KINEMATICS

Mathematical Description of Time

- Vector spaces have an extra "invisible coordinate"
 - Its coordinate axis has universal positive direction (unlike xyz)
 - Every vector in space must add time to its list of coordinates
 - 3-D points not good enough, must use 4-D "events" (ct,x,y,z)
 - c (units: length/time) → all coordinates must have same units
- Geometry must be generalized to include time
 - Path in space \rightarrow set of points (x,y,z) which meet conditions
 - Motion Path in "spacetime" → events (ct,x,y,z) meet conditions

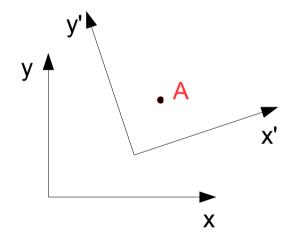
Example:
$$(0,0,0,0)$$

 $(1,1,1,1)$
 $(2,2,2,2)$

Events on a motion path which crosses the origin at time t=0, then moves in the spatial direction (1,1,1) at a particular speed

Newtonian View of Time

- Time t completely "separable" from other coordinates
 - Time coordinate of events is independent of reference frame



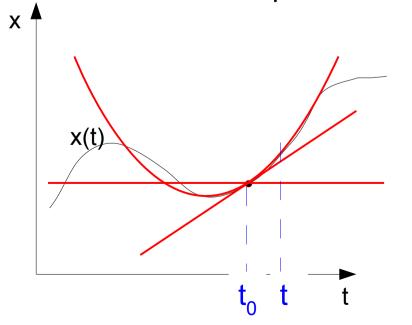
Event A has coordinates (ct, x, y) in one reference frame and (ct', x', y') in another

Newtonian view: t' = t for all events

- Vectors have components only in spatial directions: $\vec{A}(t) = \begin{pmatrix} A_x(t) \\ A_y(t) \\ A_z(t) \end{pmatrix}$ t is called a "parameter", not a coordinate \rightarrow don't need c
- Einstein's Relativistic view of time:
 - Time coordinate ct depends on reference frame (just like x,y,z)
 - Vectors have a component in the "time direction" (4-vectors)

Describing Motion Paths Mathematically

- Time interval of interest is typically not <u>infinite</u>
 - i.e. need to describe $\begin{pmatrix} x(t) \\ y(t) \\ z(t) \end{pmatrix}$ in the vicinity of some time $\mathbf{t_0}$
- <u>Useful tool</u>: "Taylor Series"
 - Organizes complicated function x(t) into simpler parts (near t₀)
 - Sets up a trade-off between simplicity and precision



Example: Driver of a car randomly presses gas and brake pedal. At time t_0 the car is at position x_0 . Where is the car:

At time t_0 ? (Duh) $x = x_0$ (1 number, valid at 1 instant)

0.1 seconds later? $x \approx x_0 + v_0 (t - t_0)$

1.0 seconds later? $x \approx x_0 + v_0 (t - t_0) + \frac{1}{2} a_0 (t - t_0)^2$

Motion Paths and Taylor Series

- Taylor Series: Coefficient of nth term...
 - is related to nth derivative of function x(t), evaluated at t₀

$$x(t) = x_0 + \frac{dx}{dt}\Big|_{t_0}(t-t_0) + \left(\frac{1}{2!}\right)\frac{d^2x}{dt^2}\Big|_{t_0}(t-t_0)^2 + \left(\frac{1}{3!}\right)\frac{d^3x}{dt^3}\Big|_{t_0}(t-t_0)^3 + \dots$$

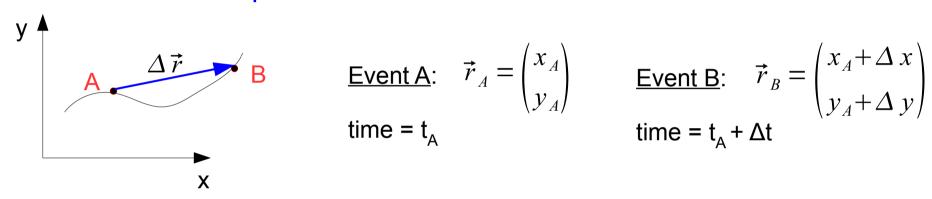
• Similarly, for a position vector **r**:

$$\vec{r}(t) = \vec{r}_0 + \frac{d\vec{r}}{dt}\Big|_{t_0} (t-t_0) + \left(\frac{1}{2!}\right) \frac{d^2\vec{r}}{dt^2}\Big|_{t_0} (t-t_0)^2 + \left(\frac{1}{3!}\right) \frac{d^3\vec{r}}{dt^3}\Big|_{t_0} (t-t_0)^3 + \dots$$
position at t₀
Instantaneous velocity at t₀
Instantaneous acceleration at t₀
"jerk" at t₀

