
Complex Numbers

Complex Algebra

The set of complex numbers can be defined as the set of pairs of real
numbers, {(x, y)}, with two operations: (i) addition,

(x1, y1) + (x2, y2) = (x1 + x2, y1 + y2) , (1)

and (ii) complex multiplication,

(x1, y1) · (x2, y2) = (x1 x2 − y1 y2, x1 y2 + x2 y1) . (2)

This two operations define complex algebra.

¦ With the rules(1)-(2), complex numbers include the real numbers as
a subset {(x, 0)} with usual real number algebra. This suggests short-hand
notation (x, 0) ≡ x; in particular: (1, 0) ≡ 1.

¦ Complex algebra features commutativity, distributivity and associa-
tivity.

The two numbers, 1 = (1, 0) and i = (0, 1) play a special role. Each
complex number can be represented in a unique way as [we start using the
notation (x, 0) ≡ x]

(x, y) = x + iy . (3)

¦ Terminology: The number i is called imaginary unity. For the complex
number z = (x, y), the real umbers x and y are called real and imaginary
parts, respectively; corresponding notation is: x = Re z and y = Im z.

The following remarkable property of the number i,

i2 ≡ i · i = −1 , (4)

(in combination with commutativity, distributivity and associativity) ren-
ders representation (3) most convenient for practical algebraic manipulations
with complex numbers.—One treats x, y, and i the same way as the real
numbers.
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Another useful parametrization of complex numbers follows from the
geometrical interpretation of the complex number z = (x, y) as a point in
a 2D plane, referred to in this context as complex plane. Introducing polar
coordinates, the radius r =

√
x2 + y2 and the angle θ = tan−1(y/x), one

gets
x + iy = r(cos θ + i sin θ) . (5)

¦ Terminology and notation: Radius r is called modulus (and also magni-
tude) of the complex number, r = |z|. The angle θ is called phase (and also
argument) of the complex number, θ = arg(z). Note an ambiguity in the
definition of the phase of a complex number. It is defined up to an additive
multiple of 2π.

Since the modulus of a complex number is nothing else than the magni-
tude of corresponding vector, the standard vector inequalities are applicable:

| |z1| − |z2| | ≤ |z1 + z2| ≤ |z1|+ |z2| . (6)

Parametrization in terms of modulus and phase is convenient for multi-
plication, because if z1 = r1(cos θ1 + i sin θ1) and z2 = r2(cos θ2 + i sin θ2),
then

z1z2 = r1r2[cos(θ1 + θ2) + i sin(θ1 + θ2)] . (7)

Polar parametrization is also convenient for the division which is considered
below.

Subtraction and division of complex numbers are defined as the oper-
ations opposite to addition and multiplication, respectively. Division of
complex numbers can be actually reduced to multiplication. But first we
need to introduce one more important operation, complex conjugation. For
each complex number z = x + iy we define its complex conjugate as

z∗ = x− iy (8)

and note that
zz∗ = |z|2 (9)

is a real number. Then for any two complex numbers z1 and z2 the operation
of division can be written as

z1

z2
= |z2|−2z1z

∗
2 . (10)

The validity of this relation is checked by multiplying the right-hand side
by z2. In modulus-phase parametrization, Eq. (10) reads

z1/z2 = (r1/r2) [cos(θ1 − θ2) + i sin(θ1 − θ2)] . (11)
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For the complex fractions, the following statement is true (and easy to
prove):

z1

z2
=

z1 z0

z2 z0
, (12)

where z1, z2, and z0 are arbitrary complex numbers, provided z2 6= 0 and
z0 6= 0. Note that if we take z0 = z∗2 , we reproduce Eq. (10).

Since the operation of complex conjugation plays a crucial part in the
theory of complex numbers, it is important to know how to complex conju-
gate algebraic expressions. This is done by using two simple relations

(z1 + z2)∗ = z∗1 + z∗2 , (13)

(z1 · z2)∗ = z∗1 · z∗2 . (14)

The other useful relations are

z + z∗ = 2 Re z , (15)

z − z∗ = 2 iIm z . (16)

Finally, it is useful to keep in mind that z = z∗ iff z is real, while z = −z∗
iff z is imaginary (‘iff’ means ‘if and only if’).

