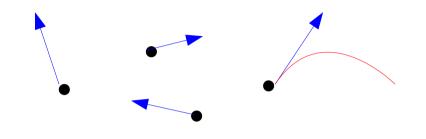
NEWTON'S LAWS

Kinematics vs. Dynamics

- Kinematics \rightarrow describe motion paths mathematically
 - No description of the matter that may travel along motion path
- Dynamics \rightarrow prediction of motion path(s) of matter
 - Requires explanation of how matter interacts \rightarrow "forces"
 - Properties of forces are determined by experiments
 - How does force affect motion? \rightarrow determined by "mass"
- For a given motion path:
 - Particular amount of force required for Object A to travel path
 - Object B (with 2x as much mass) requires 2x as much force

Mathematical Description of Mass

"Point particles"



 Infinitesimally small – each particle traces a motion path

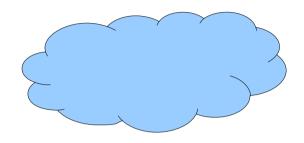
$$mass = m_i$$

• Particle "i" has: $position = \vec{r_i}$

velocity = \vec{v}_i acceleration = \vec{a}_i

Larger objects exist due to
 forces holding particles together

"Mass distribution"



- Mass is a "field" a function which maps every point to the density at that point: ρ(x, y, z)
 m_{total} = ∫ ρ(x, y, z) dx dy dz
- Infinite # of points/events → there is no single motion path
- Requires different type of math

Dirac Delta-Function

- Consider a mass distribution with total mass M
 - In the shape of a line of length $L \rightarrow$ 1-Dimensional distribution

$$x_0 - L/2$$
 $x_0 + L/2$ x $M = \int_{x_0 - L/2}^{x_0 + L/2} \rho(x) dx$

- Imagine shrinking line down to a point particle
 - Without changing its total mass
 - Eventually get "Dirac Delta-Function":

$$\rho(x) = M \ \delta(x - x_0) \equiv M \begin{cases} \infty & at \ x = x_0 \\ 0 & everywhere \ else \end{cases}$$

• **Properties:** $\int_{-\infty}^{\infty} \delta(x-x_0) dx = 1$

$$\int_{-\infty}^{\infty} f(x) \,\delta\left(x - x_0\right) \, dx = f(x_0)$$

Х

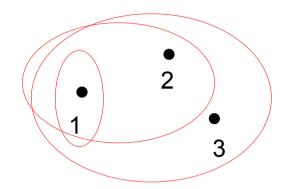
X₀

ρ

- Mathematical "bridge" between point particles and distributions

Physical "Systems"

- First step in studying forces:
 - Identify the matter the forces act upon
 - Called a physical "system"



- Choice of system is arbitrary
 - Could describe forces on particle 1 (exerted by 2 & 3)
 - Or forces on 1 & 2 (exerted by 3) F_{12} is now an internal force
 - Or forces on 1, 2, & 3 (exerted by some outside source)
- Physics \rightarrow must work for <u>any</u> choice of system
 - External forces on system determine motion of system

Center of Mass

- What are the attributes of a physical <u>system</u>?
 - Mass? Yes! $M_{total} = \sum m_i$
 - Volume? No! (systems only include particles, not space)
 - Position? Sort of! (many particles can have many positions)
- Center of Mass (CM)
 - The <u>average</u> position of the mass in a system
 - External forces on a system \rightarrow determine the motion of CM

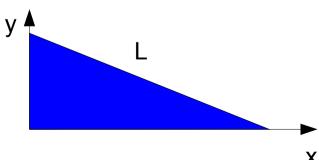
$$\vec{r}_{CM} \equiv \frac{\sum m_i \vec{r}_i}{M_{total}} \longrightarrow \vec{v}_{CM} \equiv \frac{\sum m_i \vec{v}_i}{M_{total}} \longrightarrow \vec{a}_{CM} \equiv \frac{\sum m_i \vec{a}_i}{M_{total}}$$

• For mass distributions: $\vec{r}_{CM} \equiv \frac{\int \vec{r} \, dm}{M_{total}} = \frac{\int \vec{r} \, \rho \, dx \, dy \, dz}{M_{total}}$

<u>Center of Mass Example</u>

- Right triangle with a 30° angle and hypotenuse = L
 - With 3 identical point particles at the vertices
 - Find the position vector of the CM

- Which is uniform along the triangle's surface



y 🚪

Х

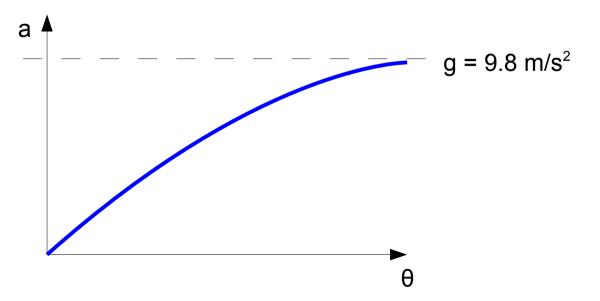
Force and Net Force

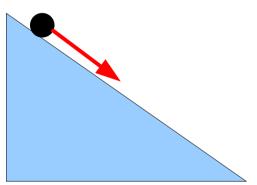
- Observation \rightarrow forces affect CM motion of systems
 - Example: drop a rock force of gravity "pulls" it down
 - With some <u>magnitude</u> and <u>direction</u> \rightarrow force is a <u>vector</u>
- More than one force can act on a system at one time
 - Example: rock on a ramp moves down and to the side
 - Ramp must <u>also</u> be exerting a force!
- Units of force: "Newtons" (N)
- When more than one force acts:

