SPACE, TIME, & MATTER

Physics – "Statement of Purpose"

• To investigate the nature of 3 fundamental concepts:

- "Newtontian" or "Classical" Physics:
 - treats Space, Time, and Matter as separate entities
- Einstein's "Relativistic" Physics (early 20th century)
 - shows Space, Time, and Matter (energy) are all "intertwined"

History of Physics – (very) Brief Version

- Define ways to measure space, time and matter (units)
 - "Standard" units have improved in precision over the years
 - <u>The "SI" system of units</u>:
 - <u>Space</u>: meter (m)
 - <u>Time</u>: second (s or sec)
 - <u>Matter</u>: kilogram (kg)

- Measure relationship between space, time, and matter
 - In as many situations as possible
 - With as much precision as possible
 - Create/revise theories to predict/explain the results

What is Space?

- A collection of interconnected "points"
 - These are abstract no particular coordinates (yet)
 - Measurement \rightarrow learn about how points are connected
 - <u>Newtonian view</u>:
 - Existence and structure of space is independent of matter
 - Points are infinitesimally small, and infinitely numerous
 - Points are distinguishable, and can be "named": ("A", "B", ...)

Α

R

- What aspects of space can be <u>defined</u> and <u>measured</u>?
 - For 2 particular points A and B, can measure:
 - "distance" between A and B (defining units of length)
 - "direction" from A to B (can be expressed in a variety of ways)
 - Distance and direction together: "displacement vector"

"Building" Geometry

- Using distance, direction, and "if-then" logic:
 - Construct "theorems" \rightarrow test by measurement
 - Use theorems as basis for higher-level theorems
- Example: Pythagorean Theorem
 - If: direction(A, B) perpendicular to direction(B, C)
 - <u>Then</u>: dist(A, B)² + dist(B, C)² = dist(A, C)²
 - Prove it! (Given $A_{square} = L^2 \& A_{triangle} = 0.5 b h$)
- Example: "Curved" Space
 - <u>City A</u>: 1000 km north of city B <u>City C</u>: 1000 km east of city B

B

- Distance(A, C) is not 1414 km \rightarrow need different "geometry"

Measuring Time / Motion

- Newtonian view: Ordered series of "instants"
 - Instants are <u>distinguishable</u>, and can be "named": ("A", "B", ...)
 - Interval between instants A and B \rightarrow same throughout space
 - Instants are infinitesimally short, and infinitely numerous
- Why are time / motion fundamentally linked?
 - How would Julius Caesar measure one second?
 - <u>All</u> of our concepts of time are linked to motions
- <u>Example</u>: Measure pendulum position at <u>one</u> instant
 - Gives no information about its velocity
 - <u>To measure motion</u>: must measure over some interval Δt
 - If Δt is tiny \rightarrow imprecise measurement "uncertainty principle"

Measuring Matter

- "Mathematics" of matter
 - Not intuitively obvious what are the fundamental "elements"?

- <u>Newtonian approach</u>:
 - Elements: "particles" (abstract)
 - Each particle has:
 - 1) # of kilograms of "mass"
 - 2) location (a single point) at every instant of time
 - Particles influence the location of other particles using forces
- Tough to measure mass directly particles are tiny
 - Can measure mass <u>indirectly</u> by measuring force

Matter Distributions

- Another model for matter:
 - Mass of a "particle" can be distributed over many points
 - Pro: Mass need not be infinitely concentrated at one point
 - <u>Con</u>: Mathematical description of motion is more complicated
- "Distributions" vs. "Point Particles"
 - <u>Can be difficult to tell the difference if</u>:
 - 1) Mass of a distribution spans a very small distance
 - 2) Many point particles are tightly packed
- Rock thrown through air
 - Treat as a point particle for describing its flight
 - Treat as a distribution for describing spin, air resistance, etc.