Problem 1. Establish relations between complex multiplication and inner/outer
vector product: Treating the two pairs, (x1, y1), (x2, y2), as both two vectors in
the xy plane, (x1, y1) = ~a, (x2, y2) = ~b, and two complex numbers, (x1, y1) = a,
(x2, y2) = b, make sure that

~a ·~b = (1/2)(a b∗ + b a∗) , (17)

~a×~b = (i/2)(a b∗ − b a∗) ẑ , (18)

where ẑ is the unit vector along the z-direction.

Functions of a Complex Variable

A complex function w = u + iv of a complex variable z = x + iy is
introduced as a complex-valued function of two real variables, x and y:

w(z) = u(x, y) + iv(x, y) . (19)

Hence, to specify a complex function it is enough to specify two real func-
tions: u(x, y) and v(x, y).
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Partial derivatives are defined as

∂w

∂x
=

∂u

∂x
+ i

∂v

∂x
,

∂w

∂y
=

∂u

∂y
+ i

∂v

∂y
. (20)

We now formally define partials ∂/∂z and ∂/∂z∗ as

∂w

∂z
=

1
2

(
∂w

∂x
− i

∂w

∂y

)
,

∂w

∂z∗
=

1
2

(
∂w

∂x
+ i

∂w

∂y

)
. (21)

The idea behind definitions (21) is in the following observation. Suppose
w(z) is specified not in terms of x and y, but in the form of some fi-
nite algebraic expression or infinite series, w(z, z∗), involving z and z∗. In
this expression one can formally replace complex numbers z and z∗ with
two independent real variables: z → a, z∗ → b and arrive at the func-
tion w(a, b). It is easy to see then from (20)-(21) that ∂w(z, z∗)/∂z is
equal to ∂w(a, b)/∂a, a → z, b → z∗, and ∂w(z, z∗)/∂z∗ is equal to
∂w(a, b)/∂b, a → z, b → z∗. That is with respect to the operations ∂/∂z
and ∂/∂z∗ the variables z and z∗ behave as independent real variables. This
essentially simplifies calculation of partials. [For example, if w(z, z∗) = zz∗,
then ∂w/∂z = z∗ and ∂w/∂z∗ = z.]

Problem 2. Prove the above-mentioned general property of the operations ∂/∂z

and ∂/∂z∗. Hint. Since the formal rules of complex and real algebras are the same,
the standard differentiating rules are applicable to complex-valued functions when
differentiated with respect to x and y.

Consider an infinitesimal variation, δw, of the function w(z, z∗) corre-
sponding to z → z + δz, where δz = δx + iδy (and implying z∗ → z∗ + δz∗,
δz∗ = δx− iδy). As can be readily checked with the definitions (21),

δw = δz
∂w

∂z
+ δz∗

∂w

∂z∗
. (22)

Problem 3. Check Eq. (22).

Note that while δz and δz∗ essentially depend on each other, the expression
(22) formally looks like they were independent variables.

How do we construct complex functions? The simplest way is to take a
real expression involving four arithmetic operations with one (or two) real
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numbers a (and b) and replace in it a with a complex variable z (and b with
z∗). A more powerful way is to use a power series.

A very important sub-set of complex functions is formed by functions
that depend only on z, but not on z∗—in the sense that corresponding real
arithmetic expression (or power series) involves only one variable, a, which
is then replaced with z. Clearly, for all such functions the operation ∂/∂z∗

yields zero.
Examples:

ez =
∞∑

n=0

zn

n!
, (23)

sin z =
∞∑

n=0

(−1)n z2n+1

(2n + 1)!
, cos z =

∞∑

n=0

(−1)n z2n

(2n)!
, (24)

sinh z =
∞∑

n=0

z2n+1

(2n + 1)!
, cosh z =

∞∑

n=0

z2n

(2n)!
, (25)

All the series in (23)-(25) are convergent and the functions are well defined
for any z, coinciding with corresponding real functions at real z. Very im-
portant: The complex functions defined this way feature all the functional
and differential relations characteristic of corresponding real functions, be-
cause (i) these relations are captured algebraically by the power series and
(ii) the real and complex algebras coincide. For example,

ez1+z2 = ez1ez2 , (26)

(ez)α = eαz (27)

(strictly speaking, at this point we can discuss only integer α’s, since we
have not defined yet the notion of a real-valued power function)

∂ez

∂z
= ez , (28)

∂ sin z

∂z
= cos z , (29)

sin(z1 + z2) = sin z1 cos z2 + cos z1 sin z2 , (30)

etc. Quite amazingly, new functional relations arise.
Examples:

eiz = cos z + i sin z , (31)

cos z =
eiz + e−iz

2
= cosh (iz) , sin z =

eiz − e−iz

2i
= −i sinh (iz) , (32)
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cosh z = cos (iz) , sinh z = −i sin (iz) . (33)

Problem 4. Prove Eqs. (31)-(33) by direct comparison of power series.

