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Holomorphic Functions

Let Ω ⊂ C be an open, connected subset (i.e. a domain) of C.
We set i2 = −1 and write z = x+ iy ∈ C for a complex number.

Definition (Holomorphic function)

A function f : Ω −→ C is holomorphic or analytic on Ω if

f ′(z) =
df

dz
≡ lim
z→h

(
f(z + h)− f(z)

h

)
(1.1)

exists for all z ∈ Ω.

Complex differentiability implies the Cauchy-Riemann equations,

∂f

∂z
≡ 0. (1.2)

It turns out that complex differentiability is an extremely strong property.
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Holomorphic Miracles

Theorem (Properties of holomorphic functions)

The following are equivalent to the holomorphicity of f : Ω −→ C on Ω:

For every domain D ⊂ Ω, f satisfies∮
∂D

f(z) dz = 0 (homotopy formula). (1.3)

For every disk Dr ⊂ Ω and every z ∈ Dr, f satisfies

f(z) =
1

2πi

∮
∂D

f(w)

z − w
dw (Cauchy integral formula). (1.4)

For every z0 ∈ Ω, there exists a disk Dr(z0) ⊂ Ω such that

f(z) =

∞∑
n=0

an(z − z0)
n

(Taylor series) (1.5)

converges uniformly for all z ∈ Dr(z0). In particular, f ∈ Cω(Ω).
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Local Structure Near Zeros

Let f : Ω −→ C be a holomorphic function.

Proposition (Zeros are isolated)

If f is not identically zero, then the zeros of f are isolated: if f(z0) = 0,
then there is a neighborhood U of z0 where f(z) 6= 0 for all z ∈ U \ {z0}.

Proof.

Expand f =
∑
n cn(z − z0)n. Since f 6= 0, consider the smallest N for

which cN 6= 0. Write f(z) = (z − z0)Ng(z), where g(z0) = aN 6= 0.

N.B. The order of a zero of f at z0 is N .

Theorem (Local n-fold covering)

Let f have a zero of order n at z0. Then for all v near 0 ∈ C, there are n
points {zi} near z0 ∈ Ω such that f(z1) = · · · f(zn) = v.
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Open Mapping and Maximum Modulus

Theorem (Open mapping)

If f : Ω −→ C is a non-constant holomorphic function, then f maps open
sets to open sets. In particular, f(Ω) ⊂ C is open.

“Non-constant holomorphic maps are open.”

Theorem (Maximum modulus principle)

If f : Ω −→ C is a non-constant holomorphic function, then there cannot
exist z0 ∈ Ω such that |f(z0)| ≥ |f(z)| for all z ∈ Ω.

“The maximum of |f | can only be attained on ∂Ω.”
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Liouville, Picard, and More

Definition (Entire function)

A function holomorphic on the whole complex plane is called entire.

Theorem (Liouville)

Every bounded entire function is constant.

Liouville kills off interesting global extensions of holomorphic maps.

Corollary (Functions on P1)

Every holomorphic function f : P1 = C ∪ {∞} −→ C is constant.

Theorem (Little Picard)

If f : C −→ C is entire and non-constant, then the image of f is either
the whole complex plane or the plane minus a single point.
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Meromorphic Functions

Holomorphic functions are the world’s nicest. The next best thing is...

Definition (Meromorphic function)

A function g : Ω −→ C is meromorphic on Ω if, for every z0 ∈ Ω, g(z)
can be expressed in terms of its Laurent series:

g(z) =

∞∑
n=N

an(z − z0)
n
, N ∈ Z. (1.6)

If N < 0, z0 is a pole of g of order |N |. If N = −1, the pole is simple.
If z0 is a pole of g, the residue of g at z0 is Res[g; z0] ≡ a−1.

Theorem (Residue)

If g : Ω −→ C is meromorphic with poles z1, ..., zk inside D ⊂ Ω, then

1

2πi

∮
∂D

g(z) dz =

k∑
i=1

Res[g; zi]. (1.7)
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The View from Geometry

“Proof” (residue theorem).

