
Separation of Variables in Linear PDE

Now we apply the theory of Hilbert spaces to linear differential equations
with partial derivatives (PDE). We start with a particular example, the
one-dimensional (1D) wave equation

∂2u

∂t2
= c2 ∂2u

∂x2
, (1)

where physical interpretations of the function u ≡ u(x, t) (of coordinate x
and time t), and the velocity, c, depend on a particular problem. To be
specific, we can think of u as a perpendicular displacement of a string in xy
plane, attached by two ends; the x axis is along the string. Without loss of
generality, we set c = 1, since this just corresponds to properly re-scaling
t. The fact that the two ends, x = a and x = b, of the string are fixed is
expressed by the boundary conditions:

u(a, t) = u(b, t) = 0 . (2)

We also need to specify particular initial conditions for the function and its
time derivative:

u(x, 0) = g1(x) , u̇(x, 0) = g2(x) . (3)

Note an asymmetry between the variables x and t. With respect to t we
have a Cauchy-type problem with initial conditions, while with respect to x
we are dealing with a boundary value problem. That is why we will treat x
and t differently. With respect to the variable x, we will look at u(x, t) as if
it is a vector of the space L2[a, b] (that depends on t as a parameter):

u(x, t) ≡ |u(t)〉 . (4)

In the vector notation, Eq. (74) has the form

d2

dt2
|u(t)〉 = L |u(t)〉 , (5)

where L is a linear operator—in our case L = ∆ ≡ ∂2/∂x2 is the Laplace
operator.

The following circumstances are crucial:
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(i) Within the space L2[a, b] we can introduce a subspace ν̃ of functions that
have second derivatives and satisfy the conditions (2).
(ii) The subspace ν̃ is dense in L2[a, b], which means that any vector in
L2[a, b] can be approximated with any given accuracy by a vector from ν̃,
and, correspondingly, any orthonormal basis (ONB) in ν̃ is automatically
an ONB for the whole Hilbert space L2[a, b].
(iii) Operator L is well-defined and self-adjoint in ν̃, and thus there exists
an ONB consisting of the eigenvectors of L.

Comments. The fact that ν̃ is a vector space is easily seen. The statement
that Laplace operator ∆ = ∂2/∂x2 is self-adjoint in ν̃ is checked by doing
integrals by parts with (2) taken into account (we use sub-script notation
for partial derivatives):

〈f |∆|g〉 =
∫ b

a
f∗gxx dx = f∗gx |ba −

∫ b

a
f∗xgx dx =

= f∗gx |ba −f∗xg |ba +
∫ b

a
f∗xx g dx =

∫ b

a
f∗xx g dx = 〈∆f |g〉 . (6)

Here f and g are two functions belonging to ν̃, which by definition means
that they obey the boundary conditions (2), and thus the boundary terms
in (6) are equal to zero.

We have already discussed that two eigenvectors of a self-adjoint linear
operator are automatically orthogonal if they correspond to different eigen-
values. The eigenvectors of one and the same eigenvalue are not necessarily
orthogonal, but they form a vector subspace and thus can be orthonormal-
ized by Gram-Schmidt procedure.

It is a serious problem, however, to prove the completeness of the system
of eigenvectors of a Hermitian operator in an infinite-dimensional space.
The proof goes beyond the present course, and below we will be taking for
granted—trusting our mathematician colleagues—that for any self-adjoint
differential operator there exists an orthonormalized eigenvector set that
forms an ONB in L2[a, b].

Once we know that there exists an ONB of eigenvectors of ∆, we can find
these vectors explicitly by just solving the second-order ordinary differential
equation

e′′(x) = λ e(x) , (7)

with proper boundary conditions, which in our case are

e(a) = e(b) = 0 . (8)
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The general solution of (7) is a sine/cosine function for a negative λ,

e(x) = A sin(x
√
−λ + θ0) (λ < 0) , (9)

an exponential function for a positive λ,

e(x) = Bex
√

λ + Ce−x
√

λ (λ > 0) (10)

and a linear function for λ = 0,

e(x) = D + Ex (λ = 0) . (11)

With an exponential function, however, the only way to satisfy the boundary
conditions is to have B = C = 0, which is a trivial solution (zero vector).
In the case of λ = 0 the solution is also trivial: D = E = 0.

