
Index Notation for Vector Calculus
by

Ilan Ben-Yaacov and Francesc Roig
Copyright c© 2006

Index notation, also commonly known as subscript notation or tensor notation,

is an extremely useful tool for performing vector algebra. Consider the coordinate

system illustrated in Figure 1. Instead of using the typical axis labels x, y, and z,

we use x1, x2, and x3, or

xi i = 1, 2, 3

The corresponding unit basis vectors are then ê1, ê2, and ê3, or

êi i = 1, 2, 3

The basis vectors ê1, ê2, and ê3 have the following properties:

ê1 · ê1 = ê2 · ê2 = ê3 · ê3 = 1 (1)

ê1 · ê2 = ê1 · ê3 = ê2 · ê3 = 0 (2)
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Figure 1: Reference coordinate system.
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2 Index Notation

We now introduce the Kronecker delta symbol δij . δij has the following prop-

erties:

δij =

{
0 i 6= j

1 i = j
i, j = 1, 2, 3 (3)

Using Eqn 3, Eqns 1 and 2 may be written in index notation as follows:

êi · êj = δij i, j = 1, 2, 3 (4)

In standard vector notation, a vector ~A may be written in component form as

~A = Axî + Ay ĵ + Azk̂ (5)

Using index notation, we can express the vector ~A as

~A = A1ê1 + A2ê2 + A3ê3

=
3∑

i=1

Aiêi

(6)

Notice that in the expression within the summation, the index i is repeated. Re-

peated indices are always contained within summations, or phrased differently a

repeated index implies a summation. Therefore, the summation symbol is typi-

cally dropped, so that ~A can be expressed as

~A = Aiêi ≡
3∑

i=1

Aiêi (7)

This repeated index notation is known as Einstein’s convention. Any repeated

index is called a dummy index. Since a repeated index implies a summation over

all possible values of the index, one can always relabel a dummy index, i.e.

~A = Aiêi = Aj êj = Akêk etc.

≡ A1ê1 + A2ê2 + A3ê3

(8)
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Index Notation 3

The Scalar Product in Index Notation

We now show how to express scalar products (also known as inner products

or dot products) using index notation. Consider the vectors ~a and ~b, which can be

expressed using index notation as

~a = a1ê1 + a2ê2 + a3ê3 = aiêi

~b = b1ê1 + b2ê2 + b3ê3 = bj êj

(9)

Note that we use different indices (i and j) for the two vectors to indicate that the

index for~b is completely independent of that used for ~a. We will first write out the

scalar product ~a ·~b in long-hand form, and then express it more compactly using

some of the properties of index notation.

~a ·~b =

(
3∑

i=1

aiêi

)
·

 3∑
j=1

bj êj


=

3∑
i=1

3∑
j=1

[(aiêi) · (bj êj)]

=
3∑

i=1

3∑
j=1

[aibj (êi · êj)] (commutative property)

=
3∑

i=1

3∑
j=1

(aibjδij) (from Eqn 3)

Summing over all values of i and j, we get

~a ·~b = a1b1δ11 + a1b2δ12 + a1b3δ13

+ a2b1δ21 + a2b2δ22 + a2b3δ23

+ a3b1δ31 + a3b2δ32 + a3b3δ33

= a1b1δ11 + a2b2δ22 + a3b3δ33

= a1b1 + a2b2 + a3b3

=
3∑

i=1

aibi

= aibi = ajbj = akbk
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4 Index Notation

Doing this in a more compact notation gives us

~a ·~b = (aiêi) · (bj êj)

= aibj êi · êj = aibjδij

= aibi = a1b1 + a2b2 + a3b3

Notice that when we have an expression containing δij , we simply get rid of the δij

and set i = j everywhere in the expression.

