analogous way, the hydrodynamic equation for momentum flux can be

determined by taking the time derivative of the momentum density. The exact
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microscopic expression for the stress tensor is then determined by rewriting the
resulting expression in terms of a divergence. This process is strictly algebraic

and does not require any assumptions regarding the inter-particle forces [44]. It

yields:
N L . 1 X ot . g
Eaﬂ(rat)=2g(r—r‘)mz(v;—Va)(vzﬁ—Vﬂ)+§{Z} toFé]/O G(r—r'+s0")ds,
i= i,j}=0

(2.7)
where the sum is over all N, contacts between grains, %/ = r' — 1/, and F is the
contact force between grains ¢ and j.

Equation (2.7) is a formulation of the stress tensor from a microscopic point
of view and it gives information on how the stress tensor is related to interactions
between grains. The first term in Equation (2.7) represents how the velocity
fluctuations of individual particles creates stress, and the second term gives the
contribution from inter-grain forces. We will be most interested in the second
term, which is often called the static contribution to the stress tensor and is
denoted by

1 Nc

o (T t)—§ Z7F / (r —r' 4 sa¥) ds. (2.8)
{i.5}=1

The static stress is very sensitive to the value of inter-grain forces and is the dom-
inant term of Equation (2.7) for dense granular flows where interactions between

grains always occur [27]. In the remaining chapters we will explore theories that
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predict the stress tensor in granular flows, using both numerical simulation and
theoretical arguments. This requires a deeper understanding of the interactions
between grains. To this end, we will focus on the properties of perfectly rigid

grains, which we explore in the next chapter.
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Chapter 3

Properties of Perfectly Rigid
Grains

In the previous chapter we presented a derivation of the hydrodynamic equa-
tions from a microscopic point of view. The form of these equations is generic to
granular media in the inertial regime, regardless of the external forcing or the in-
teractions between grains. They do, however, contain unknown terms, such as the
stress tensor, that depend on forces between interacting grains. In order to form
a closed set of equations for the hydrodynamic variables of mass density, momen-
tum density, and granular temperature, it is necessary to understand how forces
arise between grains and how these forces can be determined from the hydrody-
namic variables. In this chapter we discuss the relevant features of the grain-grain
interaction for dry granular flows in the inertial regime. We present arguments
that grain interactions are controlled exclusively by the hard-core repulsion. In

this case, experimentally verified scaling properties of constitutive relations can
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be derived using a fundamental invariance of Newton’s equations. Therefore, the
properties of perfectly rigid grains are of utmost importance for determining the
dynamics of dry granular materials in the inertial regime.

When grains are dry-so that no water bridges induce attraction [46, 47|
and of size larger than the micrometer scale-so that no electrostatic interaction
intervenes—their interaction is purely repulsive. It results from the elastic defor-
mation of grains at contact and the dissipation of energy via friction and colli-
sions. The complexity of this interaction motivates an important question: which
properties of the grain-grain interaction contribute to any particular macroscopic
observation? In some instances, details of the grain-grain interaction seem criti-
cal: for example, the Hertzian repulsion [48] is essential to understand the acoustic
properties of granular materials in the quasi-static regime [49]. Numerical imple-
mentations of granular materials have thus relied on more or less elaborate models
of the grain-grain interaction [18, 50, 51].

The arguments in a recent study by Campbell [19] assess the importance of the
elastic (soft) part of the repulsive potential versus the limit where grains appear
as perfectly hard and do not allow deformation. Campbell presented a detailed
analysis of the different flow regimes obtained in a three dimensional simple shear
simulation of granular flows while varying the stiffness £ of the repulsion, the

shear rate 7, and the mass density ¢. He found that the dimensionless parameter
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T= ﬁ, where o is the grain diameter, dictates the character of the flow. This
quantity is directly related to a Mach number which involves the ratio of the shear
velocity o+ over the sound speed c¢,: M = o4/cy = 1/4/Y. The hard grain limit
corresponds to the regime where sound waves travel very fast compared to the
rate at which contact networks are destroyed by the shear flow. This is the limit
of very small Mach number, or small shear rates.

Campbell found that macroscopic properties do not depend on the Mach num-
ber for M < 10~2. For these values of M, the stiffness of the grains is large enough
so that it is effectively infinite. To compare this to a realistic granular material,
we note that the sound speed is of order 100m/s. If we assume a grain size of
order 1mm, the Mach number is expressible as M = 10~°s+. Therefore, in order
to be in the limit where grains behave as if they are perfectly stiff, it suffices

~1. Most experimental and natural

to restrict oneself to shear rates below 1000s
situations occur at shear rates far below this limiting value and we can conclude
that inertial flows of grains generally occur in the limit where the soft part of the
repulsion is entirely masked by the steric exclusion. To study these flows it is
sufficient to consider properties of perfectly hard grains. In the following sections

we explore how the mathematical limit of perfectly hard grains gives insight into

fundamental processes which are relevant to inertial flows.
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3.1 Equations of motion under rigid grain con-
ditions

The motion of N rigid grains in a D-dimensional granular material is deter-

mined by Newton’s equations for the positions r, angular orientations #°, mo-

menta p’ and angular velocities w':

dr’ pi dpi y

—_ = — == F” Fem ) 3.1

dt ~ mi’ dt ; + Heat (3.1)
do - dwt 1 o B
R — R'&Y x FY 3.2
T T T A (3:2)

where F,,; represents an external force such as gravity, F¥ represents a contact
force on grain i by grain j, & is the unit vector connecting the centers of grains
i and j, R' is the radius of grain 7, and I’ is the moment of inertia.

These equations must be complemented with a prescription for the contact
forces. In the hard grain limit these contact forces can be determined self-
consistently by the conditions that (i) there is no penetration between grains—a
force is instantaneously created upon contact to impede penetration and remains
non-zero until the contact is broken—and (ii) by the friction law which couples to

rotational degrees of freedom.
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Important properties of granular materials arise directly from an invariance of
the equations of motion (3.1, 3.2). We now spend some time studying these prop-
erties and assessing their consequences for macroscopic observations, in particular

Bagnold’s scaling.

3.2 Bagnold’s Scaling

The success of kinetic theory came in a large part from its ability to account for
the scaling between stress s and strain rate ¥ (s ~ 4?) first observed by Bagnold
in dense granular materials [52]. Bagnold justified this behavior with a simple
argument: the frequency of collisions and momentum change per collision are
each proportional to the shear rate and therefore the stress is proportional to the
square of the shear rate. Similar dimensional arguments are also a part of kinetic
theory and are closely related to the concept of granular temperature (see [29] for
a review). However, since these arguments are usually discussed in the framework
of kinetic theory, it is unclear why Bagnold’s scaling should hold in dense inertial
systems where grains may not interact solely through binary collisions.

This has led to a great deal of interest in the origin and existence of Bagnold’s
scaling for dense granular flows. On the one hand, Bagnold’s observations have

been criticized: they may have arisen from a secondary instability of the granular
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flow in his shear cell [53]. On the other hand, Bagnold’s scaling has been directly
observed by measuring shear stress and strain rate profiles in numerical simula-
tions of granular flows down inclines [25, 54, 55], and is found to be consistent with
experimental observations of the average flow rate in the same geometry [56]. The
idea that dimensional invariance would hold for dense flows and enforce Bagnold’s
scaling has recently emerged [57, 58|.

We wish to highlight the fact that, far from being reserved to “rapid” flows
where kinetic theory applies, this dimensional invariance is a profound property
of Newton’s equations for hard sphere systems. It holds in both the dense and
“rapid” flow regimes and does not require any of the assumptions of kinetic theory
to hold. To clarify this issue, we find it useful to characterize the invariance in
terms of phase space trajectories: this picture is well adapted to the case of dense
flows where grains undergo multi-body interactions.

Important properties of granular shear flows in the rigid grain limit can be
determined from a simple invariance in Newton’s equations [27]. This invariance
arises due to the absence of any fundamental time-scale in the interactions between
perfectly rigid grains. Namely, for a granular material free from external forces
with a constant shear rate, the time evolution will obey equations (3.1, 3.2) with

Fez‘t - 0
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If we now rescale the contact forces by a scalar value F¥ — F¥ /A and simul-

taneously rescale the time t — tv/A, then Newton’s equations are transformed to

read:
dq* pt dp! g
— Imew new __ FY 3.3
dt mt dt ; ’ (3.3)
do , dw? 1 o g
= = Unew — _ Y Righ x F, (3.4)

new?’ .
dt I 7

where pi.. = p'/VA and W, = w'/V/A. This form for Newton’s equations is
identical to (3.1) and (3.2) with new values for the momenta and angular velocities.

After rescaling the contact forces and time we see that the positions and angu-
lar orientations remain unchanged, while the velocities are changed in accordance
with the time rescaling. This implies that a movie of one granular flow where the
grains have initial velocities {p*, w'} will look exactly the same as another movie
where the initial velocities are doubled and the movie is played at half speed. The
only difference in the dynamics is that the contact forces measured in the second
movie would be four times larger than those in the first.

This invariance is a property of perfectly hard grains which must hold in the
inertial regime, even infinitesimally close to jamming. In an experiment, this scal-
ing breaks down only when it is no longer appropriate to model the experimental

system by perfectly hard grains. Relying on the arguments of Campbell intro-
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duced earlier [19], we can conclude that many experimental granular flows are in
the regime where it is appropriate to model the system by hard grains.

Let us also note that this invariance is not limited to translationally invariant
situations, like in the bulk of a granular flow or a biperiodic simulation cell. Indeed,
suppose that we study the motion of perfectly hard-grains sheared between two
confining walls taken themselves to be perfectly hard. Then again, a rescaling of
force and time scales leave the phase-space trajectories invariant. In other words,
changing the shear rate imposed via the walls leaves the velocity profile of the
confined granular medium-including possible boundary layers-invariant after the
appropriate rescaling. The forces in the whole system are rescaled accordingly.

The shear invariance in Newton’s equations for perfectly hard grains imme-
diately predicts a constitutive relation for the stress tensor. If, at any time, we
multiply the velocity of all the grains in a shear flow by a factor A, then the shear
rate  will also increase by a factor A. In this case, based on the invariance in
Newton’s equations, the forces between grains will all be increased by a factor of
A?. This means that the forces between grains scale like 2. Combining this with
Equation (2.7) immediately predicts that any component of the stress tensor is
proportional to 2.

Additionally, because + provides the only timescale in rigid granular shear

flows, the granular temperature T should also scale with 42. This implies that the
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quantities X,57 2 and T 2 are independent of shear rate and, in steady state,

should only depend on the packing fraction of the granular material.

3.3 What quasi-static limit?

For granular materials made of rigid grains, the invariance of Newton’s equa-
tions predicts that Bagnold’s scaling is the only possible constitutive relation.
This is in stark contrast to other amorphous systems where a quasi-static regime
is often observed and the stress tensor becomes independent of the shear rate.

In other amorphous systems such as low-temperature molecular glasses, dense
suspensions, and foams, quasi-static behavior comes about because energy dissi-
pation has a characteristic timescale. As the strain rate is lowered at constant
density, the strain rate eventually becomes low compared to the dissipation rate
and the flow reaches a state where kinetic energy becomes negligible compared to
other forms of energy. In this case, the material flow properties become indepen-
dent of strain rate and the dynamics enter the quasi-static regime.

The situation is quite different for granular materials, so long as they can be
modeled as perfectly hard grains, because the invariance in Newton’s equations

always guarantees that the rate of energy dissipation will scale with the strain
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rate. Therefore the terms entering Newton'’s equations always remain in the same
ratio, which is a function of density only.

The quasi-static limit is thus pathological for perfectly hard grains: when the
strain rate is scaled down, the system is always exploring the same trajectories in
phase space, but at a slower speed. Nevertheless, as we pointed out earlier, quasi-
static flow has been observed in granular media (see Figure 1.1). This implies
that the grain stiffness must play an important role above a critical density, as
has been verified in previous simulations [19].

The arguments presented above show that Bagnold’s scaling is a direct con-
sequence of interactions between perfectly rigid grains. Therefore the inertial
regime of granular flow, where Bagnold’s scaling is observed, can be studied by
assuming that grains are perfectly rigid. In the next chapter we introduce a nu-
merical algorithm that models granular flow of perfectly rigid grains and measure
the dependence of the stress tensor and granular temperature on various material

parameters.
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Chapter 4

Numerical Simulations of
Granular Shear Flow

In the previous chapter we investigated simple properties of perfectly rigid
grains and showed how Bagnold’s scaling is a direct result of the microscopic
dynamics in these systems. Although Bagnold’s scaling reveals the dynamical
dependence of the stress tensor and granular temperature, these quantities are
also sensitive to other properties of the granular material, such as the packing
fraction. In this chapter we introduce an algorithm that we use to simulate flows
of perfectly rigid grains and present many different macroscopic measurements of
the rheological properties of granular flow.

We do indeed observe that Bagnold’s scaling holds in all of the simulations that
we perform. We also observe strong dependence on the density of the material,
which is not explained by Bagnold’s scaling. As a prelude to the introduction

of theories to describe this dependence, we demonstrate in this chapter that the
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macroscopic observables we measure are independent of shearing geometry and
are fundamental properties of bulk granular flow.
In order to address these issues, we implement numerical simulations of gran-

ular materials in two different geometries:

e We implement simple shear flow in a cell with Lees-Edwards (LE) boundary
conditions. In this configuration, the density and the shear rate is prescribed
and the simulation cell is, by construction, translationally invariant. This
grants direct access to averaged quantities of the granular temperature and
stress tensor. Using this configuration we can characterize the steady state
relation between stresses, granular temperature and shear-rate and extract
numerically the parameters of a constitutive law for granular materials. A

screenshot of this shearing geometry is shown in Figure 4.1.

e We implement granular flow down an inclined plane made of stationary
grains. The simulation cell is periodic in the direction (x) parallel to the
plane and the flow is inhomogeneous in the perpendicular (y) direction. In
this configuration, the stresses are prescribed by the angle of the incline. We
perform z-averaged, y-dependent measurements of granular temperature,
velocity profiles, stress tensor, and shear-rate. Large heights of the granular

layer grant access to the bulk rheology of the flow. This permits us to check
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the existence of a well-define bulk rheology in the large height limit, and
to compare it with the measurements in simple shear. A picture of this

shearing geometry is shown in Figure 4.7.

In order to make a quantitative comparison in the two geometries, we use the
same material throughout: a two-dimensional polydisperse collection of constant
density grains with diameters chosen randomly from a flat distribution with min-
imum and maximum diameters given by o £ A, where 0 = 1.4 and A = 0.260.
The polydispersity restricts the material from crystallizing and imitates natural
granular flows where a small amount of polydispersity is always present.

The main conclusion of this chapter is that there is a unique bulk rheology, far
from boundaries, that can be modeled using only the properties of the granular

packing (see Figure 4.10).

4.1 The Contact Dynamics Algorithm

To simulate granular flow, we use the Contact Dynamics algorithm [59, 60,
61, 62, 63, 64]. This is a completely athermal and dynamical algorithm, where
the position and velocity of each grain is recorded and updated using Newton’s

equations.
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The Contact Dynamics algorithm was devised to treat the dynamics of col-
lections of perfectly rigid grains and can include the effects of friction between
grains. The position and velocity of each grain is calculated by numerically inte-
grating Newton’s equations using a constant time step dt in a Verlet time stepping
algorithm. In order to carry out this process, the Contact Dynamics algorithm
provides a method for determining the forces between interacting grains at each
time step. Whereas other simulation methods used for granular materials [63, 18]
determine contact forces based on assumed physical properties of the grains, the
Contact Dynamics algorithm determines the forces based on physical constraints
in the rigid grain limit.