Note: t₀ is not always the same as t=0

<u>Velocity – Conventions and Terminology</u>

- Any 2 events (points and instants) on a motion path:
 - Have a displacement vector and a time interval between them



• Average velocity (between A and B): $\vec{v}_{AB} = \frac{\Delta \vec{r}}{\Delta t} = \frac{\Delta x \hat{i} + \Delta y \hat{j}}{\Delta t}$

$$\vec{v}_{AB} = \frac{\Delta \vec{r}}{\Delta t} = \frac{\Delta x \hat{i} + \Delta y \hat{j}}{\Delta t}$$

• Instantaneous velocity (at event A): $|\vec{v}_A = \frac{d\vec{r}}{dt}|_t$

- Limit of average velocity as Δt approaches zero
- Speed <u>instantaneous</u> magnitude of velocity:

$$v_A = \left| \frac{d\vec{r}}{dt} \right|_{t_A}$$

Motion Path Example

- 2-D motion path described by: $\begin{pmatrix} x(t) \\ y(t) \end{pmatrix} = \begin{pmatrix} B t^3 \\ C t^2 \end{pmatrix}$
 - What <u>dimensions</u> must B and C have?
 - Draw path on xy-plane
- Find instantaneous position, velocity, acceleration, jerk
 - At time t=0
 - At time t=1.0 second
- Find average velocity between t=3.0 sec and t=4.0 sec
 - Find average speed between t=3.0 sec and t=4.0 sec

Measuring Kinematic Quantities

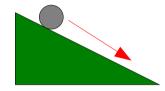
- Measuring <u>average</u> velocity:
 - Must measure position at beginning and end of time interval Δt

- Measuring <u>instantaneous</u> velocity:
 - Impossible to do directly! Why?
 - Must wait Δt to measure motion instantaneous v may change
 - Instantaneous v can be measured indirectly
- Measurement of acceleration, etc. → similar issues
 - To measure directly → must measure instantaneous velocity

Motion with Constant Acceleration

- Early kinematic measurements (Galileo, Newton, etc.)
 - Produced results consistent with constant acceleration
 - Can be described by a Taylor series of 3 terms:

$$x(t) = x_0 + v_{x0} (t-t_0) + \frac{1}{2} a_x (t-t_0)^2$$



x-component of velocity = derivative of x(t)

$$v_x(t) = \frac{dx}{dt} = v_{x0} + a_x(t-t_0)$$

Algebra → can relate v_x and x directly (without t):

$$v_x^2 = v_{x0}^2 + 2 a_x (x - x_0)$$

Free Fall / Projectile Motion

- Experiments → gravity produces <u>constant</u> acceleration
 - <u>Direction</u>: straight down <u>Magnitude</u>:

$$9.8 \frac{m}{sec^2} \equiv g$$

g varies by a few percent over Earth surface

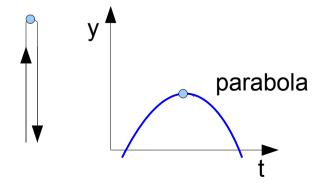
1-Dimensional Motion

Apply kinematic equations with:

$$a_{vertical} = -g$$

At "turning point" of motion:

$$v_{vertical} = 0$$



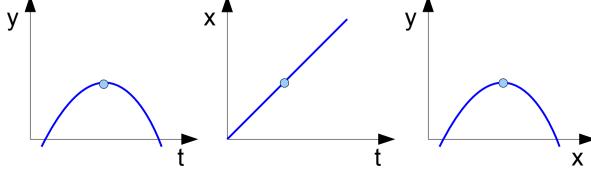
2-Dimensional Motion

Apply 2 sets of kinematic equations with:

$$a_{vertical} = -g$$
 $a_{horizontal} = 0$

At "turning point" of motion:

$$v_{vertical} = 0$$
 $v_{horizontal} \neq 0$



Projectile Motion Example

- Quarterback can throw ball at speed $v_0 = 30$ m/sec
 - What is the maximum range he can throw down the field?
 - (Receiver and quarterback are same height, ignore air drag)
 - How many seconds is the ball in the air?
- What is the maximum range if:
 - Quarterback jumps and throws (from a height of 3.0 meters)
 - Receiver dives for the catch (at a height of 0.0 meters)