Example 1: Kronecker delta reduction

Reduce δijδjkδki:

δijδjkδki = δikδki (remove δij , set j = i everywhere)

= δii (remove δik, set k = i everywhere)

=
3∑

i=1

δii =
3∑

i=1

1 = 1 + 1 + 1 = 3

Here we can see that

δii = 3 (Einstein convention implied) (10)

Note also that

δijδjk = δik (11)

Example 2: ~r and r̂ in index notation

(a) Express ~r using index notation.

~r = x1ê1 + x2ê2 + x3ê3 = xiêi
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Index Notation 5

(b) Express r̂ using index notation.

r̂ =
~r

|~r|
=

~r

(~r · ~r)1/2
=

xiêi

(xjxj)
1/2

(c) Express ~a · r̂ using index notation.

~a · r̂ =
~a · ~r
|~r|

=
aixi

(xjxj)
1/2

The Cross Product in Index Notation

Consider again the coordinate system in Figure 1. Using the conventional right-

hand rule for cross products, we have

ê1 × ê1 = ê2 × ê2 = ê3 × ê3 = 0

ê1 × ê2 = ê3 ê2 × ê1 = − ê3

ê2 × ê3 = ê1 ê3 × ê2 = − ê1

ê3 × ê1 = ê2 ê1 × ê3 = − ê2

(12)

To write the expressions in Eqn 12 using index notation, we must introduce the

symbol εijk, which is commonly known as the Levi-Civita tensor, the alternating

unit tensor, or the permutation symbol (in this text it will be referred to as the

permutation symbol). εijk has the following properties:

εijk = 1 if (ijk) is an even (cyclic) permutation

of (123), i.e. ε123 = ε231 = ε312 = 1

εijk = −1 if (ijk) is an odd (noncyclic) permutation

of (123), i.e. ε213 = ε321 = ε132 = −1

εijk = 0 if two or more subscripts are the same,

i.e. ε111 = ε112 = ε313 = 0 etc.

Copyright c© 2006 by Ilan Ben-Yaacov and Francesc Roig



6 Index Notation

Hence, we may rewrite the expressions in Eqn 12 as follows:

ê1 × ê2 = ε123ê3 ê2 × ê1 = ε213ê3

ê2 × ê3 = ε231ê1 ê3 × ê2 = ε321ê1

ê3 × ê1 = ε312ê2 ê1 × ê3 = ε132ê2

(13)

Now, we may write a single generalized expression for all the terms in Eqn 13:

êi × êj = εijkêk (14)

Here εijkêk ≡
3∑

k=1

εijkêk (k is a dummy index). That is, this works because

ê1 × ê2 = ε12kêk =
3∑

k=1

ε12kêk

= ε121ê1 + ε122ê2 + ε123ê3 = ê3

The same is true for all of the other expressions in Eqn 13. Note that êi × êi =

εiikêk = 0, since εiik for all values of k. εijk is also given by the following formula.

εijk =
1
2
(i− j)(j − k)(k − i) i, j, k = 1, 2, 3 (15)

This is a remarkable formula that works for εijk if you do not want to calculate the

parity of the permutation (ijk). Also note the following property of εijk:

εijk = −εjik = −εkji

i.e. switching any two subscripts reverses the sign of the permutation symbol (or

in other words εijk is anti-symmetric). Also,

εijk = εkij = εjki

i.e. cyclic permutations of the subscripts do not change the sign of εijk. These
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Index Notation 7

properties also follow from the formula in Eqn 15.

Now, let’s consider the cross product of two vectors ~a and~b, where

~a = aiêi

~b = bj êj

Then

~a×~b = (aiêi)× (bj êj) = aibj êi × êj = aibjεijkêk

Thus we write for the cross product:

~a×~b = εijkaibj êk (16)

All indices in Eqn 16 are dummy indices (and are therefore summed over) since

they are repeated. We can always relabel dummy indices, so Eqn 16 may be written

equivalently as

~a×~b = εpqrapbq êr

Returning to Eqn 16, the kth component of ~a×~b is(
~a×~b

)
k

= εijkaibj

where now only i and j are dummy indices. Note that the cross product may also

be written in determinant form as follows:

~a×~b =

∣∣∣∣∣∣∣∣
ê1 ê2 ê3

a1 a2 a3

b1 b2 b3

∣∣∣∣∣∣∣∣ (17)

The follwoing is a very important identity involoving the product of two per-

mutation symbols.