All terms (z − z0)n in the Laurent series of g are total derivatives except
for n = −1. Aside from this term, g̃(z) dz = dω is exact, so∮

∂D

g̃(z) dz =

∮
∂D

dω =

∫
∂(∂D)

ω =

∫
∅
ω = 0. (1.8)

But the form dz
z−z0 is not exact! Therefore residues measure topology;

in particular, they generate H1
dR(D) ∼= H1(D) and “algebrize” ∂D.

Extend the range of g from C to P1, allowing g(z0) =∞. This turns
poles into regular points, so meromorphic functions are holomorphic
maps to P1. This is “obvious,” since poles of g are zeros of 1

g .

Q: Can we extend the domain of a complex function beyond C as well?
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First Example: The Riemann Sphere

The Square Root

Q: What is the maximal domain of analyticity of w =
√
z ?

Write z = reiθ =⇒
√
z =

√
r eiθ/2. On the upper and lower sides of

R≥0 ⊂ C, the angle θ jumps from 0 + ε to 2π − ε. As ε −→ 0, we get{√
z+ ∼

√
r e0 = +

√
r ,

√
z− ∼

√
r e2πi/2 = −

√
r .

Oh no... (2.1)

Joke: 1 =
√

1 =
√

(−1)2 =
√
−1
√
−1 = i2 = −1.

Solution: glue together two copies of C \ R≥0: I+ to II− and I− to II+.
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First Example: The Riemann Sphere

The Riemann Sphere: Construction

We obtain a surface X = I ∪ II ' S2 \ {N,S}:

Then the generalized square root w is continuous on X:

w =

{
+
√
z , z ∈ I,

−
√
z , z ∈ II.

(2.2)

Claim: The holes on X can be plugged, and w is holomorphic on X̂.
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First Example: The Riemann Sphere

The Riemann Sphere: Plugging the Holes

Proposition (Plugging the holes)

Every z0 ∈ X admits a neighborhood Uz0 ⊂ X biholomorphic to a
disk D ⊂ C. The same is true of 0 = S /∈ X and ∞ = N /∈ X.

Proof (sketch).

If z0 is not on a cut, take Uz0 = Dε(z0). If it is, glue two half-disks
together. Take the holomorphic coordinate z 7→ t = z − z0.
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First Example: The Riemann Sphere

The Riemann Sphere: Plugging the Holes

Proposition (Plugging the holes)

Every z0 ∈ X admits a neighborhood Uz0 ⊂ X biholomorphic to a disk
D ⊂ C. The same is true of 0 = S /∈ X and ∞ = N /∈ X.

Proof (sketch).

Near 0, glue together two cut disks in I and II, and take z 7→ t = ±
√
z.

Near ∞, glue the exterior regions of disks and use t = ± 1√
z

.
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First Example: The Riemann Sphere

Holomorphicity of w

A Riemann surface R is a connected, complex 2-manifold.

Definition (Holomorphic maps on Riemann surfaces)

A function f : R −→ C is holomorphic at p ∈ R if it is holomorphic in
any coordinate chart (U, z) of p, i.e. if f

∣∣
U

(z(t)) is holomorphic in t.

The map w =
√
z, defined on C \ R≥0, was extended to a continuous

map w : X −→ C. Holomorphic coordinates were put on X ∪ {S,N}.

Proposition (Maximal extension of the square root)

The map w is holomorphic on X. Moreover, by defining w(0) = 0 and
w(∞) =∞, we obtain a meromorphic function w : X̂ −→ C on the
two-sheeted Riemann sphere X̂ = I ∪ II ∪ {S,N} = P1 ' S2.

In local coordinates z0(t) ∼ t2 and z∞(t) ∼ 1
t2 , the function w has a

simple zero at 0 and a simple pole at ∞, and w is odd under I←→ II.
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Second Example: The Complex Torus

A More Interesting Function

Consider the function w given by w2 = z(z − 1)(z − λ), with λ /∈ {0, 1}.

What is the Riemann surface defined by w? To extend w maximally, it
suffices that

√
z,
√
z − 1, and

√
z − λ all be simultanously well defined.

Let L be a curve through 0, 1, λ,∞. Clearly w is well defined on C \ L.