With the relation (31), the polar representation of a complex number, Eq. (5),
can be written as

z = reiθ , (34)

after which relations (7) and (11) become most transparent.
Now we are in a position to define any real power of a complex number

z = reiθ. By definition,
zα = rα eiαθ . (35)

Note that if α is not integer, then zα is not single valued, because it depends
on the choice of θ, and θ is defined only up to a multiple of 2π. For example,
if we parameterize -1 as

−1 = eiπ , (36)

we get
(−1)1/2 = eiπ/2 = i . (37)

But if we take the parametrization

−1 = e−iπ , (38)

we arrive at
(−1)1/2 = e−iπ/2 = −i . (39)

And both results are equally correct. They simply mean that the equation

z2 = −1 (40)

has two different roots: z = i and z = −i.

Problem 5. Find all complex roots z of the equation

zn = a , (41)

where a = |a|eiθ is some given complex number, and n is some given natural number.
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Solving Harmonic Oscillator Problem with Complex Numbers

The problem of harmonic oscillator plays a very important role in physics,
since it describes small oscillations, characteristic of any stable mechanical
system. In the absence of dissipation and driving forces, the equation of
motion of harmonic oscillator reads

η̈ + ω2
0 η = 0 , (42)

where η ≡ η(t) is a certain (generalized) coordinate, as a function of time;
ω0 is the angular frequency. Mathematically, Eq. (42) is a linear homoge-
neous second-order ordinary differential equation with time-independent co-
efficients. [Homogeneous means zero right-hand side, second-order means no
derivatives higher than second derivative, ordinary means no partial deriva-
tives. Further in this course, we will see that complex numbers yield a
perfect universal tool for solving linear homogeneous ordinary differential
equations (and systems) with constant coefficients. In this chapter, we con-
fine ourselves with only one particular example: harmonic oscillator.]

The trick is to solve for a complex-valued function w(t) satisfying Eq. (42),
and then take its real and imaginary parts. The two have to be the real so-
lutions of Eq. (42). Indeed,

ẅ + ω2
0 w = 0 (43)

implies
ẅ1 + iẅ2 + ω2

0 w1 + iω2
0 w2 = 0 , (44)

where
w1 = Re w , w2 = Im w . (45)

But Eq. (43) is equivalent to two real-valued equations:

ẅ1 + ω2
0 w1 = 0 , ẅ2 + ω2

0 w2 = 0 , (46)

each of which is nothing but Eq. (42). Of course, the crucial question is:
Why is the complex-valued equation simpler than its real-valued counter-
part? And the answer is that with complex-valued equation we can use the
exponential substitution

w = A eλt , (47)

where A and λ are some complex numbers. This substitution reduces
Eq. (43) to a purely algebraic equation for λ

λ2 + ω2
0 = 0 . (48)
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The constant A drops out because of the linearity of the equation. This
means that any A is allowed, provided λ satisfies Eq. (48).

With real numbers, Eq. (48) makes no sense, while with complex num-
bers we readily get two solutions:

λ = ±iω0 , (49)

where without loss of generality we can assume that ω0 ≥ 0. Because of the
linearity of Eq. (43), its general solution is just a sum of special solutions
we just found:

w(t) = A1 eiω0t + A2 e−iω0t , (50)

where A1 and A2 are any complex numbers. To get back to the real-valued
solutions, it is convenient to represent A1 and A2 in the polar form:

A1 = a1 eiϕ1 , A2 = a2 eiϕ2 , (51)

where a1 = |A1| and a2 = |A2|. This yields

w(t) = a1 ei(ω0t+ϕ1) + a2 ei(ϕ2−ω0t) , (52)

and taking real and imaginary parts of this solution, we find

η1(t) = a1 cos(ω0t + ϕ1) + a2 cos(ϕ2 − ω0t) , (53)

