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Time Evolution of Speed
● Newton's 2nd Law:

– Describes how force affects velocity of the CM

● How do forces affect speed of the CM?
– Depends on relative direction of force and velocity:

● Effect of force on speed is determined by
– This quantity is called “power” – measured in Watts (W) 

v

F

Speed increases
v

F

Speed decreases
v

F

Speed is unaffected

F⋅v



  

Momentum and Kinetic Energy
● Take a closer look at force and power:

● Alternative view of Newton's 2nd Law:
– Force affects the momentum vector of a system
– Power affects the KE of a system

F⋅v = m a ⋅v = m d v
dt ⋅v = d

dt 1
2
m v⋅v  = d

dt 1
2
m v2

“Kinetic Energy” (KE) 
of the system – 
measured in Joules (J)

F = m a = m d v
dt

= d
dt

m v 

“Momentum” (p) of the 
system – measured in 
kg (m / sec)



  

Forces – “Time of Action”
Forces in physics cover a wide range of timescales:

“Steady Forces”

Examples: 
● Earth-Moon gravity
● Lift force on a plane

F

t

“Periodic Forces”

Examples: 
● Sound waves
● Elastic forces (springs)

F

t

“Impact Forces”

Examples: 
● Collisions
● Explosions

F

t



  

Impulse and Work
● Apply Newton's 2nd Law over a time interval dt:

● Power over a time interval dt:

● Terminology:
– Impulse is the change in momentum of a system
– Work is the change in KE of a system
– Given a motion path, either can be calculated

F dt = d m v  ∫ F dt = m ∫d v ∫ F dt = m v f −vi 

“Impulse” delivered 
to the system

F⋅v dt = d 1
2
m v2 F⋅d r = d 1

2
m v2 ∫ F⋅d r = 1

2
m v f 2 − vi

2

“Work” delivered to 
the system



  

Work / Impulse Example
● A mass m follows the motion path:

– Calculate the impulse and work delivered between t=t1 and t=t2
– Do it both ways: 
– 1) using the velocity vector
– 2) by calculating the force vector and integrating

● Think of some physical examples that would produce this motion path

● Set a tomato on a golf tee and shoot it with a bullet
– Tomato explodes, but doesn't move far from tee
– Explain in terms of work and impulse

x t 
y t = AtBt 2



  

Momentum/KE of Physical Systems
● Physical systems can consist of many particles

– Each with their own mass and velocity
– Calculate momentum/KE of the system from its particles: 

vCM

psystem = ∑
i= 1

N
mi vi = ∑

i = 1

N
mi vCM v i ' 

psystem = ∑
i=1

N

mi vCM  ∑
i=1

N

mi vi '

0 (by definition 
of the CM)psystem= M system vCM

KE system = ∑
i= 1

N 1
2
mi vi

2 = ∑
i=1

N 1
2
mi vCM vi ' ⋅vCM vi ' 

KE system = ∑
i =1

N 1
2
mi vCM

2  ∑
i= 1

N 1
2
mi v ' i 

2  ∑
i= 1

N

mi vCM⋅v i ' 

0 (by definition 
of the CM)

KE system = 1
2
M system vCM

2  ∑
i=1

N 1
2
mi v ' i

2 KE in form of rotation, thermal 
motion, explosion, etc. 



  

Momentum/KE of Mass Distributions
● “Velocity” at each point of a mass distribution:

– Not well-defined quantity – impossible to “track” moving mass

● Total momentum of a mass distribution:
– Can be defined:

● Total KE of a mass distribution:
– Tougher to understand:
– KEinternal can be defined – not necessarily by Newton's Laws

● Examples 
– Elastic media, rigid body rotation – define v using assumptions
– Quantum mechanics – uses only momentum and KE (not v) 

pptotal = M total vCM

KE total = 1
2
M total vCM

2  KE internal



  

Consequences of Newton's 3rd Law

● Conservation of Momentum:
– External force changes system's momentum in some direction
– Reaction force exerted by that system:
– Changes another system's momentum in opposite direction

● Example: Collisions – reflection vs. absorption
– Reflecting particle delivers 2x as much impulse
– Re-work this problem in the “CM frame”

F 12 =−F 21
d p1

dt
=
−d p2

dt

d
dt p1 p2= 0

d
dt

M total vCM = 0

CM



  

Forces and Potential Energy
● Consider 2 particles with action/reaction pair of forces

– Consider the system made up of both particles:
– Net external force is zero → vCM is constant
– Internal forces can not change total momentum of system 
– But internal forces can change KE in this term:

● Results of experiments on forces:  
– Forces are usually determined by relative location of particles
– Arrangement of particles → forces → change in KE