Hence, all the eigenvalues are negative, and we need to examine the
solution (9). Without loss of generality, set a = 0 and b = 1.—This can be
always achieved by shifting and re-scaling x. Then

e(0) = 0 ⇒ sin θ0 = 0 ⇒ θ0 = 0 . (12)

(The solution θ0 = π corresponds to just changing the sign of A.) Now we
need to satisfy the second boundary condition:

e(1) = 0 ⇒ sin(
√
−λ) = 0 ⇒

√
−λ = πm , (13)

where m is an integer. Noting that m → −m does not produce a new linear
independent vector, we have to confine ourselves to m > 0. Hence,

λm = −π2m2 , m = 1, 2, 3, . . . . (14)

The eigenfunctions are

em(x) ∝ sin(πmx) , m = 1, 2, 3, . . . . (15)

They are automatically orthogonal, since there is only one function for any
eigenvalue. The normalization condition is

∫ 1

0
e2
m(x) dx = 1 , (16)

and we finally get

em(x) =
√

2 sin(πmx) , m = 1, 2, 3 . . . . (17)
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Now we have an ONB and can look for a solution of the vector equation
(5) in the form of the expansion

|u(t)〉 =
∞∑

m=1

um(t) |em〉 , (18)

where um(t) are time-dependent Fourier coefficients. We plug this into (5)
and (3) and form an inner product with an eigenvector |em〉. Taking advan-
tage of the fact that we are dealing with the eigenvectors of the operator L,
we get

üm(t) = λmum(t) , (19)

with

um(0) = 〈em|g1〉 =
∫ 1

0
em(x) g1(x) dx , (20)

u̇m(0) = 〈em|g2〉 =
∫ 1

0
em(x) g2(x) dx . (21)

For each um(t) we have an independent equation (19)—an ordinary second-
order differential equation—with the initial conditions given by (20) and
(48).

Since all λ’s are negative, each of Eqs. (19) is just a harmonic oscillator
with the frequency

ωm =
√
−λm = πm . (22)

We have already considered this problem in our course, and thus just write
down the answer satisfying given initial conditions:

um(t) = um(0) cos(ωmt) + (u̇m(0)/ωm) sin(ωmt) , (23)

where for each m the values of um(0) and u̇m(0) are obtained by doing
integrals (20) and (48), respectively. The solution to the whole problem
thus reads:

u(x, t) =
∞∑

m=1

[Am cos(πmt) + Bm sin(πmt)] sin(πmx) , (24)

Am = 2
∫ 1

0
g1(x) sin(πmx)dx , (25)

Bm = (2/πm)
∫ 1

0
g2(x) sin(πmx)dx . (26)
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The solution (24) has the form of a sum of products of functions of t and
x. In this connection, the method is often referred to as the method of sep-
aration of variables—x and t in our case. Note, however, that x and t were
treated absolutely differently.

Heat equation. Now consider the heat equation

∂u

∂t
= κ

∂2u

∂x2
+ f , (27)

where u ≡ u(x, t) is the temperature as a function of coordinate x and time
t; the parameter κ > 0 is the thermal diffusivity; f ≡ f(x, t) is the heat
transferred to (if f > 0)/removed from (if f < 0) the system per unit time
and per unit length. [Below we set κ = 1, which can always be done by
rescaling t and f .] We assume that our system is finite: x ∈ [a, b]. To
complete the statement of the problem, we need the initial condition

u(x, 0) = g(x) , (28)

and the boundary conditions at x = a and x = b. To be specific, we assume
that our system is thermally isolated at both ends. This means that there
is no heat flow at x = a and x = b, and—since the heat flow is proportional
to the temperature gradient—we have

ux(a, t) = ux(b, t) = 0 . (29)

Here we use a convenient notation ux ≡ ∂u/∂x.
Mathematically, the procedure is quite similar to what we did with the

wave equation. We identify the function u(x, t) and f(x, t) with (time-
dependent) vectors:

u(x, t) ≡ |u(t)〉 , f(x, t) ≡ |f(t)〉 . (30)

In the vector notation, Eq. (27) has the form

d

dt
|u(t)〉 = L |u(t)〉+ |f(t)〉 , (31)

where L = ∆ ≡ ∂2/∂x2 is the Laplace operator.

Once again we identify the crucial circumstances:
(i) Within the space L2[a, b] one can introduce a subspace ν̃ of functions that
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have second derivatives and satisfy the conditions (29).
(ii) The subspace ν̃ is dense in L2[a, b], which means that any vector in
L2[a, b] can be approximated with any given accuracy by a vector from ν̃,
and, correspondingly, any orthonormal basis (ONB) in ν̃ is automatically
an ONB for the whole Hilbert space L2[a, b].
(iii) Operator L is well-defined and self-adjoint in ν̃, and thus there exists
an ONB consisting of the eigenvectors of L.