η2(t) = a1 sin(ω0t + ϕ1) + a2 sin(ϕ2 − ω0t) . (54)

In fact, the two solutions, η1 and η2 are identical to each other, since sines
can be easily transformed into cosines by using the freedom of choosing ϕ1

and ϕ2. Moreover, each of the two real-valued solution is overdefined in
terms of the number of free constants. For a second-order equation, there
should be only two independent free constants. Still, this overdefined form
is quite convenient since it allows one to get rid of any two constants by
setting them equal to some special values. For example, setting ϕ1 = π/2
or ϕ2 = π/2 transforms corresponding cosine into sine, and vice versa. This
way we get two standard forms of representing the solution:

η(t) = a cos(ω0t− ϕ0) , (55)

and
η(t) = c1 cos(ω0t) + c2 sin(ω0t) . (56)
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Now consider a damped harmonic oscillator:

η̈ + γη̇ + ω2
0 η = 0 , (57)

where γ > 0 is the damping coefficient. The idea of solving this equation is
the same. We find the solution of a complex equation

ẅ + γẇ + ω2
0 w = 0 , (58)

and then take either real or imaginary part of w.
Substitution (47) reduces equation (58) to the algebraic equation

λ2 + γλ + ω2
0 = 0 . (59)

Depending on the strength of the damping term, the two roots of the equa-
tion (59) are either real,

λ1,2 = −γ

2
±

√
(γ/2)2 − ω2

0 (γ > 2ω0) , (60)

or complex,

λ1,2 = −γ

2
± i

√
ω2

0 − (γ/2)2 (γ < 2ω0) . (61)

The real roots that take place at γ > 2ω0 correspond to so-called over-
damped regime. Actually, in this case we do not need to use the complex
substitution. The exponentials turn out to be real, and we immediately
write down the solution in the form of two decaying terms

η(t) = c1 e−(γ/2+
√

(γ/2)2−ω2
0)t + c2 e−(γ/2−

√
(γ/2)2−ω2

0)t , (62)

where c1 and c2 are real coefficients.
The case γ < 2ω0 is the so-called underdamped regime. Here we deal

with an essentially complex solution

w(t) = A1 eλ1t + A2 eλ2t , (63)

which we parameterize as

w(t) = e−γt/2 [a1 ei(ω̃t+ϕ1) + a2 ei(ϕ2−ω̃t)] , (64)

where
ω̃ =

√
ω2

0 − (γ/2)2 , (65)
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and a1 = |A1|, a2 = |A2|; ϕ1 and ϕ2 are the phases of A1 and A2, respec-
tively.

Taking real and imaginary parts of the complex solution, we get two real
solutions

η1(t) = e−γt/2 [a1 cos(ω̃t + ϕ1) + a2 cos(ϕ2 − ω̃t)] , (66)

η2(t) = e−γt/2 [a1 sin(ω̃t + ϕ1) + a2 sin(ϕ2 − ω̃t)] . (67)

The two are identical to each other because of too many free constants.
Once again we can use this freedom to select this or that particular form of
parametrization. The two frequently used forms are

η(t) = ae−γt/2 cos(ω̃t− ϕ0) , (68)

and
η(t) = e−γt/2 [c1 cos(ω̃t) + c2 sin(ω̃t)] . (69)

We see that the underdamped regime is reminiscent of the regime without
damping. The new qualitative feature is vanishing of the amplitude of os-
cillations with time. Interestingly enough, the damping term changes the
frequency of oscillations.

Finally, we consider the so-called driven motion of harmonic oscillator,
when the is an external periodic force acting on the system. The equation
of motion reads

η̈ + γη̇ + ω2
0 η = f(t) , (70)

with
f(t) = a cosωt . (71)

A nice feature of this equation is that its left-hand side is linear. This allows
us to look for a general solution in the form of a sum of a general solution
of corresponding homogeneous equation (that is the equation with f ≡ 0),
and any special solution of the given equation. Since we have already found
the general solution of the homogeneous equation, we just need to find some
particular solution of the equation (70). We start with noting that

f(t) = Re a eiωt . (72)

Hence, if we find any particular solution to the complex equation

ẅ + γẇ + ω2
0 w = a eiωt (73)
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and then take its real part, we will get what we need: a particular solution
to the equation (70). The form of the equation suggests the exponential
substitution

w = B eiωt . (74)

Note that now the angular frequency ω is not a free parameter. It comes
from the frequency of the external force. The only free parameter is the
amplitude B.