Varying Acceleration: The Chain Rule

- Definition of x-component of acceleration: $a_x = \frac{d^2x}{dt^2} = \frac{dv_x}{dt}$
- Apply the chain rule: $a_x = \frac{dv_x}{dt} = \frac{dx}{dt} \frac{dv_x}{dx} = v_x \frac{dv_x}{dx}$
 - Can relate x, v_x, and a_x without using t
 - Useful if a_x can be expressed as function of x or v_x (but not t)
- If $\mathbf{a}_{\mathbf{x}}$ is a function of \mathbf{x} : $a_x dx = v_x dv_x \longrightarrow \int a_x dx = \frac{1}{2} \left(v_x^2 v_{x0}^2 \right)$
 - Examples: springs, inclines of non-constant slope
- If a_x is a function of v_x : $dx = \frac{v_x dv_x}{a_x}$ \longrightarrow $x x_0 = \int \left(\frac{v_x}{a_x}\right) dv_x$
 - Examples: air resistance, viscous drag

Chain Rule Example

• One mathematical model for air resistance: $\vec{a} = -k \vec{v}$

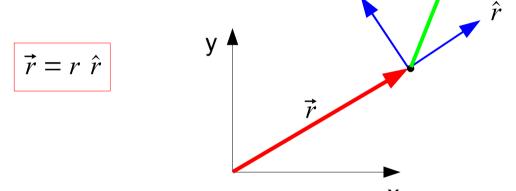
- For 1-D motion with a given k, x_0 , and v_{x0} , calculate:
 - $-v_x$ as a function of $(x x_0)$
 - $-a_x$ as a function of $(x x_0)$
 - v_x as a function of $(t t_0)$
- For 2-D motion with gravity included, calculate:
 - $x(t t_0)$ and $y(t t_0)$ given x_0, y_0, v_{x0}, v_{y0}

Kinematics in Polar Coordinates

- Position, velocity, acceleration, jerk, etc. → all vectors
 - Components can be expressed in any coordinate system:
 - Cartesian, polar, cylindrical, spherical, etc.
- In 2-D polar coordinates:

$$\hat{r} = \cos \theta \, \hat{i} + \sin \theta \, \hat{j}$$

$$\hat{\theta} = -\sin \theta \, \hat{i} + \cos \theta \, \hat{j}$$



Notation – "dot on top" means time derivative → Using the chain rule:

$$\frac{d \hat{r}}{dt} = -\sin\theta \, \dot{\theta} \, \hat{i} + \cos\theta \, \dot{\theta} \, \hat{j} = \dot{\theta} \, \hat{\theta}$$

$$\frac{d \; \hat{\theta}}{dt} = -\cos\theta \; \dot{\theta} \; \hat{i} \; - \; \sin\theta \; \dot{\theta} \; \hat{j} = -\dot{\theta} \; \hat{r}$$

$$\vec{v} = \frac{d \vec{r}}{dt} = \frac{d}{dt} (r \hat{r})$$

$$\vec{v} = \dot{r} \hat{r} + r \dot{\theta} \hat{\theta}$$

Kinematics in Polar Coordinates

Acceleration in 2-D Polar Coordinates:

$$\vec{a} = \frac{d \vec{v}}{dt} = \frac{d}{dt} \left(\dot{r} \ \hat{r} + r \ \dot{\theta} \ \hat{\theta} \right)$$

$$\vec{a} = (\ddot{r} \ \hat{r} + \dot{r} \ \dot{\theta} \ \hat{\theta}) + (\dot{r} \ \dot{\theta} \ \hat{\theta} + r \ \ddot{\theta} \ \hat{\theta} + r \ \dot{\theta} \ (-\dot{\theta} \ \hat{r}))$$

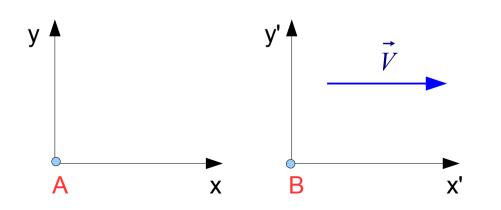
$$\vec{a} = (\ddot{r} - r \dot{\theta}^2) \hat{r} + (r \ddot{\theta} + 2 \dot{r} \dot{\theta}) \hat{\theta}$$

"centripetal" acceleration "Coriolis" acceleration – note: velocity-dependent

- Example: Motion Path $\begin{pmatrix} x & (t) \\ y & (t) \end{pmatrix} = \begin{pmatrix} C \\ Dt \end{pmatrix}$
 - Calculate polar components of position, velocity, acceleration

"Newtonian Relativity"

- For a vector space with time included as a coordinate:
 - Any event can be chosen as the origin ("homogeneous")
 - Any direction can be chosen for coordinate axes ("isotropic")
 - Including directions with nonzero projection onto "time axis"
- 2 different choices of origin and coordinate axes:
 - 2 reference frames with <u>relative</u> <u>velocity</u> between them
 - Physics needs to be able to handle any choice of frame