● “Potential Energy” (PE) 
– The amount of KE to be gained/lost when forces act
– PE is a function of the relative location of particles

∑
i= 1

N 1
2
mi v ' i 

2



  

Mathematical Description of PE: “Fields”
● Mathematical definition: “field”

– Function which maps every point in a vector space to a value
– Value could be a single number (“scalar”), vector, tensor, …

● Example: Temperature in a room
– Scalar field – one number for each position vector
– In 2 different reference frames:
– Functional form of T(x,y,z) will be different...
– ...but temperature at center of room must be the same

● What is the derivative of a field like T(x,y,z)?
– Must be expressed separately in the (x,y,z) directions
– “Gradient”  → ∇ T  x , y , z = ∂ T∂ x  i  ∂ T∂ y  j  ∂ T∂ z  k



  

PE and “Force Fields”
● For 2 particles exerting forces on each other:

– Their relative position (             ) makes up a vector space
– The force F12  is a vector field in that vector space

● Example:  Gravitational field of a planet
– All of space is filled with a vector field 
– Pointing toward the origin (center of planet)
– Actual force is exerted only when another particle enters field

● Forces push particles on motion paths → doing work
– In other words: Forces convert PE into KE
– Consider work done along 2 different paths:
– Does work depend on the path taken from A to B?

r 1−r 2

g  x , y , z 



  

Conservative Force Fields
● For “conservative” force fields:

– Work done by force is independent of path
– So PE only depends on the arrangement of the particles
– Therefore PE is a scalar field → often written U(x,y,z)

● Conservation of Energy: (with KE denoted as “K”)

 U 2 = −Work 2 = −∫
A

B
F⋅d r 2

 U 1 = −Work 1 = −∫
A

B
F⋅d r 1

 U 1 = U 2

Work = K  U =− K  K U  = 0

K U = E total = Constant
Note: Conservation of Energy can not determine what 
the value of Etotal is – just that it is constant

U(x,y,z) and U(x,y,z) + U0 describe the same force field



  

Force and PE: Mathematical Relation
● Consider work due to a small displacement:

● By inspection:

● Force points in the direction of greatest decrease of U

dW = − dU = −[∂ U∂ x  dx∂ U∂ y  dy ∂ U∂ z  dz]
dW = F⋅d r = [F x dx F y dy F z dz ]

F = −[∂ U∂ x  i ∂ U∂ y  j  ∂ U∂ z  k ]
F = − ∇ U Valid for all conservative force fields  U AB=−∫

A

B F⋅d r



  

Force Field Examples
● 1-Dimensional:

– Calculate U(x) and sketch graph
– Can Fx(x) be discontinuous?  What about U(x)?

● 2-Dimensional:

– Calculate

– Calculate work done by force in moving from (0, a) to (2a, 0):
– Both ways:  1) Path integral and 2) using U(x,y)

U  x , y =U 0 e
− x2  y2

a2

F x  x = {F 0 − L x 0

−F 0 0 x L

0 everywhere else x

Fx

F  x , y 



  

Equilibrium and Stability
● Equilibrium – Fnet=0,  or 

● Stability – force field pushes toward stable equilibrium

● Which of the above is a stable equilibrium?

– Possible to be stable in x-direction but unstable in y-direction!

x

y

x

Fx

x

Fx

F

∂ F x

∂ x ∣equil≤ 0 ∂2 U
∂ x2 ∣

equil
≥ 0

∂ U
∂ x

= ∂ U
∂ y

= ∂ U
∂ z

= 0

x

U



  

Common Forms of PE

● Uniform force field (e.g. gravity near Earth surface)
– For general F0:
– For gravity near Earth surface:

● Elastic PE: springs and elastic media →

– Elastic systems typically have at least one stable equilibrium 

z

 U = mg  z

 U = F 0  z

F x=−k x− x0

 U = −∫
x0

x f

F x dx = 1
2
k  x f 2 – x0

2− k x0  x f − x0 

F

x

U

 U = 1
2
k x f − x02



  

“Effective” Spring Constant
● Consider an arbitrary U(x):

– Can contain many equilibrium points
– Taylor expansion of U(x) near equilibrium:

● Near any stable equilibrium
– Can approximate U(x) using a parabola
– Which is exactly the PE function for elastic forces!