Strategy: for each segment of L, follow the factors
√
z,
√
z − 1,

√
z − λ

around a curve piercing that segment, and count up the minus signs.
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Second Example: The Complex Torus

Pick z ∈ [0, 1] = L01 and follow C:
√
z

C7−→ −
√
z ,

√
z − 1

C7−→ +
√
z − 1,

√
z − λ C7−→ +

√
z − λ.

(2.3)

Next, pick z ∈ L1λ and follow D:
√
z

D7−→ −
√
z ,

√
z − 1

D7−→ −
√
z − 1,

√
z − λ D7−→ +

√
z − λ.

(2.4)

Finally, pick z ∈ Lλ∞ and follow E:
√
z

E7−→ −
√
z ,

√
z − 1

E7−→ −
√
z − 1,

√
z − λ E7−→ −

√
z − λ.

(2.5)

Some Quick Calculations

To summarize:
w

C7−→ −w,
w

D7−→ +w,

w
E7−→ −w.

(2.6)

So w is only singular on [0, 1]∪Lλ∞.
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Second Example: The Complex Torus

The Complex Torus: Construction

We perform the same gluing procedure as before to get X = I ∪ II:

As before, we can find holomorphic coordinates near 0, 1, λ,∞ to
plug the holes and obtain the torus X̂ = X ∪ {0, 1, λ,∞} ' T 2.
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Second Example: The Complex Torus

Holomorphicity of w

Proposition (Maximal extension to the torus)

The map w = ±
√
z(z − 1)(z − λ) is meromorphic on X̂. It has

three simple zeros at 0, 1, and λ, and a pole of order 3 at ∞.

Proof.

Away from 0, 1, λ, and ∞, w is clearly holomorphic.

Near 0, take t = ±
√
z; then, w = ±t

√
(t2 − 1)(t2 − λ) has a simple zero

at 0. The same is true for t ∼
√
z − 1 and t ∼

√
z − λ at 1 and λ.

Finally, near ∞, take t = ± 1√
z

; then, w = 1
t3

√
(1− t2)(1− λt2) has a

pole of order 3 at ∞. Notice the resemblance to elliptic integrals!

Big question: There are many tori, T 2
τ = C/(Z⊕ τZ), characterized by

a complex modulus τ ∈ H2
+. Which one is X̂? How does λ determine τ?
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z(z − 1)(z − λ) is meromorphic on X̂. It has

three simple zeros at 0, 1, and λ, and a pole of order 3 at ∞.

Proof.

Away from 0, 1, λ, and ∞, w is clearly holomorphic.

Near 0, take t = ±
√
z; then, w = ±t

√
(t2 − 1)(t2 − λ) has a simple zero

at 0. The same is true for t ∼
√
z − 1 and t ∼

√
z − λ at 1 and λ.

Finally, near ∞, take t = ± 1√
z

; then, w = 1
t3

√
(1− t2)(1− λt2) has a

pole of order 3 at ∞. Notice the resemblance to elliptic integrals!

Big question: There are many tori, T 2
τ = C/(Z⊕ τZ), characterized by

a complex modulus τ ∈ H2
+. Which one is X̂? How does λ determine τ?
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Holomorphic Forms and Jacobi’s Theorem

Functions on the Torus

Definition (Classification of functions on the torus)

Every function f : T 2
τ −→ C must be doubly periodic

on C, i.e. f(z + 1) = f(z) = f(z + τ).

A holomorphic doubly periodic function on C is constant.

A meromorphic doubly periodic function on C is elliptic.

Fix constants η1, η2 ∈ C. Any function f : C −→ C satisfying
f(z + 1)− f(z) = η1 and f(z + τ)− f(z) = η2 is quasiperiodic.

So X̂ supports only constant holomorphic functions. However, differences
of quasiperiodic functions can be used to build holomorphic forms on X̂.

Strategy: (1) construct holomorphic forms explicitly; (2) develop
techniques for manipulating them; (3) obtain a map X̂ ←→ T 2

τ .

Proposition (A miracle)

The form ω = dz
w is globally holomorphic and nowhere vanishing on X̂.
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Holomorphic Forms and Jacobi’s Theorem

Forms are Better Than Functions

Proof (ω is holomorphic).