εijkεlmn =

∣∣∣∣∣∣∣∣
δil δim δin

δjl δjm δjn

δkl δkm δkn

∣∣∣∣∣∣∣∣ (18)
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8 Index Notation

The proof of this identity is as follows:

• If any two of the indices i, j, k or l, m, n are the same, then clearly the left-
hand side of Eqn 18 must be zero. This condition would also result in two
of the rows or two of the columns in the determinant being the same, so
therefore the right-hand side must also equal zero.

• If (i, j, k) and (l, m, n) both equal (1,2,3), then both sides of Eqn 18 are
equal to one. The left-hand side will be 1 × 1, and the right-hand side will
be the determinant of the identity matrix.

• If any two of the indices i, j, k or l,m, n are interchanged, the corresponding
permutation symbol on the left-hand side will change signs, thus reversing
the sign of the left-hand side. On the right-hand side, an interchange of
two indices results in an interchange of two rows or two columns in the
determinant, thus reversing its sign.

Therefore, all possible combinations of indices result in the two sides of

Eqn 18 being equal. Now consider the special case of Eqn 18 where n = k.

In this case, the repeated index k implies a summation over all values of k. The

product of the two permutation symbols is now

εijkεlmk =

∣∣∣∣∣∣∣∣
δil δim δik

δjl δjm δjk

δkl δkm δkk

∣∣∣∣∣∣∣∣ (note δkk = 3)

= 3δilδjm − 3δimδjl + δimδjkδkl

−δikδjmδkl + δikδjlδkm − δilδjkδkm

= 3δilδjm − 3δimδjl + δimδjl

−δilδjm + δimδjl − δilδjm (from Eqn 11)

(19)

Or finally

εijkεlmk = δilδjm − δimδjl (20)
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Index Notation 9

Eqn 20 is an extremely useful property in vector algebra and vector calculus

applications. It can also be expressed compactly in determinant form as

εijkεlmk =

∣∣∣∣∣ δil δim

δjl δjm

∣∣∣∣∣ (21)

The cyclic property of the permutation symbol allows us to write also

εijkεklm = δilδjm − δimδjl

To recap:
êi · êj = δij and ~a ·~b = aibi

êi × êj = εijkêk and ~a×~b = εijkaibj êk

These relationships, along with Eqn 20, allow us to prove any vector identity.

Example 3: Vector identity proof

Show for the double cross product:

~a× (~b× ~c) = (~a · ~c)~b− (~a ·~b)~c

Start with the left-hand side (LHS):

~a× (~b× ~c) = (aiêi)× (εjklbjckêl)

= εjklaibjck (êi × êl)

= εjklaibjckεilhêh

= εjklεhilaibjckêh

= (δjhδki − δjiδkh) aibjckêh

= δjhδkiaibjckêh − δjiδkhaibjckêh

= aibjciêj − aibickêk

= (aici) (bj êj)− (aibi) (ckêk)

= (~a · ~c)~b− (~a ·~b)~c
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10 Index Notation

Example 4: The scalar triple product

Show that ~a · (~b× ~c) = ~c · (~a×~b) = ~b · (~c× ~a)

~a · (~b× ~c) = (aiêi) · (εjkmbjckêm)

= εjkmaibjck(êi · êm)

= εjkmaibjckδim

= εjkiaibjck

or

~a · (~b× ~c) = εijkaibjck

From our permutation rules, it follows that

~a · (~b× ~c) = εijkaibjck

= εkijckaibj = ~c · (~a×~b)

= εjkibjckai = ~b · (~c× ~a)
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