The fact that ν̃ is a vector space is readily seen. The statement that Laplace
operator ∆ = ∂2/∂x2 is self-adjoint in ν̃ is checked by doing integrals by
parts with (29) taken into account (we use shorthand notation for partial
derivatives):

〈f |∆|g〉 =
∫ b

a
f∗gxx dx = f∗gx |ba −

∫ b

a
f∗xgx dx =

= f∗gx |ba −f∗xg |ba +
∫ b

a
f∗xx g dx =

∫ b

a
f∗xx g dx = 〈∆f |g〉 . (32)

Here f and g are two functions from ν̃. They obey the boundary conditions
(29), and thus the boundary terms in (32) are equal to zero.

Now we construct an ONB of eigenvectors of ∆ by solving the second-
order ordinary differential equation

e′′(x) = λ e(x) , (33)

with proper boundary conditions, which in our case are

e′(a) = e′(b) = 0 . (34)

The general solution of (33) is a sine/cosine function for a negative λ,

e(x) = A cos(x
√
−λ + θ0) (λ < 0) , (35)

an exponential function for a positive λ,

e(x) = Bex
√

λ + Ce−x
√

λ (λ > 0) (36)

and a linear function for λ = 0,

e(x) = D + Ex (λ = 0) . (37)

With an exponential function, however, the only way to satisfy the boundary
conditions is to have B = C = 0, which is a trivial solution (zero vector).

6



In the case of λ = 0 we do have a non-trivial eigenvector: E = 0, D 6= 0.
Hence, all the eigenvalues except for λ0 = 0 are negative, and we need to
examine the solution (35) to find them with corresponding eigenvectors. For
definiteness, set a = 0 and b = 1. Then

e′(0) = 0 ⇒ sin θ0 = 0 ⇒ θ0 = 0 . (38)

(The solution θ0 = π corresponds to just changing the sign of A.) Now we
need to satisfy the second boundary condition:

e′(1) = 0 ⇒ sin(
√
−λ) = 0 ⇒

√
−λ = πm , (39)

where m is an integer. Noting that m → −m does not produce a new linear
independent vector, we have to confine ourselves to m ≥ 0. Hence,

λm = −π2m2 , m = 0, 1, 2, . . . . (40)

The eigenfunctions are

em(x) ∝ cos(πmx) , m = 0, 1, 2, . . . . (41)

They are automatically orthogonal, since there is only one function for any
eigenvalue. The normalization condition is

∫ 1

0
e2
m(x) dx = 1 , (42)

and we finally get
e0(x) = 1 , (43)

em(x) =
√

2 cos(πmx) , m = 1, 2, 3 . . . . (44)

Now we have an ONB and can look for a solution of the vector equation
(31) in the form of the expansion

|u(t)〉 =
∞∑

m=0

um(t) |em〉 , (45)

where um(t) are time-dependent Fourier coefficients. We plug this into (31)
and (28) and form an inner product with an eigenvector |em〉. Taking ad-
vantage of the fact that we are dealing with the eigenvectors of the operator
L, we get

u̇m(t) = λmum(t) + fm(t) , (46)
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where

fm(t) = 〈em|f〉 =
∫ 1

0
em(x) f(x, t) dx , (47)

and

um(0) = 〈em|g〉 =
∫ 1

0
em(x) g(x) dx . (48)

For each um(t) we have an independent equation (46)—an ordinary first-
order differential equation—with the initial condition (48).

For simplicity, consider the case f = 0. The solution for um is

um(t) = um(0) eλmt , (49)

and we ultimately have

u(x, t) = g0 +
∞∑

m=1

gm e−π2m2t cos(πmx) , (50)

g0 =
∫ 1

0
g(x) dx , (51)

gm = 2
∫ 1

0
g(x) cos(πmx) dx , m = 1, 2, 3, . . . (52)

Consider now the case of time-independent f ≡ f(x), and find the
asymptotic solution at t → ∞. For any m > 0 the asymptotic solution
of Eq. (46) is time-independent:

0 = λmum + fm ⇒ um = −fm/λm (m > 0) . (53)

The case of m = 0 is a special one, since λ0 = 0. Here we have

u̇0(t) = f0 ⇒ u0(t) = g0 + f0 t . (54)

If f0 ≡
∫ 1
0 f(x)dx = 0, then u0 is time-independent and is equal to g0—it

just remembers its initial condition. But if f0 6= 0, then, asymptotically,
there is a linear increase/decrease of u0.