We check holomorphicity by expressing ω explicitly in local coordinates.

Away from 0, 1, λ,∞, t = z does the job.

Near 0, t = ±
√
z ⇐⇒ z = t2 implies dz = 2tdt. Then,

ω =
dz

w
=

2tdt√
t2(t2 − 1)(t2 − λ)

=
2 dt√

(t2 − 1)(t2 − λ)
. (3.1)

The same works near 1 and λ, with t1 =
√
z − 1 and tλ =

√
z − λ.

Near ∞, t = ± 1√
z
⇐⇒ z = 1

t2 implies dz = − 2 dt
t3 . Then,

ω =
dz

w
=

−2 dt/t2√
1
t2

(
1
t2 − 1

)(
1
t2 − λ

) =
−2 dt√

(1− t2)(1− λt2)
. (3.2)

In each case, ω is locally holomorphic and nonvanishing. (!!!)
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Holomorphic Forms and Jacobi’s Theorem

The Abel-Jacobi Map

Definition (Ãbel map)

Fix a point p0 ∈ X̂. The Ãbel map Ã : X̂ −→ C is given by

p 7→ Ã(p) =

∫ p

p0

ω =

∫ p

p0

dz

w
, (3.3)

integrated along a curve γ ⊂ X̂ from p0 to p.

Since ω is holomorphic, Ã(p) is a homotopy invariant, so it depends only

on [γ]. If we choose independent cycles A,B in X̂, then Ã descends to

Ã(p) ∈ C/(αZ⊕ βZ), α =

∮
A

ω, β =

∮
B

ω. (3.4)

In fact α, β 6= 0, so we normalize ω by setting ω̂ = ω
α , or choose A so that∮

A

ω = 1,

∮
B

ω ≡ τ ∈ C. (3.5)
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Holomorphic Forms and Jacobi’s Theorem

The Jacobi Inversion Theorem

Definition (The Abel map)

Fix a point p0 ∈ X̂. With conventions as above, the Abel map is

A : X̂ −→ C/(Z⊕ τZ), p 7→ A(p) =

[∫ p

p0

ω

]
. (3.6)

Theorem (Jacobi inversion)

The Abel map is holomorphic and bijective, and identifies the tori

X̂ ←→ C/(Z⊕ τZ), τ =

∮
B

dz

w
=

∮
B

dz√
z(z − 1)(z − λ)

. (3.7)

Moreover, the modulus satisfies Im{τ} > 0.

The modulus is a period integral. In local coordinates near ∞, A(p) is
an elliptic integral of the first kind, and A−1(p) is an elliptic function.
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Holomorphic Forms and Jacobi’s Theorem

Proof of Jacobi’s Theorem

Proof.

The Abel map is holomorphic because ω is a holomorphic form; therefore
(by Cauchy) its integral is a holomorphic function of p ∈ X̂.

Surjectivity follows from the open mapping theorem, whereby the image
of A is open. But X̂ is compact, so the image of A is compact, hence
closed. By connectedness, the image of A must be all of T 2

τ .

For injectivity (p 6= q =⇒ A(p) 6= A(q)), suppose that A(p) = A(q) for
p 6= q. Abel’s theorem says that A(p) = A(q) iff there is a meromorphic
function f on X̂ with a simple zero at p and a simple pole at q.

But then consider the meromorphic form ψ = f dz
w = fω. Since ω is

nonvanishing, ψ has a simple pole at q and thus a nonzero residue there.
But this cannot be, since every meromorphic form ψ must satisfy∑

poles pi

Res[ψ; pi] = 0.
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Abel’s Theorem via Meromorphic Forms

Abel’s Theorem

Theorem (Abel)

Let p1, ..., pM and q1, ..., qN be points of X̂, counted with multiplicity.
There exists a meromorphic function f : X̂ −→ C, with zeros at the pi
and poles at the qj , if and only if M = N and

M∑
i=1

A(pi) =

N∑
j=1

A(qj), (3.8)

with the addition on C/(Z⊕ τZ) induced from C by passing to quotients.

How to construct f? Elliptic functions with no poles are constants, and
elliptic functions with a single pole do not exist (deg g = 0). So...