For dry granular materials, contact forces arise due to deformation of the grains
upon contact and friction between grains. If we use & to denote the unit vector
connecting the centers of two contacting grains labeled 7 and j, then the deforma-
tion produces a normal force in the direction of 6% and the interplay of friction
and deformation produces a tangential for ce perpendicular to 8. These con-
tact forces are dissipative and depend sensitively on the velocities of the colliding
grains [65]. In the case of perfectly rigid grains, these physical mechanisms can be
simulated by simply providing constraints on the relative velocities of contacting

grains.
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The CD algorithm determines the forces arising from grain deformation by
assuming that grains are infinitely rigid and setting constraints on the total energy
dissipated in each contact. If two grains are in contact and have a relative velocity
denoted by v/l , then the algorithm determines a contact force such that the

relative velocity in the next time step v¥ is given by

o G o g
vi.g" = —ev'” .69 ; VI x &Y =ev' x &Y. (4.1)

In this way, the relative velocities are altered by restitution coefficients in the
normal direction (e) and tangential direction (e;). Friction is included by allowing
the grains to have a coefficient of friction u. If the ratio of the tangential to the
normal force exceeds y, then the grains are allowed to slip with a tangential force
equal to p times the normal force. Using these dynamical constraints arising from
energy dissipation and friction, contact forces can be determined at each time
step.

It is important to point out one important characteristic of the Contact Dy-
namics algorithm: since a constant time step dt is employed to integrate Newton’s
equations, more than one contact can occur in each time step. In this case, it is
assumed that all of the contacts occur simultaneously and the dynamical rules in

Equation (4.1), along with the frictional constraint, are applied to each contact.
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This produces a set of algebraic equations that might be coupled since a single
grain could have more than one contact. Therefore, the value of a specific contact
force depends not only on properties of the pair of contacting grains, but also
on the properties of other grains in the connected cluster. Physically, this corre-
sponds to the effects of contact forces propagating through a network of grains
much faster than contacts are created and/or destroyed. The CD algorithm ex-
plores the limit of infinitely rigid grains by assuming that this propagation occurs
instantaneously.

This property of multiple collisions is a very important aspect of granular flow
in the rigid grain limit. In the absence of such an interaction, when only binary
collisions are admitted, an inelastic collapse is observed where an infinite number
of collisions occurs in a finite amount of time [66, 67, 68]. This severely restricts
the regime of rigid grain flows attainable through simulation unless multi-grain

interactions are allowed, as they are in the Contact Dynamics algorithm.

4.2 Simple Shear Flow

We implement simple shear flow using Lees-Edwards (LE) boundary conditions
along with the SLLOD equations of motion. In this configuration, density and

shear rate are prescribed and other observables are measured. By virtue of the
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Figure 4.1: Screenshot of a simulation in the simple shear configuration. Each
grain has an average velocity in the x-direction given by y, where ¥ is the strain
rate. The center of the cell is defined as z =y = 0.

LE boundary conditions, the simulation cell is translationally invariant. Using
this configuration we can characterize the steady state relation between stresses,
granular temperature and strain-rate and extract numerically the parameters of
a constitutive law for granular materials. A screenshot of this shearing geometry

is shown in Figure 4.1.

4.2.1 Algorithmic Detalils

The simple shear simulations are performed using Lees-Edwards (LE) bound-

ary conditions, which allow for the shear deformation of a system by controlling
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the positions of the image cells [69]. In all of the simple shear simulations we
perform, we impose a constant strain rate ¥ so that a grain at position y is given
an average velocity of 4y in the z-direction. This requires that the image cells
be moving at a velocity ¥Y, where Y is the center vertical component of the cell
position. Due to this constraint, a grain that exits the top (bottom) of the compu-
tation cell re-enters at the bottom (top) with a different velocity and position in
the x-direction; a grain that exits the computation cell in the z-direction simply
re-enters with the same velocity and position, on the opposite side.

It was demonstrated in early implementations of LE boundary conditions that
when deformation is applied through the image cells, the information needs time
to propagate from the cell boundaries to its center. In order to ensure fast propa-
gation of this information and prevent the cell boundaries from making unphysical
contributions to the motion, it is necessary to modify Newton’s equations by in-
troducing so-called SLLOD terms. These terms can be understood as a “shear
bath”, with all particles in the cell being directly coupled to the overall deforma-
tion [70]. In practice, the SLLOD terms introduce a perturbation to the equations
of motion that gives each grain an average velocity consistent with simple shear
flow. If we separate the momentum p’ of each grain 7 into the average part m'yy‘®

and fluctuating part p’, so that p* = m'yy'® + p’, then the SLLOD equations
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read:

dI‘i f)Z “ /G oA i “ s f~F o
= @), =3 F7 2B 9)- (4.2)

The equation for the position r’ results from writing the momentum in terms
of an average and fluctuating part. The equation for p’ contains a new term
2¥(p’-9) which forces the shear flow. Since every grain in the computation cell is
acted upon by this mechanical force, the constant strain rate is imposed on all of
the grains simultaneously at the beginning of the simulation. This can be easily
appreciated by writing the equations of motion (4.2) in terms of just the position.

This yields

d’rt 1 y dy .
T ==Y P+ g). (4.3)
J

arr — mi
We see that Newton’s equation of motion is only altered by including a term
with the time derivative of the shear rate. Because we will only consider simple
shear flow simulations with a constant shear rate, the new term will be non-zero
just at the beginning of the simulation. At this time it will serve to set the initial
velocities of the grains such that p’ = m'4y‘®. After this initial intrusion, the new
term will always be zero and the shear flow will be upheld by the LE boundary
conditions. Furthermore it can be proven that, in the LE geometry, the SLLOD
equations give an exact representation of simple shear flow arbitrarily far from

equilibrium [42, 70].
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For a granular material with non-zero friction coefficient u, the equations of
motions must also incorporate rotations of the grains (for y = 0 the tangential
contact force is always zero and there is no rotation). It is expected that a SLLOD
term should arise in the equations of motion for the angular velocity since, in the
linear velocity profile indicative of simple shear flow, the top and bottom of every
grain should move with slightly different velocities. This will give each grain an
average rotation of 4/2 which must be incorporated in Equation (3.2) just as the
average velocity £(r’ - §) was incorporated in Equation (4.2). This leads to the

following equations in two dimensions:

AR B
2’

1 o -
R = _ &Y x Y 4.4
=0 + o IZ;RO’ x F. (4.4)

where &' denotes the fluctuating part of the angular velocity. Equations (4.2) and
(4.4) now give an exact representation of simple shear flow for a frictional granular
material arbitrarily far from equilibrium.

The primary interest of this procedure is that it permits us to simulate a
sheared granular material with a homogeneous shear rate. Experimental proce-
dures, e.g. in a Couette cell, do not guarantee that the strain rate is homogeneous:
the existence of walls induce a non-uniformity of the flow and possibly localiza-

tion of the deformation. This protocol grants direct access to the rheology of the
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granular material in a self-averaging situation. This is a starting point to the

understanding of more complicated flows.

4.2.2 Bulk Measurements

Here we are interested in bulk macroscopic properties of granular flows. In
particular we will concentrate on the stress tensor and granular temperature,
which depend sensitively on both the dynamics of individual grains and the contact
forces between interacting grains.

The granular temperature T is measured as an average over all grains of the

fluctuating part of the velocity. More precisely we have
. 1 . .
TN=) (v'-V)’+ 3 Y (R'W' — RQ)?, (4.5)

where IV is the total number of grains, V is the average velocity and (2 is the
average angular velocity. This definition takes into account both the rotational
and translational parts of the granular temperature.

Because we are only interested in bulk properties, the stress tensor from Equa-

tion (2.7) can be simplified using G = A~', where A is the total area of the
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two-dimensional computation cell. This yields

N ) 1 N o
SagA = m'(v], — Vo) (v — Vp) + 3 Y o¥FY, (4.6)
i=0 {i,j}=0

with F¥ representing the contact forces, and 0 = r — r/. The first sum runs
over all grains ¢ and the second sum runs over all contacts between grains.

The symmetric stress tensor has three independent scalar values in two di-
mensions. We will always express the stress tensor in terms of the pressure
P = (Zzz + Xyy)/2, the shear stress s = X, = ¥, and the first normal stress dif-
ference Ny = (X;,—X,,)/2p. Previous research [71, 27] has shown that Ny ~ 1072
We will therefore ignore this component of the stress tensor and concentrate on
the pressure and shear stress, which give the largest contribution.

We begin by demonstrating that Bagnold’s scaling, which we have argued
should hold exactly for perfectly hard grain flows, is upheld in our simple shear
simulations. In Figure 4.2 we show raw data of the normalized pressure py =2 as
function of shear strain (strain rate multiplied by time), at a packing fraction of
0.8 with no friction and at two different values of the shear rate.

According to the invariance in Newton’s equations, which predicts Bagnold’s
scaling, py~2 should be independent of 7, and this behavior is confirmed by the

measurements in Figure 4.2. Although the shear rates in the plots differ by a
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Figure 4.2: Raw data of the pressure p (in arbitrary units) as a function of total
shear for two frictionless granular materials with packing fraction 0.8. Data from
simulations with different shear rates v are shown. The top plot corresponds to
4 = 1072 and the bottom to ¥ = 102. The pressure is normalized by 4?2 which
collapses the two data sets on to one master curve (i.e. with this rescaling the
top and bottom traces appear essentially identical, up to numerical noise), as
predicted by the invariance for hard grain systems.

factor of 10*, the normalized pressure is virtually identical for both systems. In-
terestingly, not only do the steady state values show no shear rate dependence,
but the initial transient is virtually identical for both values of 7.

The invariance in Newton’s equations also predicts that sy 2 and T2 are
independent of 7. For all of the simulations we have carried out these predictions
from the invariance are upheld: although numerical noise often disrupts the per-
fect invariance for large values of shear strain, we see no change in the steady state
values of normalized pressure, shear stress, or granular temperature as the shear
rate is varied at constant density. These results are not surprising— the Contact

Dynamics algorithm is a method to simulate perfectly hard grains and the invari-
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ance in Newton’s equations only holds for perfectly hard grains— but they offer
assurance that the simulations are accurate.

The data in Figure 4.2 also ensures us that the time step we use is small enough.
From an algorithmic standpoint, scaling the strain rate amounts to a change is
the time step. The good scaling of this data ensures that our algorithm solves
the equations of hard-grains in a limit where the time step becomes irrelevant. It
indicates that the number of contacts per grain in our simulation is not simply an
artifact of the finite resolution of the Contact Dynamics methods.

For a granular simple shear flow characterized by its pressure p, shear stress s,
temperature 7', and strain rate 7, we can construct three independent invariant
and unitless quantities: s/p, ¥(R)/vT, and mT/p(R)?, where (R) and m are the
average grain radius and mass. In Figure 4.3 we show values of these three inde-
pendent invariant quantities as a function of shear strain for a frictionless granular
material at packing fraction of 0.8. For all quantities, steady flow is reached by a
shear of approximately 0.5, and we will subsequently provide stationary data by
time-averaging our measurements in the steady flow regime. We note from Fig-
ure 4.3 that the values of s/p and mT/p(R)? fluctuate much more than ¥(R)/v/T.
This is due to the fact that s and p depend on the forces between grains, which

are highly fluctuating in the hard grain limit.
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Figure 4.3: Invariant and dimensionless quantities s/p (top), ¥(R)/v/T (middle),
and mT/p(R)? (bottom), where (R) is the average grain radius and m the average
grain mass, as a function of shear strain for a frictionless granular material at
packing fraction 0.8.

The transients in Figure 4.3 are highly dependent on the initial configuration
of grains and we will not focus on their development here. Rather we will focus
on the steady state values of macroscopic variables. In Figure 4.4 we present the
steady state values of py~2/m, sy 2/m, T4 2/(R)?, and s/p in simple shear for
a range of high packing fraction systems that we have studied, at zero friction.
Although there is relatively little change in these quantities for small packing
fraction, for packing fractions larger that 0.75 there is a large increase in the
values of the stresses and granular temperature.

Both the shear stress and pressure are seen to diverge at a finite packing
fraction in Figure 4.4. This is because the free volume diminishes as the grain

packing increases and the geometry of the packing requires larger stresses in order

40



2 10° :
0 = T§°/(R)’
e=0, p=0 - s/p
1
10" | 10
10° | 10° 1
1 -1
10 ' ' ' ; : : : '
0.2 0.4 0.6 og 10 0.2 0.4 0.6 0.8
packing fraction packing fraction

Figure 4.4: Left: Steady state values of py~2/m and sy~2/m where m is the
average grain mass; Right Steady state values of T9~2/(R)? and s/p where (R)
is the average grain radius. Both plots are for granular flows with x =0 and e =0
as a function of packing fraction.

to maintain a constant shear rate. Since the granular temperature also begins to
diverge at large packing, a central question is whether the divergence in the stress
tensor is due to the granular temperature or the forces between grains.

The stress tensor is composed of two parts, a kinetic (or streaming) contri-
bution that arises from the granular temperature and a static contribution that
arises from forces between grains. Each of these components can be seen in Equa-
tion (4.5)— the first term in this equation is the streaming contribution and the
second is the static contribution.

As a simple test of whether kinetic effects on the stress tensor are large, we
compare the kinetic part of the pressure to the static part of the pressure. Both

the kinetic and static pressures are computed as one-half the trace of the stress
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Figure 4.5: The static pressure p* (circles) and the kinetic pressure p* (diamonds)

as a function of packing fraction for e = 0 and p = 0. The static pressure becomes
the dominant contribution to the pressure for large values of packing fraction.

tensor, but the kinetic pressure p* is determined by the first term in Equation (4.6)
whereas the static pressure p® is determined by the second term. In Figure 4.5 we
plot both the static and kinetic part of the pressure for a granular flow with e =0
and u = 0. We see that the static part of the pressure becomes larger than the
kinetic part for » > 0.4. This means that at large packing fraction, momentum
transfer via the stress tensor is dominated by contributions arising from inter-
grain forces. Although the exact crossover value of v depends on both e and u,
Figure 4.5 demonstrates that an understanding of inter-grain forces is necessary
to predict the stress tensor in dense granular flows and to reveal the origin of the
divergence at finite packing.

To this point, all the data we have presented has been for frictionless systems

with restitution e = 0. For other values of e and u, the data and conclusions are
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qualitatively the same, although there are some quantitative differences. This can
be appreciated easily by observing how the pressure depends on the restitution
coefficient. In Figure 4.6 we plot the static part of the pressure (one-half the trace
of the static stress tensor from Equation 2.8) as a function of packing fraction, for
many different values of e with u = 0. For large packing fractions the pressures
become independent of e. This is due to the fact that, at high packing fraction, the
dynamics is solely determined by geometric constraints and the exact amount of
energy dissipated in each collision is no longer important. At low values of packing
fraction the dynamics becomes less linked to geometric constraints and there is a
large variance with e. Although we do not show it here, as u is increased from
zero the large packing fraction limit curve moves slightly, but the same behavior

is observed for different values of e.