We can summarize the above-discussed treatment of linear partial dif-
ferential equations with Hermitian differential operator in the following al-
gorithm.
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Step 1.—Not necessary, but strongly recommended. Shift and/or rescale
the variable x in such a way that [a, b] → [0, 1], or [a, b] → [−1, 1]. Rescale
the variable t so that to remove (reduce the number of) dimensional con-
stants (like κ, c2, etc.).

Step 2. Check whether the boundary conditions are canonical or not.
Canonical boundary conditions imply that (i) the set of functions obey-
ing them is a vector space, (ii) spatial differential operator is a Hermitian
operator in this vector space.

If boundary conditions are not canonical, render them canonical by sub-
stituting u(x, t) = ũ(x, t) + u1(x, t) with an appropriate u1(x, t).

Step 3. Construct eigenvector ONB and find corresponding eigenvalues of
the spatial differential operator. Make sure that there is no double counting
of one and the same eigenvector. If there are more than one vectors cor-
responding to one and the same eigenvalue, and these are not orthogonal,
orthonormalize them by Gram-Schmidt procedure.

Step 4. Look for the solution of the given PDE in the form of the Fourier
series with respect to obtained ONB.—Plug the expansion into PDE, take
into account that the basis vectors are the eigenvectors of the spatial differ-
ential operator, and form the inner products of the l.h.s. and r.h.s. of PDE
with the basis vectors. This will yield an independent ordinary differential
equation for each Fourier coefficient as a function of time.

If there is no time-dependence, the equations are just algebraic ones.
Solve them and go directly to the step 7.

Step 5. Obtain the initial conditions for these differential equations by
forming inner products of the basis vectors with the initial condition(s).

Step 6. Solve the differential equations with the initial conditions.

Step 7. Write down the answer. Restore original units of t and x, if
necessary.

Problem 19. Consider the heat equation

ut = uxx , (55)

u = u(x, t), x ∈ [0, 1], with the boundary conditions (note the derivative in the first
one)

ux(0, t) = 0 , u(1, t) = 0 (56)
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and the initial condition
u(x, 0) = 1 . (57)

(a) Make sure that the boundary conditions are canonical.
(b) Construct the orthonormal basis of the eigenfunctions of the Laplace operator
in the space of functions obeying the boundary conditions (56).
(c) Find the solution u(x, t) of the problem (55)-(57) in the form of the Fourier
series in terms of the constructed ONB.

Problem 20. Find the solution u(x), x ∈ [0, 1]—in the form of the Fourier series in
terms of the eigenfunctions of the Laplace operator—of the stationary heat equation

uxx + f(x) = 0 , (58)

f(x) =
{

1 , x ∈ [0, 0.5) ,
0 , x ∈ [0.5, 1] ,

(59)

u(0) = u(1) = 0 . (60)

Problem 21. The wavefunction ψ(x, t) of a 1D quantum particle living on a ring
of circumference L obeys Schrödinger equation

ih̄ψt = − h̄2ψxx

2m
, x ∈ [0, L] , (61)

with periodic boundary conditions (because of the ring topology):

ψ(0, t) = ψ(L, t) ψx(0, t) = ψx(L, t) . (62)

At t = 0 the wavefunction is

ψ(x, 0) =
{

(2/L)1/2 , x ∈ [0, L/2] ,
0 , x ∈ (L/2, L) .

(63)

Solve for ψ(x, t). Do not forget that in contrast to heat and wave equations, the
function ψ is complex.

Now we would like to generalize the above-discussed treatment. There are
three issues to be addressed: (i) the form of the time-differential term, (ii)
the form of the differential operator L, and (iii) the form of the boundary
conditions under which we can introduce a vector subspace ν̃ for the solu-
tions with the operator L being Hermitian for all |u〉 ∈ ν̃.

Form of the time-differential term. The only requirement here is that this
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term is linear.—Otherwise, the series expansion makes little sense. Hence,
we can work with any equation of the form

D |u(t)〉 = L |u(t)〉+ |f(t)〉 , (64)

where D is any linear time-differential operator, or just zero.

Sturm-Liouville operator. The general form of a second-order real differential
operator which proves Hermitian under appropriate boundary conditions is
as follows.