Event A is at the origin of both reference frames at t' = t = 0

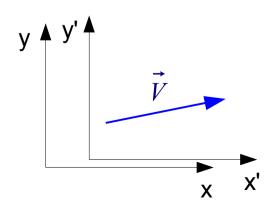
Event B occurs at time Vt' = Vt = 1 meter

"primed" frame: (Vt', x', y', z') = (1, 0, 0, 0)

"unprimed" frame: (Vt, x, y, z) = (1, 1, 0, 0)

Galilean Transformations

- Physics must work equally well in <u>any</u> reference frame
 - With appropriate coordinate transformations relating frames
 - Includes any 2 frames in relative motion (translation or rotation)
- Newtonian Physics → use "Galilean Transformations":
 - For simplicity, assume the event (0,0,0,0) is same in both frames
- Translation:



For a given event:

$$\begin{aligned} t & ' = t \\ \vec{r} & ' & (t) = \vec{r} & (t) - \vec{R} & (t) \\ \vec{v} & ' & (t) = \vec{v} & (t) - \vec{V} & (t) \\ \vec{a} & ' & (t) = \vec{a} & (t) - \vec{A} & (t) \end{aligned}$$

If **V** = constant:

$$t' = t$$

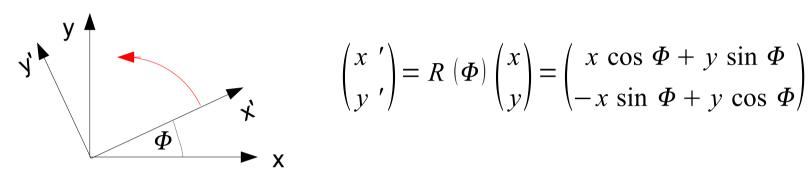
$$\vec{r}'(t) = \vec{r}(t) - \vec{V} t$$

$$\vec{v}'(t) = \vec{v}(t) - \vec{V}$$

$$\vec{a}'(t) = \vec{a}(t)$$

Rotating Reference Frames

Rotation (about z-axis) – Φ now a function of time:



• Using the chain rule: $\begin{pmatrix} v_x \\ v_y \end{pmatrix} = \frac{d}{dt} \left(R \left(\Phi \right) \begin{pmatrix} x \\ y \end{pmatrix} \right) = \left(\frac{dR \left(\Phi \right)}{dt} \begin{pmatrix} x \\ y \end{pmatrix} + R \left(\Phi \right) \begin{pmatrix} v_x \\ v_y \end{pmatrix} \right)$

$$\begin{pmatrix} a_{x} \\ a_{y} \end{pmatrix} = \frac{d}{dt} \begin{pmatrix} v_{x} \\ v_{y} \end{pmatrix} = \left(\frac{d^{2} R (\Phi)}{dt^{2}} \begin{pmatrix} x \\ y \end{pmatrix} + 2 \frac{dR (\Phi)}{dt} \begin{pmatrix} v_{x} \\ v_{y} \end{pmatrix} + R (\Phi) \begin{pmatrix} a_{x} \\ a_{y} \end{pmatrix} \right)$$

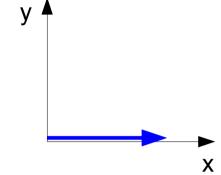
$$\vec{a} = -\dot{\Phi}^{2} R (\Phi) \vec{r} + 2 \frac{d R (\Phi)}{dt} \vec{v} + R (\Phi) \vec{a}$$

Acceleration in a rotating frame (S') depends on:

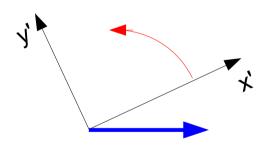
- Position, velocity, and acceleration in frame S
- Contrast this with translating frames (Galilean Transformation)

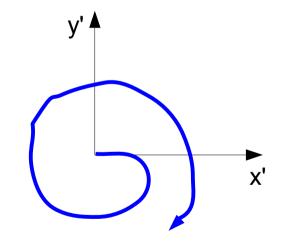
Rotating Reference Frame Example

- Consider a motion path in frame S
 - Moving along x-axis with constant speed v



- S' → Frame rotating at constant angular rate ω
 - Calculate x'(t), y'(t), a'_{x'}(t), a'_{y'}(t) in S'





- In S', path is curved → requires acceleration
 - S/S' will measure different a even with constant rotation rate
 - Physics → still consistent if a can be <u>transformed</u> consistently