4.3 Incline Flow

In addition to simple shear flow, we implement granular flow down an inclined
plane made of stationary grains. This geometry is more realistic than the simple
shear case and has been the focus of many recent experiments [56, 72, 73, 74,
30, 75] and simulations [54, 25, 55]. Following previous simulation studies, our

simulation cell is periodic in the direction (z) parallel to the plane and the flow
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Figure 4.6: Static pressure, arising from forces between grains, as a function of
packing fraction for many different restitution coefficients e. We see that as the
packing fraction increases, the value of p® becomes independent of e. This data is
for 4 = 0, but similar behavior is seen for different values of p.

is inhomogeneous in the perpendicular (y) direction. In this configuration the
stresses are prescribed by the angle of the incline and we perform z-averaged,
y-dependent measurements of granular temperature, velocity profiles and strain-
rate. Large heights of the granular layer grant access to the bulk rheology of the
flow, which permits us to check the existence of a well-defined bulk rheology in
the large height limit, and to compare it with the measurements in simple shear.

A picture of this shearing geometry is shown in Figure 4.7.

4.3.1 Algorithmic Detalils

In this geometry, the Contact Dynamics algorithm is used in conjunction with

a set of static grains. The static grains make up the one dimensional incline wall
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Figure 4.7: Snapshot of a granular material simulation in the incline flow con-
figuration. Fixed grains (indicated by filled circles) create a stationary incline at
angle 6 on which the flowing grains are accumulated and allowed to flow. Gravity
drives the motion and is directed vertically downward.

that all of the two dimensional dynamic grains rest on and, while they do transmit
forces, they are required to be stationary at all times. The diameters of the static
grains are randomly chosen from the same distribution as the dynamic grains.
This is a flat distribution with minimum and maximum grain diameter o + A
where 0 = 1.4 and A = 0.260.

Flow is initiated by tilting the plane of static grains by an angle #. In agreement
with previous simulations [25] and experiments [56], we do not observe steady flow
unless 6 > 6., where the value of 6, depends on the grain distribution and the
amount of friction. In contrast to earlier studies, however, there is motion for
f < 6.. This is because the Contact Dynamics algorithm can only simulate grains

that are flowing and it is therefore impossible to create a perfectly jammed steady
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state. We identify the critical angle 6. by the angle below which the average
velocity fluctuates around zero.

Here we will concentrate on the flowing characteristics of perfectly rigid grains
down a perfectly rigid incline plane. Therefore we restrict our attention to the
steady state characteristics of flows with # > . and measure how the granular
temperature, packing fraction, and stress tensor depend on the height above the
plane (y) and the inclination angle (). To determine these profiles, we average
the quantities over all of the z-direction and over a height in the y-direction of 3
grains. We have conducted simulations with heights and widths ranging between
25 and 300 grain diameters and have used different averaging techniques to ensure

that our results do not depend on the size of the system or the averaging height.

4.3.2 Bulk Measurements

In Figure 4.8 we plot the packing fraction, average flow velocity down the
incline, granular temperature, shear stress, and pressure as a function of height
for the steady flow of a non-frictional granular material with # = 12°. The pressure
and shear stress are normalized by mg(R)™!, where m is the average mass, g is
the acceleration of gravity and (R) is the average grain radius. Similarly, the
average flow velocity is normalized by \/@ . These profiles are all in agreement

with previous simulations conducted using a different method [25] and including
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Figure 4.8: Profiles of packing fraction v, average velocity V,/1/g(R), granular

temperature T'/g(R), pressure p(R)?/mg, and shear stress s(R)?/mg as a function
of the height (y) in the pile, measured in grain diameters, for a non-frictional
granular material at a 12° incline. The acceleration from gravity is denoted g and
the average grain radius is (R).

friction. Indeed, when we include friction in the Contact Dynamics simulations,
the functional form of the profiles is the same, while only the coefficients change.

In the bulk of the flow, where the boundaries do not play a role, the packing
fraction is constant and the granular temperature is linear. The y-dependence of
the average flow velocity is very close to 33/2, consistent with previous studies [25].
Both the shear stress and pressure have a linear profile in steady state which can
be understood from momentum conservation. Because it is observed that there is

no average velocity in the y-direction, Equation 2.2 simplifies to read

0
= —3a Za s 4.
0 67‘5 [ ﬂ] Pg ( 7)
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where we have included the effects from gravity. Since the packing fraction is
observed to be relatively constant, p does not depend on the position in the

incline and therefore this equation can be integrated to yield

Yyy(y) = gp(h — y) cos b (4.8)

Yy (y) = gp(h — y) sin, (4.9)

where h is the total height of the incline layer. This argument shows concretely
that the shear stress must depend linearly on y, but because it does not determine
Yzz it does not prove that the pressure also must depend linearly on y. The fact
that the pressure does depend linearly on y shows that ¥,, must also depend
linearly on y.

Given the quantities 7', p, s, and <, Bagnold’s scaling requires that 7', p
and s all be proportional to /2. This implies that these four quantities produce
three invariant quantities, which can be written as ¥(R)//T, s/p, and mT /p(R)?.
These three invariant quantities should only depend on the packing fraction and
not on y. In Figure 4.9 we plot the three invariant quantities for the frictionless
flow with 8 = 12° and do indeed observe that the ratios are constant in the bulk
of the flow. This is surprising since the arguments regarding an invariance in

Newton’s equations only strictly applied to flows in the absence of gravity. For
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incline flow, gravity drives the motion, therefore we might expect Bagnold’s scaling
to break down.

However, the data in Figure 4.9 demonstrates that, in the bulk of the flow
down an incline, it is possible to view different layers of granular material as an
effective simple shear cell. Such a layer of granular material at height y responds
essentially as if it was confined in a simple shear cell, in the absence of body
forces, with sustained external stresses s(y) and p(y). Of course the invariance
in Newton’s equations, which holds exactly for the simple shear cell, is slightly
broken by the gravitational force field. However, deep in the bulk of the flow,
large confining stresses eventually dominate over the gravitational field. This
approximate invariance suffices to predict that Bagnold’s scaling must hold for
the bulk regions of incline flows and explains the numerical data of Silbert and
coworkers [25, 55].

Close to the bumpy grain boundary, the invariant quantities are not con-
stant and Bagnold’s scaling breaks down since the requirement that the station-
ary grains do not move introduces fictitious forces that disrupt the invariance.
Additionally, close to the free boundary Bagnold’s scaling breaks down because
the external force of gravity is dictating the character of the flow and the forces

from gravity are not small compared to the internal stresses.
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Figure 4.9: Profiles of three invariant ratios as a function of y for a frictionless
granular material at # = 12°. The invariance in Newton’s equations for hard
grains predicts that these ratios should be independent of y in the bulk of the
flow, as observed.

Given that the invariant ratios are constant in the bulk of the flow and only
depend on the packing fraction, it is now possible to compare the bulk rheology of
incline flow to the bulk rheology of simple shear flow. We explore this connection

in the following section.

4.4 A Consistent Bulk Rheology

There are four quantities of interest for shear flows— p, s, 4, and T— and these
lead to three independent invariant quantities ¥(R)/vT, s/p, and mT /p(R)?.

We observe in our simulations that all of these invariants are constant in the bulk
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of the incline flow. Therefore it is legitimate to compare these constant values
with the constant values obtained from simple shear simulations. In Figure 4.10
we plot the constant values of s/p, ¥(R)/v/T, and mT/p(R)? from bulk incline
flow and simple shear flow, as a function of packing fraction, for both a frictionless
system and a frictional system with ;1 = 0.4. To draw attention to the comparison
between incline and simple shear flows, we have only included the large packing
fraction data from the simple shear flow simulations. The fact that data from
different shear flows fall on the same curves is remarkable and suggests that one
theory should be able to describe the rheology of both simple shear and bulk
incline granular flow. It also suggests that the packing fraction is the only variable
determining the bulk rheology of steady state shear flow in the limit of perfectly
rigid grains.

The excellent agreement between the two sets of data challenges the belief that
boundary effects are always relevant in dense granular flow of rigid grains [76, 77,
58]. The data in Figure 4.10 supports a very conservative opinion that the motion
of the grains decorrelates beyond a finite length scale.

Because the the rheology of incline flows can be matched to the rheology of
simple shear flows, we will concentrate on simple shear flows from now on. This is
advantageous because the simple shear flow simulations are fast and the algorithm

we have developed ensures translational invariance.
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Figure 4.10: The values of s/p (top), ¥(R)/vT (middle), and mT/p(R)? (bot-
tom), where (R) is the average grain radius and m is the average grain mass,
plotted as a function of packing fraction. The left plots correspond to friction-
less grains and the right ones to grains with a friction coefficient © = 0.4. Data
from simple shear flow (circles) and flow down an incline (squares) match on the
same curves for both cases. This suggests that there is a bulk rheology that is
independent of the particular shearing geometry.
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Chapter 5

Microstructure of Granular Shear
Flow

In the previous chapter we introduced the algorithm used to simulate granu-
lar shear flow and presented data for the stress tensor and granular temperature.
These are macroscopic measurements that do not depend on the shearing geom-
etry, as long as the measurement is made far from boundaries in the bulk of the
flow. The numerically derived constitutive relations in Figure 4.10 are related to
the microscopic motion of grains and the contact forces between pairs of grains.

The observation of a unique bulk rheology fosters hope for a general theory of
granular flow that will hold in many different geometries. Such a theory should
provide constitutive relations, formulated from microscopic considerations and
based on a thorough examination of how forces arise on the length scale of indi-
vidual grains. This, combined with a proper handling of boundary conditions, will

allow predictions to be made for an arbitrary flowing geometry. A necessary first
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step in constructing these models is to understand the nature of contact forces in
granular materials.

At very low packing fraction it can safely be assumed that only binary col-
lisions occur. This is because interactions are rare and it is very improbable to
have simultaneous interactions between more than two grains. In this case, con-
tact forces can be determined from velocity distributions, and the constructs of
kinetic theory are particularly useful [28, 29]. However, as the packing fraction is
increased, theories based on binary collisions become problematic due to inelastic
collapse [66, 67, 68], where the energy loss that occurs in each collision causes
grains to cluster and eventually reach a state where an infinite number of binary
collisions occur in a finite amount of time. This leads to a dense regime [78, 79]
at large packing fractions where multi-grain contacts always occur [34, 35, 36]
and contact forces are observed to emanate through “force chains” formed by the
topology of the contact network [18, 37, 38, 39, 40, 41]. For these large pack-
ing fractions the material forms finite sized clusters of simultaneously interacting
grains and an analysis based on binary collisions is not useful.

Although the limits of dense and dilute systems are well understood, there
has only been limited attention given to how the grain-grain interactions in a
flowing granular material make the transition from being dominated by binary

collisions to forming coherent force chain networks [79]. In this chapter we will
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quantitatively measure the extent of the force chain networks to determine how

and when force chains emerge.

Figure 5.1: Steady state screenshots of sheared granular materials at the same
packing fraction of 0.79, but two different restitution coefficients: e = 0.92 (left)
and e = 0 (right). Grains involved in a collision during a small time period are
colored, with different colors denoting different contact networks. Interactions
tend to be binary for e = 0.92, whereas clusters clearly form for e = 0.

One of the most basic observations is that both the packing fraction and the
restitution coefficient affect the size of force chain networks in the material. In
Fig. 5.1 we display two representative screenshots from our simulations, in steady
state, for identical shear rate and packing fraction of v = 0.79, but different
restitution coefficients, e = 0.92 and e = 0. A small time interval is chosen
and grains that collide during this time interval are colored. Different colors
corresponding to separate contact networks. For e = 0.92 the interacting grains
are well spaced and tend to occur in pairs, whereas for e = 0 the interacting grains

tend to form large clusters. These clusters qualitatively indicate the emergence
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of persistent contacts for decreasing e. Similar behavior is seen when increasing
v for constant e.

The groups of simultaneously contacting grains that we observe are transient
objects, resulting from competition between shear-induced accumulation of new
grains and contact break-up due to ambient noise. If the snapshot in Figure 5.1
were taken at a later time, the characteristic size of the clusters would remain the

same, but the locations would change.

5.1 Quantifying Microstructure through Corre-

lation

Although the screenshots in Figure 5.1 offer easy visualization of the mi-
crostructure in granular flow, they are not quantitatively useful. In order to gain
a quantitative measure of the microstructure it is not enough to simply observe
which grains are in the same connected cluster, but it is also necessary to demon-
strate that any two grains in the connected cluster are correlated and affect one
another. Because the clusters form force chain networks, it is natural to define

the size of a cluster through correlation between the forces on the grains.
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In this spirit, we define the correlation function

L S FFIS(rt -1 — f)

c) = Rl
z‘]\il F*-F

(5.1)

In this equation, F? is the total vector force (sum of contact forces) experienced
by a grain i at position r’ and the sums are taken over all grains that have at least
one contact. The distance £ ranges over the entire system size and is not limited
to grains in direct contact. We take the average value of C(£) over at least 5000
time steps in steady state shear flow. A non-zero value of C(£) reveals that, on
the average, two grains separated by a distance £ have forces that are correlated.

For perfectly rigid granular materials, where there is only a repulsive inter-
action between grains at contact, C'(£) gives a quantitative measurement of the
average affect of force chains of length £ in the material. A non-zero value of
the correlation indicates that two grains a distance £ are connected through a
cluster of simultaneously contacting grains and the force from one grain is being
transmitted through the network to the other grain. It thereby establishes that
simultaneous contacts exist and that forces propagate through networks. Positive
values of the correlation correspond to situations where the total forces on each

grain tend to be aligned.
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Because we make the measurement of C'(£) while the material is in steady state
shear flow, the correlation does not reveal the presence of static structure. Instead,
because contacts between grains are being created and destroyed by the overall
flow, the correlation function gives information on the average size of dynamic
structures that are fluctuating in both space and time.

We will demonstrate that the correlation function depends on the vector dis-
tance £ = £f between pairs of grains, and that it decays exponentially with £. In
the following sections, we first investigate the dependence of C'(£) on the magni-
tude of £, thereby defining an isotropic correlation length £. Then we investigate
the full dependence of C'(£) and obtain the full functional form of £(6), which

depends on the angle # between pairs of grains.

5.1.1 Isotropic Correlation and the length-scale ¢

We begin by measuring the isotropic part of the correlation C(¢) in our two
dimensional simulations by averaging C(£) over all £. In Figure 5.2 we display
measurements of this isotropic correlation function C'(¢) for a frictionless material
with e = 0.25.

The logarithm of the magnitude of the correlations log |C(£)] is also plotted in
Figure 5.2. We observe that the magnitude of the correlations decreases exponen-

tially. This decay is complicated by a oscillating function that accounts for the
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Figure 5.2: Left: The force correlation function C(¢) for e = 0.25 and v = 0.81,
where /£ is the distance between grains and o is the average grain diameter. Right:
The logarithm of the magnitude log |C(¢)|, for packing fractions of v = 0.6, 0.77,
and 0.81, which displays the exponential decay of the correlations. The lines
correspond to the function e ¢/¢, where ¢ is determined from Equation (5.2) and
plotted in Figure 5.3.

sign of C'(¢). The form of this oscillating function is not universal and depends on
the exact value of density and restitution. Nevertheless, as a first approximation,
we can express the correlation function as C'(¢) ~ exp(—£¢/&), which introduces an
important length scale £&. From the data in Figure 5.2 we also see that this length
scale increases with packing fraction.

