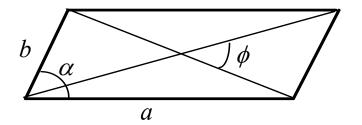
Set #2 - for Wd Oct. 6

Read HR&K	Ch. 2 - Sects. 2.1, 2.2, 2.3, 2.4
Read K&K	Ch. 1 - Sects. 1.5, 1.6, 1.8
<u>Read Feynman Vol. 1</u>	Ch. 1 & Ch. 2


From HR&K: Ch. 2 Problems 7, 8.

From K&K: Ch. 1 Problems 1.2, 1.4, 1.5, 1.6, 1.7, 1.8, 1.11.

1. Three vectors are given by $\vec{a} = 3\hat{i} + 3\hat{j} - 2\hat{k}$, $\vec{b} = -\hat{i} - 4\hat{j} + 2\hat{k}$, $\vec{c} = 2\hat{i} + 2\hat{j} + \hat{k}$. Find (a) $\vec{a} \cdot (\vec{b} \times \vec{c})$, (b) $\vec{a} \cdot (\vec{b} + \vec{c})$, (c) $\vec{a} \times (\vec{b} + \vec{c})$. (d) See if you can find two scalars α and β so that $\vec{c} = \alpha \vec{a} + \beta \vec{b}$.

2. Use vector methods and find the angle between the body diagonals of a cube.

3. Find the angle ϕ defined by the two diagonals of a parallelogram of sides *a* and *b*, with b < a. The angle α is the angle between the two sides of the parallelogram, as shown below and it is given. (Use the scalar product to find ϕ).

4. Given a fixed vector \vec{a} , find the equation of the surface described by the end points of all position vectors \vec{r} such that \vec{r} is perpendicular to the vector $\vec{r} - \vec{a}$. Express your answer as an equation relating (x, y, z), the components of \vec{r} in a convenient coordinate frame.