The substitution reduces Eq. (73) to algebraic equation for B:

B (ω2
0 − ω2 + iγω) = a . (75)

We thus have

B =
a

ω2
0 − ω2 + iγω

=
a e−iϕ0

√
(ω2

0 − ω2)2 + γ2 ω2
, (76)

where
ϕ0 = tan−1 γω

ω2
0 − ω2

. (77)

[Polar representation for the complex number B proves most convenient.]
Finally, taking the real part of the complex solution w we get our real
solution

η(t) =
a√

(ω2
0 − ω2)2 + γ2 ω2

cos(ωt− ϕ0) . (78)

Let us discuss the physics behind the solution (78). First, it is worth
noting that as t goes to infinity, only this particular solution survives, since
the general equation of the homogeneous equation (exponentially) decays
with time. Secondly, it is important that the system oscillates with the
frequency of the driving force, its own frequency being not relevant at large
t. It is also important that there is a phase shift ϕ0 between oscillations of
the force and the response of the system.

If γ ¿ ω0, then the amplitude |B| has a peaked shape with the charac-
teristic width of the order of γ. The resonance takes place at the frequency
ωR ≈ ω0 and the amplitude at resonance is perfectly approximated by the
value of |B| at ω = ω0:

|B|R ≈ a

ω0γ
(γ ¿ ω0) . (79)

With increasing γ the peak becomes broader and its amplitude decreases.
At γ ∼ ω0 the position of the peak significantly shifts from ω0 to lower
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frequencies, as is seen from the exact formula for the resonance frequency
(the frequency corresponding to the maximal |B|):

ωR =
√

ω2
0 − γ2/2 . (80)

From this relation we also see that the position of the peak reaches zero
frequency at γ =

√
2ω0.

Problem 6. Derive Eq. (80) and find the exact relation for |B|R. Show that at
γ >

√
2 ω0 the maximal |B| corresponds to ω = 0, and |B| monotonically decreases

with increasing ω.

Charged Particle in Homogeneous Magnetic Field

Consider a particle of mass m and electric charge q, moving in a homo-
geneous magnetic field B. The equation of motion reads

ma = F , (81)

where a = v̇ = r̈ is the acceleration (r is the radius vector and v is the
velocity), and

F = q v ×B . (82)

Selecting z-axis in the direction of B, we have

v̇ = ω0v × êz , (83)

where
ω0 =

qB

m
. (84)

Writing Eq. (83) in components we get

v̇z = 0 , (85)

v̇x = ω0 vy , (86)

v̇y = −ω0 vx . (87)

Our first observation is that the motion along the z-axis decouples from
the xy-motion, and is actually trivial: The velocity vz is constant, hence
z(t) = z0 + vzt.
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Now we can forget about the z-coordinate and concentrate on the xy-
motion. Introducing the complex variable

w = vx + ivy , (88)

we note that the two equations, (86) and (87), are actually equivalent to
one very simple complex equation

i ẇ = ω0 w . (89)

This equation is immediately solved by the exponential substitution

w = A eλt , (90)

leading to a trivial algebraic equation for λ:

iλ = ω0 . (91)

Parameterizing A = aeiϕ, we have

w = aei(ϕ−ω0t) , (92)

and returning back to vx and vy, by taking real and imaginary parts, we
find

vx = a cos(ω0t− ϕ) , (93)

vy = −a sin(ω0t− ϕ) . (94)

To find the coordinates we can simply integrate the expressions (93)-(94)
with respect to time. Alternatively, we can integrate the complex solution
(92). Introducing the complex variable

R = x + iy , (95)

which encodes x and y coordinates in its real and imaginary parts, and
noting that

Ṙ = w ⇒ R =
∫ t

0
w(t′)dt′ + R0 , (96)

where R0 = R(t = 0), we get

R(t) = a

∫ t

0
ei(ϕ−ω0t′)dt′ + R0 . (97)
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Problem 7. Find R(t) by performing the integral (97). Note that the rules of inte-
gration of complex-valued functions with respect to real variables are absolutely the
same as for corresponding real-valued functions. Compare the real and imaginary
parts of your result for R(t) with the results of direct integration of the expressions
(93)-(94) with respect to t. Show that the trajectory of the particle in the xy plane
is a circle.
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