We have determined that the value of £ is well approximated by the equation

_otdeeC(e)

= acw) (5:2)

§
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In Figure 5.2 we plot exp(—£/£), where £ is determined for each density from
Equation (5.2) and we observe excellent agreement with the measured exponential
decays of C'(¥).

In Figure 5.3 we display measurements of &, determined from Equation (5.2),
for all of the frictionless granular flows we have simulated. The value of £ quantifies
the average extent of force chains in the system. We notice that £ is an increasing
function of density for each value of restitution. We also notice, in agreement
with Figure 5.1, that £ increases as e decreases. The inset of Figure 5.3 shows
a close-up of the large packing fraction data. The maximum packing fraction
we are able to simulate is vm., = 0.84, but we were not able to determine the
value of & at vy, for all values of restitution. This is because the extent of the
correlations becomes larger than the maximum system size of 10000 grains that
we can simulate. For the high values of packing fraction shown in the inset, we
conducted simulations for packing fractions in increments of 0.01. For e < 0.5
we reach a packing fraction where, if we increase the packing fraction by 0.01, &
is too large to be measured. The fast growth of the correlations at high packing
fraction suggests that & diverges at a finite density.

For small values of packing fraction, Figure 5.3 shows the value of £ approach-
ing a limiting value of 0.7850. This corresponds to the smallest correlation possi-

ble, which arises when the only interactions are binary collisions between grains.
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Figure 5.3: Main Figure: The mesoscopic length scale £ for frictionless granular
shear flows, normalized by the average radius o, plotted for a wide range of packing
fraction and restitution e. Inset: Closeup of the large packing fraction data.

For these small packing fractions, the sign of C'(¢) is exclusively negative and the
exponential decay is not observed. Indeed, in the case of a mono-disperse collec-
tion of grains where only binary collisions occur, we observe that C'(¢) is zero for
all values of ¢ except £ = 0. In the case of a poly-disperse collection of grains,
the form of C(¢) for dilute flows depends on the relative probabilities to have
binary interactions between grains of different sizes and exponential decay is not
observed since the correlation function equals zero for all values of ¢ larger than
the maximum grain diameter. Even though exponential decay is not observed in
the limiting case of binary collisions between grains, Equation (5.2) still provides a
useful measure of correlation length that matches the exponential decay at higher

densities.
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The limiting value of 0.785 is related to the probability to have a binary col-
lision between grains of different diameters and is equal to the correlation length
that would be expected in a perfectly elastic system. Therefore we will denote
the limiting value as &, and we find that its numerical value is related to the
distribution of grain sizes [79].

Exponential correlations and diverging £ are also observed for systems with
friction between grains. Adding friction introduces a non-zero tangential force at
contact that tends to increase geometrical frustration and make it more difficult
for grains to find free volume. Therefore, we would expect that the addition
of friction would actually increase £. As in Figure 5.2, we observe that C(¢)
decays exponentially in frictional systems and measurements of £ are displayed in
Figure 5.4 for e = 0 and three friction coefficients u. We indeed see that the value
of ¢ diverges faster for systems with friction. However, the correlation length is
not changed for small values of packing fraction. This is because clusters of grains
must first exist before friction can make an effect. Therefore the initial emergence
of the clusters is only related to the properties of normal forces.

The data in Figures 5.3 and 5.4 demonstrates that £ diverges at a finite packing
fraction v, that depends on the friction coefficient p, but not on the restitution
coefficient e. This divergence is related to the jamming transition [80] in granular

materials, where the shear modulus becomes non-zero and the system is able to
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Figure 5.4: The length scale £ for granular shear flows with friction coefficient
i and e = 0. Larger values of y correspond to larger £.

sustain a shear stress without yielding. In order to make the transition from a
flowing shear state to a jammed state, it is necessary that a correlation length
approach the size of the system, and diverge in the thermodynamic limit. This
is because force chains must percolate from the upper to lower shearing wall in
order to counteract the applied shearing force. The correlation length & quantifies
the notion of force chains and we expect that the observed divergence of £ is a
necessary condition for jamming.

However, there is no guarantee that the divergence of £ is also a sufficient
condition for jamming, since it is possible that force chains percolate long before
the system jams. However, both theories [81, 82] and simulations [20, 21, 22]
have found that percolation and jamming occur simultaneously, which suggests

that a granular system jams if, and only if, £ diverges. In this case, Figure 5.4
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implies that the jamming transition occurs at lower packing fraction as the friction
between grains increases, as has been observed elsewhere [22].

While the divergence of £ is related to the jamming transition, the initial
deviation of ¢ from its elastic value & is related to inelastic collapse [66, 67,
68]. Our results indicate that inelastic collapse is not an unphysical result of the
hard-grain model, but rather the precursor to multi-grain contacts in the dense
regime [78, 83, 79]. Because an infinite number of binary collisions occur as the
material begins its collapse, this allows for non-binary interactions to develop since
both the time between binary collisions and the time needed for a single binary

collision to occur are both equal to zero.

5.1.2 Anisotropic Correlation and the Angular Dependence
of ¢

We have also conducted measurements of the full vectorial dependence of C'(£).
In this case, we observe that the decay of the correlations can still be described by
an exponential, but the value of the correlation length depends on the orientation
£. In two dimensions this orientation can be quantified by the angle # between £
and the z-axis. In Figure 5.5 we display the angular dependence of £ for frictionless
flows with e = 0 and three different packing fractions. As expected, the average

value of £ increases with packing fraction.
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Figure 5.5: The angular dependence of the length scale £(f) for a frictionless
shear flow with e = 0 and three different packing fractions v. The orientation is
greatest along the compression axis of the shear flow.

The maximum value of the correlation length occurs at approximately the
same angle for each packing fraction in Figure 5.5. This trend is followed for
other packing fractions and restitution coefficients as well. In Figure 5.6 we plot
the angular dependence of the length scale divided by its average value, £()/¢.
We notice that this collapses the data for a large range of packing fractions and
restitution coefficients on to one curve. The collapse is not perfect, especially
along the dilational axis of the shear flow where the correlations are small. This
is due to the small number of collisions that occur on this axis, which makes
gathering statistics difficult.

The common collapsed curve for all of the data in Figure 5.6 shows that &
is anisotropic, which has also been observed in experiments [41]. The angular

dependence of £ can be written as a Fourier series, only including terms that
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Figure 5.6: The normalized angular dependence of the length scale, £(6)/¢ for
frictionless shear flows with different restitution coefficients and packing fractions.
The data is well characterized by Equation (5.3), plotted as a line.

are m-periodic. We find that, as is the case for other anisotropies in granular
flow [84, 85, 86, 87, 88], the functional form of £(6) is well characterized by the
first two terms in the Fourier series

£(6) = £ (1 — apsin 2[0 — 6y)), (5.3)

2T

where £ is the average value of the correlation length. The solid curve in Figure 5.6
is a fit to this equation, which sets the parameters as ay = 0.21 and 6y = 0.013.
The value of 0 is consistent with the axis of maximum compression for the data
we have gathered. This suggests that larger values of £ occur near § = 3n/4

because compression causes more grains to come into contact. Near § = 7/4,
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where £ is a minimum, dilation reduces the size of the length scale. However, we

have found no simple explanation for the value of ag.

5.2 The Effect of Microstructure on Contact Forces

In the previous section we presented measurements of a correlation length &
that diverges at the jamming transition and asymptotes to an elastic value & for
small packing. This length scale captures the decay of force correlations and is
related to the emergence of clusters of simultaneously contacting grains. In very
dilute systems only binary collisions are relevant, £ = &, and contact forces can
be determined only from the properties of the two colliding grains. However, as
the packing fraction is increased, & also increases and the contact force between
any two grains will depend on properties of the other grains in the cluster. This is
because, in the rigid grain limit, forces propagate through the network. Because
the growth of £ is closely related to the nature of the force propagation— binary
collisions or force networks— we expect the contact forces to depend on the value
of £&. A useful way to explore properties of contact forces is to measure the
contact force distribution function P(F'). This function encodes the statistics of
the contact forces: P(F)dF is proportional to the number of contact forces in the

range F' to F' + dF
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5.2.1 The Contribution of Binary Collisions

To make the connection between contact forces and long range spatial force
correlations explicit, we begin by demonstrating that the contact forces between
contacting pairs of grains can not be determined simply by assuming binary col-
lisions when ¢ is large. To illustrate this point, we compare the statistics of the
actual contact forces to the forces we would calculate if we assumed that only
binary collisions occurred. If we make the binary collision assumption, then the
dynamical rule in Equation (4.1), along with momentum conservation, determines
the normal impulse in each collision. Dividing this impulse by the algorithm time
step yields the average force that would arise over the time step dt. We label this
force Ff;i, where 7 and j represent the colliding grains and the label “bc” reminds
us that this force only applies to purely binary collisions. It is simple to show that

the value of the binary force is given by
FJ = (1+e)u’ [(v7 ") 67 /dt, (5.4)

where e is the normal restitution coefficient, y = mim?/(m* +m/) is the reduced
mass, v'* the pre-collisional velocity of grain 7, and &% is the unit vector connecting
the centers of grains ¢ and j. All of these terms can be measured directly from

simulations.
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Figure 5.7: The data points are P(f) for systems with e = 0.75 and growing val-
ues of £/&, where f is the contact force F' divided by the average value (F'). This
data is compared with the line, where the force is determined from Equation (5.4)
which assumes that only binary collisions occur. We have normalized both the to-
tal forces and binary collision forces in each plot by their average values. There is
excellent agreement for /& < 1.25. For larger values of the correlation, clusters
of interacting grains form and assuming binary collisions does not fit the data.
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In Figure 5.7 we plot measurements of the contact force distribution function
P(F) for six different values of restitution and packing fraction. In each figure
we compare P(F) with the statistics of the binary forces P(Fj.). If these two
functions are the same then contact forces are well approximated by only con-
sidering binary collisions; if the functions differ then we know that clusters of
contacting grains affect contact forces. We also indicate the value of /& for each
plot and immediately see that for small values of £/, the data for P(F') is well
fit by the line, which is a measurement of P(F,.). However, as £ increases, the
presence of force networks changes the nature of the contact forces and we can no
longer make accurate predictions by assuming that only binary collisions occur.
The value /&, ~ 1.25 serves as an upper bound for the regime where the bi-
nary collision assumption is reasonable. This behavior is not unique to flows with
e = 0.75, but occurs for all of the restitution coefficients and packing fractions we
have investigated, with and without friction.

This is not surprising since /&, > 1.25 comprises a region where force net-
works have formed and simultaneous contacts occur. In this regime, in order to
calculate the force between two grains, it is not sufficient to only consider the
properties of the two contacting grains. Rather, all of the grains connected in the
force network play an important role. This is because the two contacting grains

are being pushed together by the other grains in the cluster and the contact force is
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equal to the binary collision contribution from Equation (5.4) plus a contribution
from the cluster.

We conclude from Figure 5.7 that £/&, = 1.25 separates the region where only
binary collisions occur from the region where force networks begin to form and
affect contact forces. The techniques we used to determine this crossover can only
be used in simulations where the position, velocity, and force on every grain is
always known. However, we have also found a signature of the transition that can
(and has been) observed in experiments of granular flows. This signature relates

to the small force behavior of the contact force distribution function.

5.2.2 The Contact Force Probability Function P (F)

Comparing P(F') to P(F.) gave a simple criteria to view the transition from
the dilute regime, where all interactions between grains are binary, to the dense
regime, where force networks become prevalent. In this section we show that this
transition can be further appreciated by simply measuring P(F).

In Figure 5.8 we present data for the contact force distribution function P(F).
In particular, we plot log P(f) for many different values of the restitution coeffi-
cient and packing fraction, where f is equal to the normal contact force F' divided
by the average normal force (F'). All of these curves correspond to frictionless

materials, but we have observed that the statistics of the normal forces display
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Figure 5.8: Measurements of the contact force probability distribution function
P(f), where f is the value of the contact force divided by the average contact
force. The different curves have been offset so each curve is easy to see. Left
Data for v = 0.7 and different values of the restitution coefficient e. Right Data
for e = 0.75 and increasing values of packing fraction v. The curves in each plot
are also labeled by their associated value of £/&, and we observe that the peak
is present in P(f) only if £/& < 1.22.

the same behavior for frictional systems. Our measurements of P(f) have been
averaged over 5000 time steps in steady state shear flow, and the different curves
are vertically displaced in the figure so each can be clearly seen. Each curve is
labeled by the value of £/&; and we immediately see that the behavior at small
f depends on the value of £. For /&, < 1.25 there is a clear peak, whereas for
£/€q > 1.25, the peak disappears and the maximum occurs at f = 0.

This measurement once again defines a crossover at /& = 1.25. This is the
transition where the microscopic interactions change from being dominated by
binary collisions between grains to being dominated by clusters of grains, forming

force networks of size £/&;. When this network transition occurs, the peak dis-
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appears and the most likely force is no longer equal to the average force. This is
because grains have spontaneously formed into transient clusters and the great-
est number of contacts are simply rolling over each other which produces a very
small normal force. This moves the peak to f = 0 once the transition has fully
developed and the average force is not representative of most of the forces. Ad-
ditionally, as force-networks become long-ranged, the data shows that there is a
greater probability of large forces, which arise from a large number of grains in a
cluster compressing two contacting grains.

The signature of the transition evident in our measurements of P(f) has
been observed in other simulations and experiments, but has never been con-
nected to the formation of large scale structure. Simulations of granular hopper
flow [90, 91, 92], conducted using Event Driven simulations where only binary
collisions are allowed to occur, have reported that as the hopper aperture is re-
duced and the density of the packing increases, P(f) begins to lose its peak. This
is consistent with our results from Figure (5.8) and suggests that the correlation
length £ is relevant in more than just shear flows of granular media. Additionally,
experiments on hopper flow [93] have observed the same behavior in P(f), which
lends credibility to the result and suggests that it is not an artifact of the simula-
tion methods used here and in Refs. [90, 91], but rather a real effect in granular

flows.
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The results we have cited from hopper flow, and others [92], have been used
to challenge the belief that the formation of a peak in P(f) is a signature of
the jamming transition [94, 95]. In a wide variety of contexts, including incline
flow [95], quasi-static flow [38, 96], and jammed granular materials [97, 98, 99, 100]
it has been observed that P(f) exhibits a maximum at f = 0 (no peak) if the
system is flowing, while a peak at non-zero f forms as the systems jams. These
observations, coupled with similar results in Lennard-Jones glasses and foams [94],
have been used to bolster the claim that the formation of a peak in P(f) is a
generic characteristic of the jamming transition, and a necessary condition for the
appearance of a yield stress.

Our observations reveal that, in fact, there are two important transitions en-
coded in the small f behavior of P(f). First, at a low packing fraction, there
is the interaction transition where the interactions between grains change from
binary collisions to force networks. This occurs in the inertial flow regime and
is accompanied by a change in P(f) where the peak that was present for small
densities disappears and the maximum value of P(f) occurs at f = 0. Then, as
shown elsewhere, there is another transition at higher packing fraction where the
system develops a yield stress and the peak reappears in P(f).