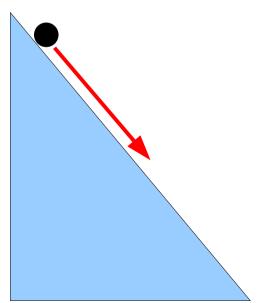
- F_{net} = <u>vector sum</u> of all the forces ("superposition")

Inclined Plane Experiments

- Using inclined planes (ramps), Galileo could:
 - Measure the position of an object at particular times
 - Control the net force on the object
- Experimental results:
 - Constant acceleration for any given ramp
 - Magnitude of acceleration depends on incline







Newton's Laws

• <u>1st Law</u>: $F_{net} = 0 \rightarrow$ velocity of CM remains constant

• 2nd Law:
$$\vec{F}_{net} = m \vec{a}_{CM}$$
 Units: 1 Newton = 1 kg $\frac{m}{s^2}$

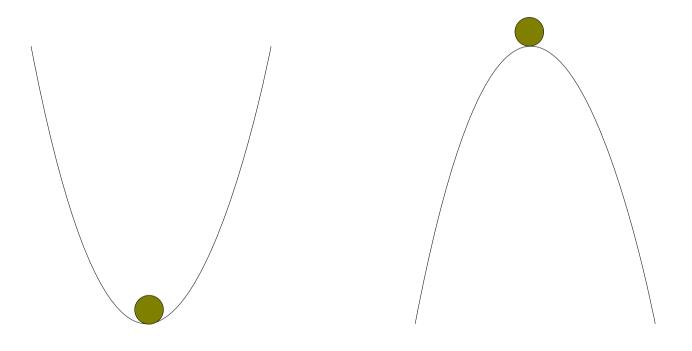
- <u>3rd Law</u>: If an action force F_{AB} is exerted by system A on system B,
 - There is a reaction force F_{BA} exerted by system B on system A

-

- Which is equal in magnitude to F_{AB}
- And opposite in direction to F_{AB}
- <u>Next</u>: Examples of experimentally measured forces

Equilibrium and Stability

• Equilibrium – configuration of system such that $F_{net} = 0$



- Stability disturb system from equilibrium
 - Does net force push it back toward equilibrium?
 - Yes equilibrium is stable; No equilibrium is unstable

Mass and Weight

- "Free fall" only force acting on system is gravity
 - Causes acceleration g in the downward direction (experiment)

- Mass units: kg Weight units: Newtons (or pounds)
 - It is technically incorrect to convert kg to lbs...
 - Because g is not perfectly uniform everywhere on Earth

Internal Forces in an Object

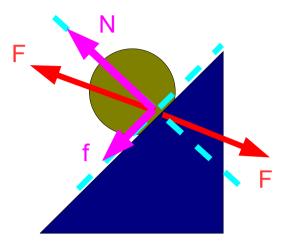
- Newtonian view of solid objects:
 - Particles held together by forces in stable equilibrium
- Forces which can occur inside an object:
 - Tension when object is stretched, it pulls inward on particles
 - Compression when object is compressed, it pushes outward
 - Shear when object is sheared, there is a restoring force
- These are called "elastic forces"
 - Under "normal" conditions:
 - In Physics elastic forces are often modeled by a "spring"

 $F_{x} = -k x$

- k is the "spring constant"
- All elastic forces have limits eventually objects break

Surface Forces

- When 2 surfaces come in contact:
 - Objects undergo compression & shear
 - Producing an action/reaction pair of forces



Convention:

- Component perpendicular to surface is called "normal" force
- Component parallel to surface is called "friction" force
- Static Friction vs. Kinetic Friction:
 - One mathematical model (fairly well supported by experiment):
 - Static surfaces do not move relative to each other $F_{s, max} = \mu_s N$
 - Kinetic surfaces stay in contact, but slide against each other
 - $F_k = \mu_k N$ (independent of sliding speed and surface area)
 - For any 2 materials: $\mu_s \ge \mu_k$ Why must this always be true?