– “Effective Spring Constant”:

● Example:  Calculate keff:

x

U

U  x  ≈ U x0  ∂ U
∂ x ∣x0

x− x0   1
2
∂2 U
∂ x2∣

x0

 x− x02  ...

k eff =
∂2 U
∂ x2∣

x0

U  x =
C1

x
C 2 x

3

Physically meaningless 0



  

Force and PE Example
● The “spring pendulum”:

– Unstretched spring has length L
– In a uniform gravitational field g

● Calculate U(x,y)
– Use derivatives to find equilibrium point(s)
– Check stability in both x and y directions

● Are there any locations (x,y) such that:
– Net force points in the negative x-direction?
– Net force is perpendicular to position vector?

k

m

x

y



  

Non-Conservative Forces
● Not all forces can be assigned a scalar field U(x,y,z)

– Work is path-dependent for some forces

● Example: forces which depend on velocity
– Kinetic friction, air resistance, viscosity, etc.

● Consider work done on a closed path
– i.e. a path that starts and ends at same point

– For a conservative force:

– For a non-conservative force:

P

∮ F⋅d r ≠ 0

∮ F⋅d r = 0



  

Non-Conservative Force Field Example
● Block slides down incline due to gravity

– With friction coefficient 
– Slide: from (-1.0m, 0) to (0, -1.0m)
– Calculate work done by friction:
– 1) along linear path
– 2) along circular path centered at origin – warning: not easy!

● In general, work is a “functional”
– Mathematical object → maps one or more functions to a number
– Functionals often take the form of an integral:

x

y

k

F [ x  t  , y t  ]=∫ g  x , y  dt Work [ x t  , y t  ]=∫F x
dx
dt

 F y
dy
dt  dt



  

Force Fields – Conservative or Not?
● Force field → can write

– Non-conservative → can't write

● What conditions make a force field conservative?
– Consider a small piece of a path       :
– Conservative if
– Must be true if path is traversed CW or CCW    

F  x , y , z 

U  x , y , z 

dx

dyd r

∮ F⋅d r = 0

F x  x , y  dx F y x dx , y  dy− F x  x dx , y  dy  dx− F y x , y dy  dy= 0

dx

dy

F y  x , y  dy F x  x , y dy  dx− F y  x dx , y dy  dy− F x  x dx , y  dx= 0CW:

CCW:

Taylor series to 1st order (example term): F x  x dx , y  dy = F x  x , y 
∂ F x

∂ x
dx

∂ F x

∂ y
dy

Plug in and subtract (CW – CCW):
∂ F y

∂ x
−

∂ F x

∂ y
= 0 Implies that work is independent 

of path for this dx and dy



  

Force Fields – Conservative or Not?
● Consider work done along 2 neighboring closed paths:

● Can add work from many paths to construct any path
– If   everywhere → can write U(x,y)

● In 3 dimensions:

– Force field is conservative if    

=

∂ F y

∂ x
−

∂ F x

∂ y
= 0

∂ F y

∂ x
−

∂ F x

∂ y
= 0

∂ F z

∂ x
−

∂ F x

∂ z
= 0

∂ F z

∂ y
−

∂ F y

∂ z
= 0

∇ × F =∂ F z

∂ y
−

∂ F y

∂ z  i − ∂ F z

∂ x
−

∂ F x

∂ z  j ∂ F y

∂ x
−

∂ F x

∂ y  k
∇ × F = 0

“Curl” of a vector field:



  

Collisions / Explosions
● Import application of conservation laws

– Can compare momentum and energy before/after an “event”

● Example:  “Impact” force with very small range

● Using conservation of momentum/energy:
– Can determine relationship(s) between velocities before/after
– Without knowing details of force!
– “Elastic” collisions → No KE converted to/from PE → KEf = KEi

– “Inelastic” collisions → Must account for PE (in many forms)  

Before force occurs After force occurs

v0m
M

v1 m
M

v2



  

Collision/Explosion Examples
● Perfectly inelastic collision:

– Calculate velocity of final particle after collision
– Could this collision be elastic or inelastic?  (Hint: CM frame)
– If inelastic, how does Einternal,f compare to Einternal,i?
– Compare this with electron/proton colliding to form H atom

● Explosion:
– Firecracker explodes between two blocks, releasing energy E0

– Calculate speed of each block immediately after explosion
– Each block has friction coefficient      → find where each stops

Before collision

v0m
M

After collision

M + m
vf

3mm

k



  

Rocket Equation
● Momentum conservation can be applied to propulsion:

– Vehicle pushes gas, liquid, or plasma in one direction...
– ...and experiences a force in the opposite direction

● Example:  Rocket which starts at rest and ejects fuel...
– With constant exhaust speed vexhaust at constant rate R (kg/s)
– Calculate v(t) of the rocket

dmvrelative mrocket mremaining fuel  d v rocket =−dm  v relative F external dt
dvrocket

M total t = mrocket m fuel , 0 − R t

M total t  
d vrocket
dt

=−dm
dt

v exhaust dvrocket , x= vexhaust
R dt

mrocket m fuel , 0 − Rt
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