In summary, we have measured contact force distribution in this section to

determine the effects of long-range correlation. We find that £ /&y = 1.25 separates
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the regime where only binary collisions occur from the regime where force networks
form. This observation allows us to split the inertial regime where hard-sphere
granular flows exist into two distinct regions. At low packing fraction there is a
“dilute regime” where binary collisions are the dominant microscopic interaction
and £/& < 1.25. At high packing fraction there is a “dense regime” where force
networks exist but do not percolate through the system. This dense regime is
characterized by clusters of interacting grains with an average extent /& in the
range of 1.25 < /&, < oo. For dilute flows where only binary collisions occur,
a peak is visible in P(f); as force networks begin to appear in the dense regime,

the peak disappears.
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Figure 5.9: The value of 1, as a function of restitution coefficient e. Below
pe(e) only binary collisions are relevant and above u,. force networks emerge.
We have included the approximate value of v, ~ 0.845.

The crossover at £/&; = 1.25 defines the transition between interactions dom-

inated by binary collisions and interactions dominated by force networks. There-
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fore, we use this value to defined vy (e), which is the value of the packing fraction
below which only binary collisions are relevant. This function is plotted in Fig-
ure 5.9 using the data for £ from Figure 5.3. This plot is for frictionless materials
i = 0, but increasing the value of u does not change the curve. This is because,
as we saw in Figure 5.4, the effects of friction to not take hold until £ is much
larger than 1.25&,.. Thus 1, is an important packing fraction for all values of
friction and we see that it is an increasing function of e. This is because larger e
produces less energy dissipation and restricts grain clustering. The data in Fig-
ure 5.9 implies that as e — 1 then »,, — 1, which is the packing fraction at
which the system jams. This means that as grains become perfectly elastic and
no energy is dissipated at contacts, then binary collisions describe the interactions

for all values of packing fraction in the inertial regime.

5.3 Phase Diagram of Granular Flow

In this chapter we have measured correlation between grain-forces in inertial
shear flows. This correlation is long ranged, decaying with a characteristic length
scale & that diverges at the jamming transition and asymptotes to an elastic value
&a in the dilute limit. By investigating the statistics of contact forces between

grains, we have shown that £/&, = 1.25 splits the inertial regime into dilute flows,
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Figure 5.10: Phase diagram of granular shear flow, plotted as a function of the
packing fraction v and the restitution coefficient e. For our system, we estimate
that v. &~ 0.845, which is represented by the vertical line on the plot. The value of
v, separates the inertial regime from the quasi-static regime and has been studied
elsewhere [19]. Here we focus on the inertial regime and have shown that there is
an important packing fraction v, where /& = 1.25. Our measured values of v,
depend on the restitution coefficient and are plotted on the phase diagram. For
v < Ve the flow is in the Dilute Inertial regime where microscopic interactions
consist of binary collisions; for v > 1, the flow is in the Dense Inertial regime
where long ranged force networks begin to form.

where all forces arise from binary collisions between grains, and dense flows, where
force chains begin to form. We denote v, as the packing fraction at which £/&y =
1.25 and we find that 1, depends on the restitution coefficient, but is always less
than the packing fraction v, at which the system jams. This phenomenology is
illustrated in the phase diagram of Figure 5.10.

The crossover from the dilute to dense regime is accompanied by a qualitative

change in the nature of contact forces between grains, measured using the contact
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force distribution function P(f). For shear flows in the dilute regime P(f) has
a peak at non-zero f, whereas for shear flows in the dense regime there is no
peak. This distinctive feature of P(f) has been observed in experiments [93] and

accompanies the emergence of force chain networks.
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Chapter 6

Modeling of Granular Shear Flow

The nature of the microscopic interaction between grains has important im-
plications for how modeling should be carried out. In the following sections we
explore different theories of granular flow. We begin with Kinetic Theory, which
rests on the assumption that only binary collisions are relevant, and we see how
this assumption limits its applicability. Next we present the Force-Network Model,
which makes predictions by using the observed length scale £ and other proper-
ties of the force networks that arise in the dense regime. We find that the force
network model makes accurate predictions in both the dilute and dense regimes.
Finally, we end with STZ theory, which models the dense regime by assuming
certain properties of the non-affine deformation that occurs in correlated clusters

of grains.
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6.1 Kinetic Theory

Kinetic theory has found tremendous success in describing the non-equilibrium
properties of thermal gases and liquids [101, 102]. Over the past twenty-five years,
a great deal of research has been devoted towards generalizing the constructs of
kinetic theory to incorporate granular flows, where energy is dissipated during
interactions between grains [28, 29]. In this section we will explore the predictions
of kinetic theory for granular flows.

The kinetic theory description of granular shear flows consisting of perfectly
rigid grains is based on the Boltzmann-Enskog kinetic equation for hard-sphere
interactions [103, 104, 105, 106, 107]. This is a non-linear equation for the one-
particle distribution function, which gives the probability to find a particle with a
certain position and velocity. Derivations of this equation require two hypotheses:
the binary collision assumption and the molecular chaos assumption.

The binary collision assumption stipulates that the only relevant interactions
are collisions between pairs of grains. It must be made at a very early stage
in the derivation of the pseudo-Liouville formalism, which forms the basis for
kinetic theory of hard spheres [108]. The binary collision assumption implies that

momentum transport is entirely carried out by collisions between pairs of grains:
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it therefore sets a microscopic expression for the collisional stress that can be
directly computed in numerical simulations, without any further assumption.

The molecular chaos assumption stipulates that the velocity dependence of the
two particle distribution function is determined simply by two factors of the one
particle distribution function. This is equivalent to the statement that there are
no pre-collisional velocity correlations in binary collisions between perfectly rigid
grains. This assumption is made after the binary collision assumption and offers
a means to approximate the collisional transport of momentum.

We begin by presenting an overview of the derivation of the momentum balance
equation using kinetic theory, which sets the form of the collisional stress tensor
and can be carried out by with only the binary collision assumption. The relevance
of the binary collision assumption can be tested using measures of the stress tensor
and, not surprisingly, breaks down when & becomes large. We then explore the
kinetic theory prediction for the collisional stress tensor and how it depends on

the assumption of molecular chaos.

6.1.1 Derivation of the Collisional Stress Tensor via the
Binary Collision Assumption

Kinetic theory aims to describe macroscopic properties based on the inter-

actions between pairs of grains. This requires a specification of the interaction
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potentials and, most importantly, the mechanism for energy dissipation. The dis-
sipation mechanism that has been most thoroughly studied is instantaneous colli-
sions with a constant restitution coefficient— this is often called hard-sphere kinetic
theory [108, 109] . In order to make progress using hard-sphere kinetic theory, it is
necessary to start by postulating that only binary collisions occur [108, 110]. This
yields a collision rule that relates the initial velocities of two interacting grains

{¥", v’} to their final velocities {v?, v/}

(v —v') .69 = —e(v? —v")-6Y. (6.1)

The normal coefficient of restitution e that appears in this equation regulates the
amount of energy dissipation: for e = 1 the system is elastic and no energy is
dissipated; as e is reduced to zero the energy dissipation scales like 1 — €2.
Although there are notable exceptions [107], most hard-sphere kinetic theories
of granular media focus on frictionless grains and therefore Equation (6.1) encodes
the only possible interaction between grains. Here we will focus on the frictionless
kinetic theories, which have received the most formal derivations. Our results,
especially regarding the range of applicability of kinetic theories, will not depend

sensitively on the frictional properties of the grains.
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Kinetic theory relies on the binary collision assumption and is therefore ex-
pected to break down as the density of the flow increases and long-lasting con-
tacts arise [30, 31, 32, 33]. Quantitative bounds over which the binary collision
assumption holds for systems of perfectly rigid grains have only begun to mate-
rialize [78, 83, 79]. The CD algorithm that we use to simulate granular flows is
well-suited for testing the relevance of the binary collision assumption and bound-
ing the dilute regime. Like hard-sphere kinetic theory, the CD algorithm for
frictionless grains employs a normal coefficient of restitution. However, the CD
algorithm does not assume that only binary collisions occur.

On the contrary, we observe that multi-grain correlated contacts do occur.
This is evident in the force correlation measurements of Chapter 5 where we
identified a growing correlation length . This length-scale should be related to
the breakdown of the binary collision assumption since it implies that grain forces
are correlated over large distances and do not just depend on nearest neighbors.
To see how this comes about, it is useful to make measurements of the static stress
tensor.

The static stress tensor in Equation (2.8) encodes contributions to the stress
arising from contact forces between grains. In the case that only binary collisions
are considered, the value of the static stress tensor is determined by Equation (2.8)

using the binary force from Equation (5.4).
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This yields the “collisional” stress tensor

1 ~if Al] _if 10
aﬂ__ Z Jo oI Fy, (6.2)
}:

l\D

which is the stress tensor that all hard-sphere kinetic theories attempt to model [83].

If all interactions occur through binary collisions between grains, the collisional
stress and the static stress will be identical. However, in the case that networks
of contacting grains form, the average contact force between any two grains will
be greater than what is expected from considering only binary collisions— this is
because the presence of additional contacts will require a larger force to prevent
penetration. In this case, the static stress tensor will be larger than the collisional
stress tensor and kinetic theory will not be applicable.

Comparing the static and collisional stress tensors in Equations (2.8) and (6.2)
provides an opportunity to test the basic assumption of binary collisions and
thereby determine when kinetic theory can be applied to hard-sphere granular
flows. In Figures 6.1, 6.2 and 6.3 we present measurements of the static and
collisional stress tensor for a wide range of restitution and packing. The stress

tensors are reported in terms of the pressure p and shear stress s, related to the
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stress tensors by

S C 1 S S 1 C C
{p ;pb } = {5(211 + EZZ)a 5(211)1 + 232)}, (6-3)

{Ssa sbc} = {Zib E]135} = {2311 ng . (64)

In the data of Figures 6.1, 6.2 and 6.3 both the collisional and static values of
the pressure and shear stress are normalized by common factors that are explained
later. For now, it is only important to notice that there is a regime where the
binary collision assumption holds and the normalized stress tensors are equal. The
bounds of this regime depend on the value of both the restitution coefficient and
the packing fraction. The data supports a conclusion that the dilute regime is
approached as density is reduced or restitution is increased.

Instead of characterizing the dilute regime in terms of restitution and packing,
it is advantageous to connect it to the length-scale £&. In Figures 6.1, 6.2 and
6.3 we have colored in the data points where the length scale from Figure 5.3
satisfies the condition £/&; > 1.25. For all of our data, this simple condition
on & nicely characterizes the dilute regime— if £/&, < 1.25 then the static stress
tensor is approximately equal to the collisional stress tensor and the predictions
of kinetic theory are relevant; if £/&; > 1.25 then interactions between networks

of grains begin to become important and kinetic theory modeling is not useful.
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The critical value of £/& = 1.25 is also where we measured that the contact force
distribution P(f) loses its peak (see Figure 5.8) and provides a quantitative bound
for the dilute regime as shown in Figure 5.10. Studying the discrepancy between
the collisional and static values of the stress tensor reveals the breakdown of the
binary collision assumption and shows that it is related to the growth of &, as
expected.

In addition to the discrepancy between the collisional and static stress tensors
in the dense regime, another interesting features of the data in Figures 6.1, 6.2
and 6.3 is the large density behavior of the collisional stress. For large packing,
sP¢ actually begins to decrease. This is expected since, as the density is increased
towards the jamming threshold where all velocities become zero, the collisional
stress tensor will reduce to zero because it is proportional to the average relative
velocity of contacting grains. It is also interesting to note that the collisional
shear stress begins to decrease before the collisional pressure. This is related to
the anisotropy of sheared granular materials and the fact that the correlation

length depends on the orientation of pairs of grains.
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Figure 6.1: Main Figures: Normalized values of the pressure (left) and shear
stress (right) for various restitution coefficients e — 0.92 and e = 0.75. The pres-
sures are normalized by p° from Equation (6.9) and the shear stresses are normal-
ized by 4n° from Equation (6.10) . The dilute regime is characterized by the range
of restitution and packing where the static and collisional values are equal. Filled
data points correspond to values of restitution and packing where £/&,; > 1.25-
this provides a simple quantitative condition for the boundary of the dilute regime.
Kinetic theory is expected to apply in the dilute regime and the prediction for the
pressure is good for all e. The prediction for the shear stress overestimates the
actual value, due to positive velocity correlations. Insets: Pre-collisional velocity
correlations as a function of packing fraction (defined in Equation (6.11).
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89



6.1.2 Predictions of Kinetic Theory and the Molecular
Chaos Assumption

We will now focus on the predictions of kinetic theory in the dilute regime
where £/&; < 1.25 and the binary collision assumption holds. In this regime we
will test the predictions of hard-sphere kinetic theory for both the pressure and
shear stress. These predictions have been recently obtained [103, 104, 105] using
the Chapman-Enskog expansion to solve the Enskog equation. The Enskog equa-
tion determines the time dependence of the one-particle probability distribution
function (pdf) in terms of collision events between grains. In the hard-sphere ap-
proximation the collision events only consist of binary interactions and the time
dependence of the one-particle pdf can therefore be expressed in terms of just the

two-particle pdf. For hard-sphere granular materials, Enskog’s equation reads
(at + vy Vl)f(l) (1‘1, Vi, t) = JE[I‘I, Vl], (65)
with Jg given by

Tete,va] = o/dvz/d&G(&-g)(&-g) (6.6)

X

[6_2f(2)(1'1a1'1 - U'aVI1aV12at) - f(Q)(rlarl + 0',V1,V2,t)]-
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In these equations, the time dependence of the one-particle pdf f(V) is related to a
collisional term that quantifies the probability to gain and lose contributions, at
a certain velocity vy, due to binary collisions. Binary collisions occur according
to Equation (6.1) and primed velocities represent pre-collisional values. © is the
step function and g = v; — va. For hard sphere granular flows, this form for
the Enskog equation can be formally derived, beginning with the binary collision
assumption and a derivation of the pseudo-Liouville equation [108, 110].

A prediction for the collisional stress tensor is obtained by multiplying both
sides of Equation (6.5) by mvy, where m is the particle mass, and integrating over
vy. This yields the transport equation for momentum density [103], from which

the stress tensor can be read off as

1
Thet = Zemo/dw/dvz/d&@(& +8)(6 - 8)°0a0p

X

1
/ AAfPr— (1 - Neo,r+ Ao, vy, Va, 1. (6.7)
0

This is the hard-sphere kinetic theory prediction for the collisional stress and it
depends on the two-particle pdf f®) since it is related to the force that arises
from binary collisions between grains.

In order to determine the stress tensor and solve the Enskog equation, it is

necessary to express f in terms of f(). This is done by assuming that there are
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no velocity correlations between grains that are about to collide, which yields

f[2] (1'1, Irs2,Vi, Vo, t) = X(I‘l, rz)f(l‘l, Vi, t)f(l‘z, Vo, t) (68)

and reduces the Enskog Equation (6.5) to a non-linear differential equation for
the one-particle pdf. The function y is interpreted as the equilibrium correlation
function at contact and depends on the local value of the density.