1 Abel-Riemann: use meromorphic forms ωpq with two simple poles.

2 Weierstraß: build a meromorphic function ℘ with a double pole.

3 Jacobi: use modular invariance to construct ϑ functions.

4 Hodge: use harmonic forms, the ∂ construction, and PDE.
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Abel’s Theorem via Meromorphic Forms

Some Preparatory Work

Proof (Abel, M = N).

Iff φ is meromorphic on X̂ with prescribed zeros and poles, η = dφ
φ is

meromorphic with poles at pi and qi. (Pf: Laurent and power rule.) Thus∑
poles

Res[η] =

M∑
i=1

Res[η; pi] +

N∑
j=1

Res[η; qj ] = M −N !
= 0.

Lemma (Existence of meromorphic forms)

For any two points q1, q2 ∈ X̂, there is a meromorphic form ωq1q2 with
simple poles at q1 and q2 with residues +1 and −1, respectively. There
is also a meromorphic form ωq1 with a double pole at q1.

Proof.

The proof gets technical, but the forms ωq1 and ωq1q2 may be
constructed explicitly by outfitting ω = dz

w with singularities.



Complex Analysis: Local Theory Functions on Riemann Surfaces The Abel Map and Abelian Integrals Epilogue: Function Theory on Tori

Abel’s Theorem via Meromorphic Forms

Some Preparatory Work

Proof (Abel, M = N).

Iff φ is meromorphic on X̂ with prescribed zeros and poles, η = dφ
φ is

meromorphic with poles at pi and qi. (Pf: Laurent and power rule.) Thus∑
poles

Res[η] =

M∑
i=1

Res[η; pi] +

N∑
j=1

Res[η; qj ] = M −N !
= 0.

Lemma (Existence of meromorphic forms)

For any two points q1, q2 ∈ X̂, there is a meromorphic form ωq1q2 with
simple poles at q1 and q2 with residues +1 and −1, respectively. There
is also a meromorphic form ωq1 with a double pole at q1.

Proof.

The proof gets technical, but the forms ωq1 and ωq1q2 may be
constructed explicitly by outfitting ω = dz

w with singularities.



Complex Analysis: Local Theory Functions on Riemann Surfaces The Abel Map and Abelian Integrals Epilogue: Function Theory on Tori

Abel’s Theorem via Meromorphic Forms

Construction of Elliptic Functions

Assuming the lemma, fix p0 ∈ X̂ and consider the meromorphic form

ψ =

N∑
i=1

ωp0pi −
N∑
i=1

ωp0qi . (3.9)

The form ψ has simple poles at pi (residue +1) and qi (residue −1).
All of the poles at p0 get canceled between the two sums!

Idea: Since ψ has the right pole structure, construct f by the ansatz
ψ ∼ df

f . This is almost well defined on X̂; we must subtract off a
multiple of ω, which does not affect the poles. One may then recover f :

ψ − cω =
df

f
=⇒ f “ = ” exp

[∫
df

f

]
= exp

[∫ (
ψ − cω

)]
. (3.10)

The “ = ” step is where
∑N
i=1 [A(pi)−A(qi)] = 0 becomes necessary

and sufficient. The key tool is a local version of the Abel map on C.
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Where We’ve Been and Where We’re Headed

What we have accomplished so far:

1 Reviewed complex analysis from the viewpoint of differential forms.

2 Constructed the Riemann surface P1 for the square root.

3 Constructed the Riemann surface X̂ for a cubic equation.

4 Discovered a holomorphic form on X̂ and integrated it on a basis of
cycles of X̂ to define the Abel map A : X̂ ←→ T 2

ρ .

5 Proved that this map is holomorphic and bijective, in the process
constructing meromorphic forms and elliptic functions on X̂.

What’s next: do step 5 three more times, à la Weierstraß, Jacobi, and
Hodge. The Abel approach was conceptually clean, but does not reveal
the structure, symmetries, or spectral properties of elliptic functions.

Nel mezzo del cammin di nostra vita
Mi ritrovai per una selva oscura
Ché la diritta via era smarrita.

When I had journeyed half our life’s way,
I found myself within a shadowed forest,
For I had lost the path that does not stray.
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