Newton's Law Example

 m_2

θ

m

• Given m_1 , m_2 and θ (all masses begin at rest):

- Calculate acceleration of m_1 (ramp is frictionless) <

- Now give ramp friction coefficients μ_s and μ_k with m₂
 - Calculate acceleration of m_1 as a function of m_1 , m_2 , and θ
 - (will need to use a piecewise function)
 - Sketch a graph of acceleration, vs. m_1 for fixed m_2 and θ

Newton's 2nd Law in Different Frames

- Newton's 2nd Law: $\vec{F}_{net} = m \vec{a}_{CM}$
 - To be correct: must be valid in all reference frames...
 - ...with transformation of acceleration vector handled correctly
- Example: Drag race

- <u>Frames</u>: A = flag dropper, B = race loser, C = race winner
- Apply Newton's 2nd Law to motion of C in reference frame of:

A (standing at starting line)B (in losing call
 $\vec{F}_{road on C tires} = m_C \vec{a}_C$ $\vec{F}_{road on C tires} = m_C \vec{a}_C$ $\vec{F}_{net, C}' = m_C$ $(6,000 N) \hat{i} = (1200 kg) \left(5 \frac{m}{s^2}\right) \hat{i}$ Newton's 2nd L $\vec{F}_{net, C}' = m_C$ $\vec{F}_{net, C}' = m_C$

$$\vec{B} (in \ losing \ car)$$

$$\vec{F}_{net, C} ' = m_C ' \vec{a}_C ' (\vec{a}_C ' = \vec{a}_C - \vec{A}_B)$$

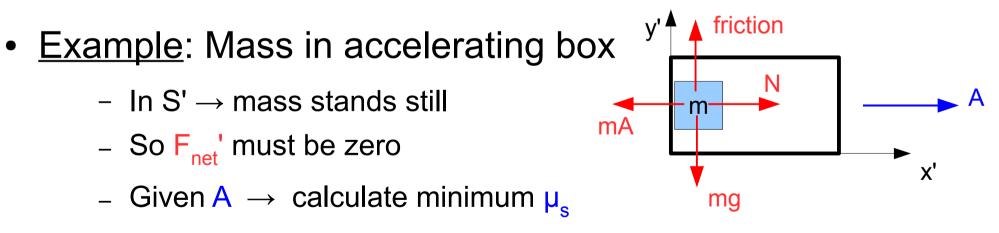
Newton's 2nd Law will only work in this frame if:

 $\vec{F}_{net,C}$ ' = $\vec{F}_{road on C tires}$ - $m_c \vec{A}_B$ What exerts this force?

Х

"Fictitious" Forces

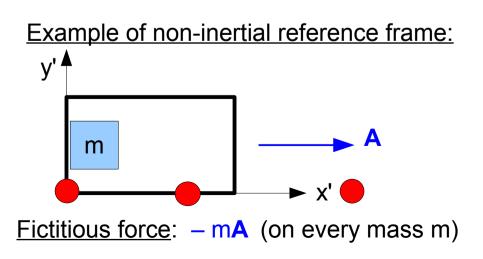
- In some reference frames:
 - Newton's 2nd Law requires inclusion of "extra" forces
 - In addition to contact forces that particles exert on each other
 - These are called "fictitious" forces:
 - Observers in this ref. frame cannot determine source of force



- If box has no windows:
- For which forces can source be determined by measurement?
- Is gravity a "fictitious" force? → "equivalence principle"

Inertial Reference Frames

- Set of reference frames requiring no "fictitious forces":
 - These are called inertial reference frames
 - 2 different inertial frames have a relative velocity (translation)
 - But <u>no</u> relative <u>acceleration</u>!
 - And <u>cannot</u> have a relative rotation rate!
- <u>All</u> inertial reference frames are equally valid
 - The universe does not have a "preferred" reference frame



Thought Experiment:

Light bulbs are arranged to flash as left end of box passes them – once per second.

Do light pulses arrive at right end of box once per second?

Rotating Reference Frames

- Angular Velocity vector $(\vec{\Omega})$
 - Direction: along axis of rotation Magnitude: rotation rate

cent

Х

m

Φ

 Ω – points out of page

- Transform \vec{a} to rotating frame \rightarrow fictitious forces
 - Centrifugal force:
 - Direction: Away from rotation axis (\hat{r} ?)
 - <u>Magnitude</u>: $F'_{cent} = m \Phi^2 r_{\perp axis}$
 - <u>Coriolis force:</u>

$$- \vec{F}'_{Coriolis} = -2 \ m \ \vec{\Omega} \times \vec{v}'$$

- Direction: perpendicular to velocity in rotating frame

F'_{Cor} produces <u>circular</u> motion; F'_{cent} pushes <u>outward</u>

Rotating Reference Frame Examples

- Frictionful disk spinning at constant angular rate $\boldsymbol{\omega}$
 - With mass m stuck on top (at rest in <u>spinning</u> frame)
 - Apply Newton's 2nd Law in these frames:
 - 1) inertial, 2) rotating: $\Omega = \omega$, 3) rotating: $\Omega \neq \omega$
- At some later instant \rightarrow turn off friction
 - Sketch motion of mass in x'y'-plane of $\Omega = \omega$ frame
 - Identify direction of centrifugal & Coriolis force at a few points
- Rock on surface of Earth (say, in SB $\rightarrow 34^{\circ}$ latitude)
 - Does normal force perfectly cancel out weight of rock?
 - Find Coriolis force if you throw rock with speed v:
 - 1) to the North, 2) to the East, 3) to the South, 4) Straight up