Once the Enskog equation has been expressed in terms of only the one-particle
pdf, it can be solved using the Chapman-Enskog expansion [101, 102], which
expands f() and Jg in gradients of the mass density, momentum density, and
energy density. This process has been carried out for granular shear flows to first
order in the gradients in Refs. [103, 104, 105]. When M is determined through
this expansion a prediction for the collisional stress tensor, correct through first
order in the gradients, can be made by combining Equations (6.8) and (6.7). The

results of this calculation for two-dimensional shear flows is [105]

ppred
5= Lrow (69)
gpred 4v 4

- 1 6.10
5 = (5ot e0f@), (6.10)

_ 3e-—-1 (1—e)(1 —2¢?)
fle) = —— +<1_81_17e+3062(1—6)>'

92



These predictions for the normalized shear stress and pressure depend only on the
restitution e, the packing fraction v, and the pair correlation function at contact
X- The normalizing factors are given by p® = nmT/2 and n° = m/o\/ﬂ,
where m is the grain mass, o the grain diameter, 7' the granular temperature,
and n the number density. All of these variables can be measured directly from
simulations and we can thereby test the predictions of hard-sphere kinetic theory
without using any fitting parameters. We use the average value of grain mass and
diameter for m and o, and determine y by tracking the number of collisions that
occur per second (which we denote by w) in equilibrium simulations where e = 1
and ¥ = 0 . Enskog theory relates x to w through the equation w = V26T xno.
This method for measuring x has been used in other recent studies [111].

We plot the normalized predictions from Equations (6.9) and (6.10) in Fig-
ures 6.1, 6.2 and 6.3, where they are compared to data for the stress tensor. Since
hard-sphere kinetic theory makes the binary collision assumption, these predic-
tions are only applicable to the dilute regime, which corresponds to the open
symbols where £/&, < 1.25. We immediately notice that the prediction for the
pressure matches the measured pressure in all of the dilute systems we have inves-
tigated. Considering that there are no adjustable parameters, this is a tremendous

success for kinetic theory.
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The prediction for the shear stress also matches the data in the dilute regime
quite well for large restitution. However, as the restitution becomes smaller, the
prediction for the shear stress begins to overestimate the measured value. This
overestimation is due to pre-collisional velocity correlations, a mechanism that
has been investigated in previous studies [112]. Because Equation (6.8) assumes
that there are no pre-collisional velocity correlations, if these correlations exist
then the average momentum transfered in each equation will change. If the pre-
collisional normal velocities of two grains tend to be aligned (anti-aligned) then
the average momentum transfered will decrease (increase), causing the kinetic
theory prediction to overestimate (underestimate) the measured values.

In the insets of Figures 6.1, 6.2 and 6.3, we display measurements of the pre-

collisional velocity correlations C, defined as

Cy={((v*-6Y) (v7- &), (6.11)

which are normalized by the granular temperature. This definition yields a pos-
itive value when pre-collisional grain velocities tend to be aligned, and for all
restitution coefficients we observe that the correlations are positive. In addition,
the magnitude of the discrepancy between measured and predicted shear stress is

roughly proportional to the size of the velocity correlations. These observations
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further supports the conclusion that the errors in the kinetic theory prediction are
due to the pre-collisional velocity correlations. It is, however, surprising that the
correlations affect the predicted value of the shear stress, but not the predicted
value of the pressure.

In summary, kinetic theory makes predictions based on the binary collision
assumption and the molecular chaos assumption. The stress tensor predicted by
hard-sphere kinetic theory is extremely accurate in the dilute regime and at high
restitution coefficients. As the restitution coefficient is reduced, the predictions
for the shear stress begin to fail due to the molecular chaos assumption in Equa-
tion (6.8). Additionally, as £/, becomes larger than 1.25 and the granular flow
approaches the dense regime, hard-sphere kinetic theory is unable to make predic-
tions since the binary collision assumption is no longer valid. These observations
demonstrate that the calculations that have been made [103, 104, 105] using the
present assumptions of hard-sphere kinetic theory are accurate, and that it is the
nature of the fundamental assumptions that are causing kinetic theory to fail and
need to be addressed.

Recent research [108, 113] has concentrated on refining the molecular chaos
assumption of Equation (6.8) within the constructs of kinetic theory to account
for velocity correlations, which have been measured extensively [112, 114, 115, 116,

117]. These studies are aimed at making better predictions in the dilute regime
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and our research shows that this is the correct approach to take. However, in the
dense regime, where £ becomes large and networks of interacting grains become
important, a kinetic theory approach is no longer relevant due to the breakdown
of its most fundamental assumption. In this case, new theories must be developed

that take force correlation and collective motion into account.

6.2 Force-Network Model

We have observed that the correlations which exist for £/&; > 1.25 invalidate
the use of the binary collision assumption and thereby seriously reduce the regime
of applicability of kinetic theory. The mechanism that effects the predictions for
the stress tensor is forces being propagated through networks that are larger than
two grains. This mechanism has been theoretically investigated previously [118,
119, 120, 121, 122, 123, 124, but the analysis has always assumed an infinite force-
network. In this section we will introduce a way to incorporate force propagation
through finite sized networks into constitutive models for the stress tensor.

Dense inertial flows, which are not quasi-static and can not be modeled by
assuming binary collisions between grains, have recently become an active field
of research [25, 26, 27]. Networks of force chains become prevalent in this regime

and their effects must be included in any successful model of quantities related
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to contact forces. In the hard-sphere limit, forces are propagated instantaneously
through contact networks and the value of the contact force between any pair
of grains depends on both the relative velocity of the pair and the values of the
other contact forces in the network, even those a long distance away. This force
transfer becomes the dominant contribution to the contact forces in the dense
inertial regime and is modeled below.

Due to the presence of force chain networks, the value of the static stress tensor
becomes larger than what is calculated based on binary collisions between grains.
By considering simple properties of the force networks, it is possible to derive
mean-field constitutive relations for the static stress tensor that hold for all £, but
are most relevant in the dense regime where /& > 1.

Equation (2.8) for the static stress tensor and Equation (6.2) for the collisional
stress are identical in form, but use different values for the contact force. The
static stress tensor is proportional to the total contact force F' experienced by a
pair of contacting grains while the collisional stress tensor is proportional to the
collisional force Fi.. The difference in the values of the stress tensors is therefore
related to these forces and the fact that F' > Fj. in the dense inertial regime.
To derive a constitutive relation for the static stress tensor we will determine, on

average, how the contact forces depend on properties of the force network.
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When force networks have formed, the contact force between a pair of grains
is larger than what is expected from considering only binary collisions. This is
because other grains in the network provide an effective pressure that forces the
pair together and increases the contact force. Mathematically, the contact force
F1J between grains I and J is equal to the sum of a collisional term, plus effects

from the network:

Zmax
FIV=F+ Y 7. (6.12)
=1

In this equation, the first term is the collisional force, defined in Equation (5.4),
which is determined locally from the relative normal velocities of the contacting
grains I and J. It is the force necessary to prevent penetration between a pair of
binary colliding grains in the absence of force networks. Once networks form this
non-penetration force will be larger, due to the influence of the other grains in the
network. This is encoded in the second term and arises from forces propagating
through paths in the force chain network, as pictured in Figure 6.4. We find it
convenient to split this effect into terms F;’ that represent contributions from
different path-lengths £. The total additional force needed to prevent penetration
between grains I and J is equal to the sum of the contributions F/7 over all

possible path-lengths ¢ < £,y in the force network.
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Figure 6.4: A network of contacting grains. The contact force between the
shaded grains I and J is determined by the local collisional force FL/ plus non-
local contributions from forces propagating through the network. It is convenient
to organize these non-local effects into contributions from different path-lengths.
On the top left is a path of size three where the local contact force between grains
D and FE is transferred through the network to grain /. On the top right is a path
of size two, and on the bottom right is a path of size one.
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Figure 6.4 illustrates how forces propagate and defines the notion of path-
length. For example, because grain D is in contact with grain E, this increases
the force between grains F' and F', which increases the force between grains F' and
I, which has the net effect of increasing the contact force between grains I and
J. We will call this a path of length three (¢ = 3) since the local force F;2F must
propagate through three grains to influence the contact between I and J.

The net effect of forces propagating through different path-lengths can be cal-
culated explicitly. We assume that the speed of wave propagation through the
network is infinitely fast, which is natural in the perfectly rigid grain limit. Phys-
ically, for grains with a large but finite stiffness, this corresponds to disturbances
propagating through the network much faster than contacts are created or de-
stroyed. We will begin by considering a path of length ¢ = 1, as illustrated in
Figure 6.4: because grain A is in contact with grain J, the local contact force
FA7 increases the value of F/ by an amount equal to F{A’ multiplied by the
cosine of the angle between the unit vectors connecting grains {A, J} and {I, J}.
If we assume that grain I has z; contacts labeled by m and grain J has z; con-
tacts labeled by n, then the effect of all paths of length one is to increase F!7 in

Equation (6.12) by an amount

21 2
IJ __ ~ml ~IJ pmI ~nJ alJrmnd
Fl= > ™. 6"FM}+ Y o&™.-67F, (6.13)
m=1;m#J n=1;n#l
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where 6? is the unit vector connecting the center of grains a and b. This expres-
sion includes all of the effects from paths of length one on each of the contacting
grains [ and J.

In an analogous manner, the path from grain B to C to J in Figure 6.4
comprises a path of length two (p = 2), which increases the value of F!/ due to
the local force between B and C. The total additional force between grains I and

J arising from paths of length two is given by

21 Zm
fQIJ — Z a,m[ . a,IJ Z a_mzm . &mIFgrézm
m=1;m#J ma=1l;ma#m
2J Zn
N ~ T N ~
+ > g™ . &1 > oemn. il G (6.14)
n=1n#l na=1;na#n

where once again grain [ has z; contacts labeled by m and grain J has z; contacts
labeled by n. To calculate the effect of paths of length two, we also take into
account the z,, contacts of grain m, labeled by ms, and the z, contacts of grain
n, labeled by ns.

The contribution to F7 from an arbitrary path-length ¢ can be determined by
continuing the above arguments, and the expressions become increasingly com-
plex. They depend on the coordination number z and are also sensitive to the
geometric arrangement of the force networks. One important constraint arises as

2 becomes large. If we consider the total force 7?7 that an arbitrary pair of con-

101



tacting grains I and J contribute to the network, this must always be less than
the actual collisional force F}'/. This is because a single contact can not push
harder than the value of its collisional force allows. This leads to the constraint

equation

IA
o)
oy

(6.15)

The above considerations allow for a determination of F//. It only remains to
estimate £ .y, which is the maximum path-length. In what follows we will assume
that no loops arise in the force chain networks. This allows us to connect the
maximum size of the force chains with the correlation length we have measured
previously: fpax = £/€q — 1. Loops would complicate the analysis since a single
contact force could propagate endlessly around a closed loop and there would be no
maximum path-length in the force networks. For a realistic granular material, the
assumption that no loops arise should be fairly accurate. Because the propagation
of forces through links in a force chain is always proportional to the dot product of
&’s, a force propagating around a closed loop would quickly become much smaller
than the other forces in the network and would not appreciably contribute to

Equation (6.12).
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Given the above analysis, it is possible to completely determine the stress ten-
sor based on properties of the force network and the collisional stresses. This is
carried out in the next subsection and the predictions are tested in the following
subsection. The main approximation of the model is that loops in the force net-
work are not relevant above a size /& — 1, which is the upper cut-off for force

network propagation.

6.2.1 Calculating the stress tensor

To make calculations using the force network model, it is useful to rewrite
the equations for F/7 in terms of integrals instead of sums. We will only present
the analysis for two-dimensional systems, although it can easily be generalized to
higher dimension. If we consider the average contact force between two grains
contacting at an angle 0, denoted F'(), then Equation (6.12) can be generalized
to

§/€a—1
F(0) = Fyc(9) + ; Fi(). (6.16)
This equates the average force between grains contacting at angle 6 to the average

collisional force at that angle, plus effects from the network. Then, generalizing
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Equations (6.13) and (6.14) to arbitrary path-length ¢ gives

¢ 0;_1+27/3

Fol0o) = [[(2 - 1) / d6; cos(8; — 0;1) Po(6; — 6;_1)C(6:) Foc (82). (6.17)

im1 0;i—1—2m/3

In this equation, each sum from the previous expressions has been replaced by
an integral over #;, which is the angular orientation of each link in the chain,
and each integral also contains a cosine that replaces the dot product. Note
that the bounds of each integral are arranged so that the grain at link ¢ is not
permitted to overlap the grain at link 2 — 1. In order to properly characterize the
probability to have a contact at 6;, we also introduce the probability functions C
and Pg. The function C(6;) gives the probability to have a single contact at angle
0; [84, 85, 86, 87, 88]. In the case that there are two (or more) contacts on a single
grain, which is necessary to form a chain, this probability must be modified [89].
The function C(6;) Pc(0; —6;—1) gives the conditional probability to have a contact
at 0;, provided that there already is a contact at 6;_;, and it is present in each
integral. Finally, the function Fy.(6,) provides the collisional force at the end of
the path and a factor of (2 — 1), where z is the average coordination number, is

included for each link.
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A slightly more useful form of Equation (6.17) can be obtained by changing

the integration variables to x; = 6; — ; ;. This results in the expression

£0) =T~ 1) / P s cos(w) P C(0 + éxj)Fbc(H Y w),  (618)

—27‘(’/3 ]:1

which encodes the average effect of all forces that propagate through a path of
length £ in the force-network on a contact with orientation 6. In addition to this
propagation based on the cosine of the angle between subsequent contacts, we
must also incorporate the constraint from Equation (6.15). This constraint can

be generalized as

7(0) = Fue(0)(z 1) [ T e Po(2) cos(@)C(0 + 3) < Foc0),  (6.19)

—27/3

and restricts a single contact at angle # to contribute at most a force of Fi.(#) to
the network.

Equations (6.18) and (6.19), combined with the basic force network Equa-
tion (6.16), comprise the integral form of the force network model. In order to
carry out the integrations, it is necessary to know the functional form of C(6)
and Fpc(#). These functions are m-periodic and can be written as Fourier Series,
keeping only terms that are also m-periodic. Previous research on the contact

probability [84, 85, 86, 87, 88] has shown that C(6) is well approximated by keep-
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Figure 6.5: Polar plots of measurements (data points) and fits (lines) of (a)
the contact probability distribution C(#) and (b) the collisional force distribution
Foc(0)/(Fy) for a granular material with e = 0 and v = 0.79. The lines are
fit to Equations (6.21) and the values of the Fourier components are plotted in
Figure 6.6.

ing only the lowest Fourier terms. We find that Fi.(6) has the same property. We

will therefore approximate

1
co) = %(1 + a.sin 20 + a., cos 26), (6.20)
Foe(0) = (Fue)(1+ aysin26 + a'; cos 26). (6.21)

In Figure 6.5 we plot data of these functions for a granular material with e = 0
and v = 0.79, along with a fit to the above equations. The fit is constructed
by computing the fabric tensor ¢, = (6,65) and force-fabric tensor Xg”ﬁ) =

1/(Fbe)(Fbec0a0s), as in Ref. [87]. We see from the plots that this first-order

approximation for the contact probability and collisional force is quite good.
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Figure 6.6: Values of the Fourier components from Equation (6.21).

We have measured C(f) and Fi.(0) for a wide range of restitution coefficients
and packing fractions. In Figure 6.6 we plot the value of the Fourier components
from Equations (6.20) and (6.21), which characterize the functional form in all
cases. These plots reveal that the anisotropy in both the contact probability
and collisional force depend sensitively on the value of the packing fraction and
restitution coefficient. The size of the components is always of order 10~! whereas
the magnitude of the next order coefficients in the Fourier Series is less than 1072
This is what allows us to truncate the series in Equations (6.20) and (6.21) at first

order and still get good agreement to the actual data, as in Figure 6.5.
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Now that we have a functional form for C'(#) and Fy,.(6), we can solve for F;(6)

to first order in the Fourier components {a., a.,ay, a}}. This gives

‘
Fo(0) = (Foo) (z—1)* (D 4+T¢(a s sin 20+a; cos 20)+> Uid (g, sin 20+a’. cos 26) ),
i) f c
i=1
(6.22)

where ® and ¥ are variables that depend on the geometry of the force networks

and are expressible as

(d,0) = / dzPo () cos(z){1, cos(2)}. (6.23)

We can also solve for the constraint in Equation (6.19). To lowest order in the

Fourier components, the constraint equation gives

=d(z—-1)< 1. (6.24)
This, combined with Equation (6.22), gives a closed formula for F;:

Fo(0) = (Foe) ( min[®(z — 1),1]" + ¥*(z — 1)"(as sin 20 + a; cos 26) (6.25)
£
+ Y Uz — 1)"min[®(z — 1), 1]"(a.sin 20 + a, cos 20) ),

=1

which is the complete solution to first order in {a., a, ay, a’;}.

108



This solution can now be used to arrive at a constitutive relation for the stress
tensor. The static stress tensor is given by Equation (2.8), which can be rewritten

in two-dimensions as

cos? 0 cosfsinf

5y = % [ d6C©)00)F (0) x , (6.26)
cosfsinf  sin?@
where o(f) is the average value of the distance between grains at contact for a
given angle. In our simulations we observe that o(f) has very little dependence
on 6 (of order less than 10~3) and we will therefore set o(f) = (o). We can also
use this same integral form to determine the collisional stress tensor by replacing
F(8) with Fyo(6).

To this point, we have mainly concentrated on the pressure and shear stress
to describe the stress tensor. The pressure is given by one-half the trace of Equa-
tion (6.26) and the shear stress by either off-diagonal element, but these two
quantities do not fully describe the stress tensor. There is a third independent
term and, without loss of generality, we will use ¥;;. Inserting the solution for
F(#) from Equations (6.16) and (6.25) into Equation (6.26), we arrive at the

following constitutive relations that fully describe the stress tensor:

P — pbc §/€a—1
=S e - 1.1, 627
=1
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+ a, Y Wz — 1) min[d(z - 1),1]*), (6.28)
s _ ybe §/€a—1 !
T S (minfe(z — 1)1 + “Q—fxpf(z ~ 1)
p =1
a 0 ) ) )
+ o 2 (e~ 1) min[®(z - 1), 1]¢) (6.29)

1=0

These equations relate the static pressure and static shear stress to the collisional

values and properties of the force networks.

6.2.2 Testing the predictions

Equations (6.27), (6.28) and (6.29) make predictions for all independent com-
ponents of the stress tensor. The left hand side of each equation gives the difference
between the static and collisional values of stress and is related in each case to
certain features of the force networks. These include the anisotropy in the contact
probability and collisional force {a.,da.,ay, a’f}, the size of the force networks as
quantified by the length scale /&g, the average coordination number z, and a
pair of geometric variables ® and W that are defined in Equation (6.23) and are
related to the distribution of contacts on a single grains. We have measured all

of these variables previously except for z, & and V.
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Figure 6.7: (a) The coordination number and (b) ® and ¥ for a wide variety of
packing fractions and restitution coefficients. The labels in (b) are the same as
in (a). Although z and ¥ depend sensitively on the value of v and e, the value of
® is always approximately 0.83.

111



In Figure 6.7 we plot the values of z, ® and ¥ as measured in our simulations.
We measure z by averaging over long-lived contacts, defined as pairs of contacting
grains that were also contacting in the previous time step. This ensures that only
the static backbone of the force network is considered and that transient contacts
do not give a coordination number that is artificially high. This measurement of
z does not depend on the time step, as is shown in the inset. We also measure &
and VU, according to Equation (6.23), by averaging over the same set of contacts.
We observe that ¥ < @ for all granular materials we have considered.

We have now measured every variable in the constitutive relations of Equa-
tions (6.27), (6.28) and (6.29). We can therefore test the validity of the predictions
without using any fitting parameters. Due to the complexity of the equations, it is
convenient to plot the right-hand-side of each equation versus the left-hand-side.
This is shown in Figure 6.8 using all of the data we have collected. Plotted in
this way, the data for each component of the stress tensor collapses onto the line
predicted by the force-network model over at least four decades. This collapse
is especially striking since the variables in the predictions tend to have a wide
variance as a function of restitution coefficient and packing fraction.

The collapse of all of our data onto the curves predicted by the Force-Network
model gives assurance that the basic notion of forces propagating through force

networks is valid. However, since the simulations presented here occur over a wide
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Figure 6.8: Tests of the constitutive relations from the force network model. (a)
Test of Equation (6.27). The left hand side (lhs) of the equation, pS;T’iM, is plotted
as a function of the right hand side (rhs). This collapses the data to the line
predicted by the model; (b) The left hand side of Equation (6.28), SS;,ibc, plotted
as a function of the right hand side, once again collapsing to the prediction; (c)
The left hand side of Equation (6.29), Eilp;z ?f, plotted as a function of the right
hand side. All of the plots have been constructed using simulation data for each

variable and no fitting parameters have been utilized.
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range of packing fractions and restitution coefficients, and because the dynamics
of granular materials are inherently disordered, it is necessary to measure many
features of the spontaneously forming force networks in order to fully determine
the stress tensor. This makes the constitutive relations look rather complex.
Nevertheless, the agreement in Figure 6.8 establishes that it is the properties
of the network, and not properties of the grains (such as density or restitution
coefficient), that set the value of the stress tensor and collapse the data, taken
over such a wide range of parameter space. Moreover the predictions of the Force-
Network model do not just predict the scaling of the stress tensor, but actually
predict its exact value.

Using the constitutive relations in Equations (6.27), (6.28) and (6.29), it is
also possible to obtain simple scalings near critical points. For example, if we
concentrate on the value of the stress tensor near the network transition at 1,
we see that X% ; oc 2. This is because, when ¢ /€a = 1 near w, the deviation
from the collisional stress is dominated by effects that only propagate over near-
est neighbors. Therefore the number of contacts serves as the scaling variable. In
contrast, near the jamming transition at v, the networks are saturated and all of
the collisional force from each contact is transferred to the network. In this case
the stress tensor should depend on the size of the networks, and the constitutive

relations indeed predict that 335 oc £. This scaling is especially interesting since
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it suggests that the size of the networks is the important scaling variable, which
might also control other features of the jamming transition. Indeed, once £ be-
comes large, it is the clusters of grains, and not individual grains, that serve as
the basic thermodynamic degrees of freedom.

It is important to remark here that the constitutive relations from the Force-
Network model have been derived in the limit of perfectly rigid grains. In the case
of a finite grain stiffness, there will be a finite contact time 7, and a finite speed
V.. at which forces can propagate through the network. This will set a maximum
correlation length v.7., since information can only be transferred between a pair
of grains if the network exists long enough to propagate it. This maximum cor-
relation length will be a monotonically increasing function of the grain stiffness.
If v.r. > &, then the stress tensor can be described by Equations (6.27), (6.28)
and (6.29). However, if v.7. < £, it is necessary to replace the length-scale £ with
v.T.. Because & diverges as the material approaches the jamming limit and v,7,
is always finite we expect that, for a given grain stiffness, there will be a critical
packing above which v,7. < £. This critical packing fraction will always be in the
inertial regime, less than v,, and very close to jamming the elasticity of grains will

begin to play an important role.
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6.3 STZ Theory

The Shear Transformation Zone (STZ) Theory of amorphous solids was pro-
posed in [127, 128, 129, 130, 131, 132] as a mean field model to account for the
behavior of dense amorphous materials at low temperature. The theory is moti-
vated by observations from simulations [133, 134, 135, 136] and experiments [137]
which suggest that plastic deformation in amorphous materials results from non-
affine rearrangements of small clusters of particles [138]. Additionally, Falk and
Langer were able to show that there exist different types of zones which present a
preferential response to different orientations of shear forces. They introduced the
densities of these zones as state variables to characterize the internal structure of
the molecular packing.

Central to the theory is the assumption that once an STZ undergoes an ele-
mentary rearrangement in a given direction it is unlikely that it can shear again in
the same direction, although it can easily shear in the reverse direction. Zones are
therefore two state systems, with the states corresponding to the zone orientation
being aligned (denoted —) or anti-aligned (denoted +) with the shear stress. A
rearrangement corresponds to a transition of a zone from a +-state into a F-state

and vice-versa. The plastic shear rate is given by the rate at which STZs respond
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to external stresses:

yox Riny —R.n_, (6.30)

where Ry are the stress-dependent probabilities that zones of 4 types are trans-
formed into one another and n4 is the total number of zones in either orientation.

In order to fully characterize the system, it is necessary postulate the dynamics
of the state variables ny. It has already been assumed that an STZ can change
orientation, which is controlled by the rate factor R.. However, it is also assumed
that a zone can be created or destroyed by sufficiently “stirring” (or agitating)

the system. These considerations set the dynamics of the state variables:

8ni

B = Rengz — Ring + w(l —(ny). (6.31)

The first two terms correspond to the transformation of STZs between their two
possible states. The last term accounts for the fact that STZs are renewed by the
overall macroscopic deformation: it contains a creation and destruction rate, both

proportional to the plastic work w of external forces per time unit.

6.3.1 Verification of the Microscopic Assumptions

Before applying STZ theory to granular materials, we check that the same

qualitative observations as in [127] can be performed in these systems. Namely
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that non-affine motion occurs in localized regions and that the positions of the
localized regions depends sensitively on the orientation of the shear. The first
observation motivates the choice of density of STZs as a state variable, and the
second observation shows that each STZ has an orientation and therefore only
responds to a certain orientation of shear stress.

These assumptions can be tested using a measure of the non-affinity of the
deformation of a cluster of a few molecules or grains, first introduced by Falk
and Langer in Ref. [127]. The grains undergoing non-affine rearrangement can
be determined by first calculating, for each grain, the local strain rate at time
t — At. Then, by measuring the difference D between the actual position at a
later time ¢ and the position predicted from the local strain rate at time t — At,
we can determine which grains have moved non-affinely in the time period At. In

practice, D is determined by minimizing

D(t, At) = 33 (rh () = r%(t) = D (6as + Fap)

i o« B
x[ri(t — At) - 1%(t — A)])” (6.32)

with respect to the shear rate ¥;;, where the subscripts oo and 8 are spatial coor-
dinates and the index 7 runs over all grains within two diameters of the reference

grain, which labeled by the superscript ¢ = 0. The minimum value of D, denoted
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D, is an approximation of the local deviation from affine displacement for the
reference grain in the time interval [t — At,¢]. If there is no non-affine motion,
then the motion of each individual grain should be completely determined by a
local shear rate and D = 0. If there is non-affine motion then D > 0.

We have applied this test for non-affine motion to granular materials in simple
shear to produce Figure 6.9. This figure is the counterpart of Figure 3 in [128]
and Figure 7 in [127], which were created from simulations of an amorphous
Lennard-Jones solid. Each picture has been created by shearing an identical initial
arrangement of grains in a certain direction. D is the local measure of non-affinity
obtained by comparison between the initial and final states. If D is larger than a
reference value, the particle is said to have moved non-affinely and colored black.

In Figure 6.9 part (a) the system is sheared from strains of 0 to 0.05, and in
(b) the system is sheared to from strains of 0.1 to 0.15. We notice that there is a
tendency for the regions of non-affine displacement to form clusters, and the size
of the resulting non-affine regions is about the same in both (a) and (b). In (c)
the system is sheared from strains of 0 to 0.15 and now the size of the non-affine
regions increases, suggesting many more fundamental rearrangements of STZs in
the larger time period. In (d) the system is sheared from strains of 0 to —0.05 (in
the opposite direction), starting from the same initial configuration as in (a). Once

again we observe that the non-affine regions tend to form clusters. However, in
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Figure 6.9: Screenshots of granular materials in steady state simple shear flow
with grains undergoing non-affine displacement colored black. In (a) the system
is sheared from 0 to 0.05, in (b) the system is sheared from .1 to .15, in (c) the
system is sheared from 0 to .15, and in (d) the system is sheared in the opposite
direction, from 0 to —.05.

comparing (a) and (d), we notice that the size of the non-affine regions is about the
same in the two figures, but the locations are different. If the regions undergoing
non-affine displacement did not have an orientation we would expect non-affine
motion to occur in the same location, regardless of the orientation of the stress.
However this is not the case and the data in Figure 6.9 suggests that the regions
that move non-affinely have an orientation. This is qualitative evidence that the

core assumptions of STZ theory are upheld in granular materials.

120



6.3.2 Quantitative Predictions

The STZ densities ny account for structural properties of a molecular or gran-
ular packing. They are thus expected to depend on the positions of grains, ori-
entations and distribution of forces, orientations of velocities, but not on the
overall amplitude of the forces or amplitude of velocities. For granular materials
of perfectly rigid grains, the functions that determine n, are determined using
the invariance in Newton’s equations, as outlined in [57, 27].

Since w is equal to the plastic work done on the system per unit time it should
be proportional to s, where s is the shear stress and 7 the shear rate. However,
in order to make w invariant, we normalize by pressure so that w = sj/p. As
for R, because of the invariance in Newton’s equations we can separate the rate
at which an STZ attempts to rearrange from the probability that an attempt
leads to a successful rearrangement. The attempt rate must be proportional to
VT which sets the microscopic event rate and the probability to rearrange is
written as an exponential activation factor of the invariant form e***/?. This
yields Ry o v/Texrs/p.

Combining the expressions for Ry and w with equations (6.30) and (6.31),

while making a change of variables from n4 to A xn_ —n, and A x n_ +n,,
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yields the following STZ equations for granular materials:

4 o VT (Asinh (ks/p) — A cosh (ks/p))
. X S
A x 7 (1 —C —A)
p
. .S
A x 4=(1—=A). (6.33)
p
A denotes the total density of zones and A measures the difference between the
number of zones in each orientation and is therefore related to the anisotropy of
the granular packing. x and ( are constants that do not depend on the macro-
scopic variables 7, T', s, or p. However we would expect these constants to depend
on properties of the grains such as shape, distributions of radii, restitution coeffi-
cients, friction coefficients, or other local static variables, including density.

The STZ equations determine the shear rate through the state variables A
and A, which encode the microscopic structure of the material. They present two
types of steady state solutions [127, 129, 57]: one branch of solutions represents
a jammed state ¥ = 0, and occurs when A/A = tanh (ks/p); the other branch of

solution represents the steady flow and occurs when A =1 and A = p/((s).
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An elementary analysis of the phase diagram of this dynamical system indi-

cates that the jammed state is stable if and only if

g‘; tanh (;ﬁ) <1 (6.34)

and the flowing state is stable otherwise. The limit of stability occurs at a critical

angle #*, which is the solution of
( tan * tanh (k tan %) = 1. (6.35)

0* is identified as the repose angle of the granular material, whose value is predicted
by STZ theory.

In the steady flowing regime 4 > 0 and STZ theory yields the constitutive
relation:

B i — P cosh (ks
T & (Smh (rs/p) — 7 cosh ( /p)>, (6.36)

where we have inserted a factor of the average grain radius (R) to match units. In
particular, in the limit when the ratio (R)/v/T vanishes, s/p converges towards
tan 0*. Therefore the STZ theory accommodates cases where the system jams and
there is a residual pressure and shear stress at zero shear rate. In this case, STZ

theory predicts that the shear stress will be proportional to the pressure.
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6.3.3 Numerical Tests

Using the shear flows that we have simulated with the CD algorithm, we
are able to test the flowing STZ constitutive relation in Equation (6.36). In
Figure 6.10 we plot s/p as a function of (R)%/v/T for large densities and many
different restitution coeflicients at zero friction in the simple shear flow geometry.

The line is the STZ prediction, which fits the data very well.

0.5r

0.4r

s/p

0.3r

0.2r

O'10 0.1 0.2 0.3 0.4 0.5 0.6 0.7

¥(R)/NT

Figure 6.10: Data from simple shear simulations with different restitution, plot-
ted along with the prediction from STZ theory, Equation (6.36). Filled data
points correspond to granular flows in the dilute regime where /&, < 1.25. The
prediction matches the data for all values of restitution coefficient where the flow
is in the dense regime, characterized by a large correlation length. STZ theory
is not expected to hold in the dilute regime, since it assumes that the motion of
nearby grains is correlated.

There are, however, many points (shaded) that do not match the STZ prediction—
these are simply the points where £/&; < 1.25. Because these values of density

and restitution coefficient produce flows that consist solely of binary collisions, we
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would not expect STZ theory to hold since the correlated motion that it assumes
is not present. The data in Figure 6.10 definitely supports the conclusion that
STZ theory makes good predictions for granular flows in the dense regime where
clusters of correlated grains exist.

In order to plot the STZ prediction, we determine the unknown coefficients in
Equation (6.36) by fitting the simple shear data at e = 0. This is the first time in
this manuscript that we have had to fit unknown coefficients, and it is important
to show that the coefficients are related just to properties of the grains and are
unrelated to the choice of shearing geometry. A simple test is to include the data
from incline flow, which covers a different range of s/p and T to see if the results
in Figure 6.10 can be extrapolated to different geometries.

In Figure 6.11 we plot data of s/p as a function of (R)/v/T for frictional
(u = 0.4) and non-frictional (u = 0) granular materials with e = 0 in both
simple shear flow and incline flow. In both cases, the line drawn through the data
is a fit to Equation (6.36), with the unknown coefficients determined by fitting
the simple shear data. We immediately notice that the coefficients depend on p

whereas Figure 6.10 shows that they do not depend on the restitution coefficient

From Figure 6.11 we conclude that the STZ constitutive equation is able to

match the simple shear data by choosing appropriate fitting coefficients. We also
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Figure 6.11: s/p plotted against 4(R)/+/T for frictional (filled symbols) and
non-frictional (open symbols) granular materials. The circles correspond to data
from simple shear flow and the squares to data from steady state incline flow.
The line is a best fit to the steady state STZ prediction from Equation (6.36),
where only the data from the simple shear flow geometry was used to construct
the best fit. This shows that STZ theory properly predicts the outcome of incline
flow experiments once the parameters (which depend only on grain properties)
are determined from simple shear experiments.
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find that the incline flow data is predicted using the exact same coefficients! This
supports the conclusion that the unmeasurable parameters in Equation (6.36) do
not depend on the shearing geometry and only depend on intrinsic properties of
the material, such as polydispersity and roughness.

In summary, STZ theory predicts a constitutive relation for the shear stress
based on assumptions about how non-affine motion occurs in the material. Using
simulations of rigid granular materials we are able to validate the microscopic
assumptions of the theory and show that the predicted constitutive relation makes
accurate predictions and does not depend on the shearing geometry. Therefore, if
the unknown coefficients are measured in one shearing geometry they can be used,

along with Equation (6.36), to make predictions in different shearing geometries.
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Chapter 7

Conclusions

In this dissertation we have explored properties of granular shear flows using
molecular dynamics simulations. In addition to numerically obtaining constitutive
relations of bulk granular dynamics, the simulations have been used as a tool to
investigate how processes occurring on microscopic length-scales affect observables
on macroscopic length-scales. The insight gained from these investigations has
enabled an in-depth analysis of existing theories of granular flow and has inspired
a new constitutive model based on force propagation through force chain networks.

From a physical point of view, the central result is the spontaneous emergence
of long range correlations in granular shear flows as density is increased or restitu-
tion coefficient is decreased. The correlations arise due to the energy dissipation
that occurs at contacts and imply that interactions between grains occur through
force chain networks in dense regimes. In dilute regimes only binary collisions

occur and correlations are not observed.
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The observation of the network transition, which occurs at a well defined
packing fraction 1., raises a number of issues that deserve additional study. In
particular, can the transition be viewed as a non-equilibrium phase transition?
On the one hand, the transition is sharp, is associated with major changes in the
nature of forces between grains, and is accompanied by a structural change in the
material. On the other hand, the transition is different than typical phase transi-
tions in that the structural change that occurs at v, is tied to dynamics and does
not occur for zero shear rate. Nevertheless, a detailed study of how macroscopic
properties scale with (v — 1,¢) close to v, would elucidate the properties of the
transition, which could possibly be understood as the result of an exotic phase
transition. The universality class of the transition might give further insight into
the physics occurring close to ..

The network transition at 14, is only one important transition as the packing
fraction is increased. At v, > . the system undergoes the jamming transition
where the yield stress becomes non-zero. Although we have not carefully studied
the properties of inertial flows close to v, the models we have introduced in the
dense regime make definite predictions about jamming. Both view jamming as a
dynamic transition where either the size of correlated regions becomes too large
for relaxation to take place or the shear transformation zones all become oriented

in a fashion that does not allow motion.
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An interesting property of the network and jamming transitions is that they are
both linked to force chain networks in the material. While the network transition
arises due to the emergence of force chains, the jamming transition occurs when the
size of the force chains reaches the system size, or diverges in the thermodynamic
limit. This suggests that studying the nature of force chains, which are one of
the peculiarities of granular media, would lend insight to each of the important
transitions that occur in granular flows.

This would be especially interesting in regards to the jamming transition. A
great deal of research has been done on jamming, but it is always concentrated
on granular systems with v > v.. Studying the properties of the approach to
jamming from the inertial side is advantageous because the system can always
be forced into a steady state. Additionally, we have identified a diverging length
scale that might provide insight to the transition.

From a more practical viewpoint, we have developed constitutive relations for
granular flow that apply far from boundaries. However, we have concentrated on
models of the stress tensor and many more constitutive relations remain to be
discovered. There are still unknown parameters in the conservation equations,
such as the heat flux and the energy dissipation, that need to be related to the

hydrodynamic variables. Also, it is necessary to understand how boundary effects
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can be incorporated in granular flows and what parameters set the boundary

length-scales seen in incline flows.
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Appendix A

Details of the simulation method

In this appendix the algorithmic techniques underlying the Contact Dynamics
simulations of granular flow are reviewed in detail. A concise overview of the

algorithm is included in Chapter 4. Here we focus on technical issues.

A.1 Determining contact forces using Contact

Dynamics

The challenge of simulating granular media is to numerically integrate New-
ton’s equation of motion for a collection of N grains that only interact upon
contact and dissipate energy. To carry out this integration, the algorithm must
provide the values of the forces between all contacting pairs of grains. The Con-
tact Dynamics algorithm determines contact forces based on constraints associated

with perfectly rigid grains [59, 60, 61, 62, 64]. This is an idealization of realistic
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granular media that always have a finite Young’s modulus. However, as we have
argued, many properties of granular flows can be explored in the limit of infinite
stiffness.

The central constraint relevant to rigid grains is that they do not deform.
Therefore, once a pair of grains comes into contact, a repulsive force must be
immediately created to prevent deformation and alter the relative velocity of the
contacting pair. It is also necessary that the relative velocity decrease so that
energy is dissipated.

The Contact Dynamics algorithm determines the numerical value of the con-
tact force by assuming that the relative velocities are updated using a constant
coefficient of restitution e. A pair of grains is defined by the positions {r’,r”}
and velocities {v/,v’} of each grain, which are functions of time. A contact is
formed when the distance between grains |r! — /| is less than or equal to the sum
of the grain radii. Given a pair of contacting grains, we define the unit normal
6! = (x' —r7)/|r! — 1’| and the relative velocity V!’ = v! —v”’. The constraint
of constant restitution mandates that a contact at time ¢ is updated to time ¢+ dt

so that

Gt +dt) - VY (t+ dt) = —es' (t) - V(1) (A.1)
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and

Gt +dt) = 6" (1). (A.2)

These equations guarantee that after the interaction, the pair of grains is no longer
moving together and that energy is dissipated locally.
In addition to the constraint of restitution, it is necessary that the velocities

of each grain are updated according to Newton’s equations. This ensures that

vi(t+dt) =v'(t) + % FI;;(t) (A.3)
and
V(4 dt) = v (1) - % Flc}]t ® (A4)

where m’ is the mass of grain I and F//(¢) is the contact force between grains
I and J at time t. These are simply the equations inferred from momentum
conservation.

Using the preceding equations, the normal component of the contact forces can
be deduced. This “inverse problem” of solving for the forces, given the constraints
on velocities, is the central characteristic of Contact Dynamics simulations. It is
easy to appreciate how this is carried out by using the simple example of an

isolated contact between two grains. In this case, Equations (A.1) through (A.4)
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can be combined and the force at time ¢ can be analytically solved as

mim’

7)) -F () = (1 + e)m

() - VI (¢). (A.5)

We see from this equation that the normal component of the force at time ¢ is
determined uniquely by properties of the grains (mass and restitution) and the
relative velocities of the grains at time . We arrived at this equation by combin-
ing one “constraint” equation (Equation A.1) with two “conservation” equations
(Equations A.3 and A.4).

The inverse problem of contact dynamics is trivial for interactions between two
grains, but becomes more difficult as a larger number of contacts are considered.
In particular, because the Contact Dynamics algorithm uses a fixed time step, a
grain can have more than one contact in each time step. Therefore, each grain
may have multiple constraint equations. For a large cluster of contacting grains,
the constraint equations will be highly coupled. The essential feature of the Con-
tact Dynamics algorithm is an efficient method to solve the constraint equations,

coupled with the conservation equations.
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To solve the inverse problem efficiently, it is useful to define the “formal normal
velocities”

Ul (1) = 6" (t +dt) - V' (t +dt) + es" - V(1) (A.6)

norfor

for each pair of contacting grains. In this equation there appears the relative
velocity Vg. This is the relative velocity that is expected in the next time step,
given the current value of the contact force. The important realization is that,
in order for restitution as in Equation (A.1) to hold, the formal velocities of each
pair of grains must equal zero for the appropriately chosen contact force.
Contact Dynamics solves the inverse problem using an inductive process. Given

a small positive number Y, the series of steps is as follows:

1. Guess an initial set of “trial” forces on each contact. For example, set them

all to zero.

2. For each contact, calculate UL’

norfor

using these trial forces.

3. e If-T< Ul <7, donothing.

norfor

o IfULT. > T, then decrease 617/(t) - FI/(t) by an amount proportional

norfor

to |UL7. |. If this results in 67/(¢) - FI7(¢) < 0, then set the force to

norfor

Zero.
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o IfULJ. < —7 then increase 6!7(t)-F!’(t) by an amount proportional

norfor

to |Uld ol

norfor

This series of steps is carried on until |U/. | < T for all contacts that have
formed. This ensures that the restitution constraint is upheld on all contacts,
within an accuracy given by Y. The value of T is an algorithmic parameter that,
like the time step dt, must be taken small enough so that no macroscopic variables
depend on its value.

There is an important relationship between the value of T and dt. Because the
Contact Dynamics algorithm simulates perfectly rigid grains, there should be no
independent time-scale introduced by the interactions between grains. However,
if T is constant, then it sets a maximum wvelocity which introduces a non-trivial
time scale into the dynamics. Therefore, in order for the algorithm to obey a strict
time scaling, T oc d¢~*. This sets a maximum penetration between grains and the
interaction remains time-invariant. In the simulations we have performed, it has
proven adequate to use T = 10719/dt.

The process outlined above solves the inverse problem of finding forces based
on the behavior of velocities. However, only the normal coefficient of the contact

forces has been discussed. For frictionless granular media, this is the only compo-

nent that is non-zero. If friction is introduced between grains then there will also
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be a tangential force so that 677 (¢) x F!’/(t) # 0. This tangential force will affect
both the translational velocities and the rotations of the contacting grains.

To include tangential forces, a second inverse problem is solved. Once again
there is a coefficient of restitution in the tangential direction e; that relates the
relative tangential velocities after the interaction with the relative tangential ve-
locities before the interaction (see Equation 4.1). When considering the tangential
relative velocities, both the translational and rotational parts must be included
to obtain the true tangential velocity at the contact point. A tangential formal
velocity is then constructed and the tangential forces are determined using the
same process as the normal forces. There is one added constraint that upholds

Coulomb friction between grains with coefficient p:

67 (t) x B ()] < ple™ (1) - B (1)]. (A7)

This constrains the tangential force to be less than or equal to p times the normal
force. If the magnitude of the tangential force becomes larger than g times the
normal force at any stage in the iteration to determine contact forces, then the
tangential force is reduced to equal exactly p times the normal force. In this way,
friction is accounted for and the tangential forces can be determined after the

normal forces are known.
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A.2 Time-stepping algorithm

In the previous section we discussed how the Contact Dynamics algorithm
determines the contact forces between grains by solving an inverse problem based
on the kinematic constraints of restitution, combined with Coulomb friction. In
order to integrate Newton’s equations, these forces are then incorporated into a
time-stepping algorithm. We utilize the leap-frog Verlet algorithm [139]. The

schematic of the algorithm is as follows:
1. Choose a time step dt.

2. Use the current velocities v/(¢) and angular velocities w’(t) to determine
the updated positions r’ (¢ + dt) and angular orientations 6’ (¢ + dt) of every

grain.
3. If there are external forces, update the velocities accordingly.
4. Given the new positions, find all pairs of contacting grains.

5. Use the Contact Dynamics algorithm introduced in the previous section to

calculate contact forces F//(t).

6. Use these contact forces to update the velocities v/(¢ + dt) and angular

velocities w!(t + dt).
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7. Use the new velocities v/ (t+dt) and angular velocities w! (t+dt) to determine

the updated positions r’(¢ + 2dt) and rotations 6’ (¢ + 2dt) of every grain.

This list enumerates the necessary ingredients to make a single step of size 2dt
in the Verlet algorithm. It has the common “leapfrog” characteristic of such
algorithms, utilizing Contact Dynamics to solve for the contact forces at the in-

termediate step.

A.3 Forming initial configurations

In order to carry out the simulations, it is necessary to create an initial con-
figuration of grains. In the case of flow down an incline, the grains start in a very
dilute packing and are allowed to collapse under gravity onto a plane consisting
of grains that are fixed. In this way, the packings create themselves.

For shear flows in the Lees-Edwards simple shearing geometry, however, it
is more difficult to create initial configurations. The configurations must have
a constant packing fraction with periodic boundary conditions. To create these
packings, we begin with a dilute collection of grains and slowly increase each grain
diameter by the same percentage until the desired packing fraction is reached.
While the diameters are growing, we also update the positions using molecular

dynamics simulations with repulsive forces proportional to the overlap between
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pairs of grains. This eliminates overlaps and creates dense packings. Care must
be taken when choosing the initial diameters of the grains and the growth rate so

that the final diameters adhere to the proper distribution.
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