L =
1

w(x)

[
∂

∂x
p(x)

∂

∂x
− q(x)

]
, (65)

where w, p, and q are real, and also w > 0. It is the Sturm-Liouville operator.
The inner product now is defined with the weight function w(x), and that
is why we need the requirement w > 0. Doing the integrals by parts—in
complete analogy with Eq. (6)—we get

〈f |L|g〉 = pf∗gx |ba −pf∗xg |ba + 〈Lf |g〉 . (66)

We see that the operator L is Hermitian in the subspace ν̃ if for any |f〉, |g〉 ∈
ν̃ the boundary terms in the r.h.s. of (66) are zero. This can be achieved if
∀ |f〉 ∈ ν̃ the following condition is satisfied

[ (f(a) = 0) or (fx(a) = 0) or (fx(a)/f(a) = ξa) or (p(a) = 0) ] and

[ (f(b) = 0) or (fx(b) = 0) or (fx(b)/f(b) = ξb) or (p(b) = 0) ] . (67)

Here ξa and ξb are f -independent constants. In the case p(a) = 0 [p(b) = 0]
the boundary condition also implies that f(a) [f(b)] is finite at x → a [x →
b], and this is indeed a condition, because in this case divergent solutions
appear. This boundary condition excludes them.

The operator L is Hermitian also in the periodic case:

p(a) = p(b), f(a) = f(b), fx(a) = fx(b) . (68)

We will refer to the boundary conditions (67) and (68) as canonical. If either
(67) or (68) takes place, the eigenfunctions ej(x) and eigenvalues λj of the
operator L are found by solving the Sturm-Liouville equation

∂

∂x
p

∂u

∂x
− qu = λwu . (69)

Note (check) that any operator

L = r(x)
∂2

∂x2
+ s(x)

∂

∂x
+ z(x) (70)
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with real r, s, z and s, r > 0 can be written in the form (65), with

p(x) = exp
[∫ x

a
dx′ s(x′)/r(x′)

]
, w = p/r , q = −zw . (71)

Below we list some characteristic 1D equations which can be solved by
the method described above under the canonical boundary conditions.

ut = κuxx + f(x, t) (Heat/diffusion equation) , (72)

iut = −uxx + q(x) u (Schrödinger equation) (73)

(we use the units h̄ = 2m = 1),

utt = c2uxx + f(x, t) (Wave equation) , (74)

where c is the wave velocity and f is an external force, and

uxx = f(x) (Poisson equation) . (75)

Non-canonical boundary conditions. If the boundary conditions are non-
canonical, then a generic prescription is to subtract from the function u(x, t)
some particular function u1(x, t), so that the difference ũ(x, t) = u(x, t) −
u1(x, t) satisfies one of the canonical boundary conditions. Clearly, this
subtraction will result only in changing the form of the function f(x, t). We
illustrate this idea by the following example. Let

u(a, t) = µ(t) , ux(b, t) = η(t) . (76)

Now if we write
u(x, t) = ũ(x, t) + u1(x, t) , (77)

where
u1(x, t) = µ(t) + (x− a) η(t) , (78)

then for the function ũ(x, t) we get

ũ(a, t) = 0 , ũx(b, t) = 0 , (79)

which are the canonical boundary conditions. In particular, if u(x, t) is
supposed to satisfy the heat equation

ut = uxx + f , (80)
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then for the function ũ we will have

ũt = ũxx + f̃ , (81)

with

f̃(x, t) = f(x, t) +
∂2u1

∂x2
− ∂u1

∂t
. (82)

That is
f̃(x, t) = f(x, t)− µ̇(t)− (x− a) η̇(t) . (83)

Issues of Convergence. Gibbs Phenomenon

When constructing ONB of eigenfunctions of Sturm-Liouville operator, we
are dealing with a vector space ν̃ defined by the (canonical) boundary con-
ditions of a given equation. Is this requirement really crucial? Indeed, any
ONB in the Hilbert space L2[a, b] can be used for expanding any function
L2[a, b]. So why don’t we use ONB corresponding to, say, periodic bound-
ary conditions for expanding a function u satisfying the conditions u(a) = 0,
ux(b) = 0, or vice versa?

The point is that the convergence in this case will be, generally speaking,
almost everywhere, rather than every where. And this is really crucial, be-
cause the central step of the algorithm of solving PDE is the interchanging
the orders of summation and differentiation when acting with the Sturm-
Liouville operator on the Fourier series. This is legitimate only if the series
converges everywhere rather than almost everywhere.

Gibbs phenomenon. Consider the solution (50)-(52) to the problem (27)-
(29) in the case when the initial condition reads

g(x) =

{
1 , x ∈ [0, 0.5] ,
0 , x ∈ (0.5, 1] .

(84)

A comment is in order here concerning the consistency of this discontinuous
initial condition with PDE implying existence of the derivatives. Actually,
the initial condition (84) is understood as a limit of a smooth, but arbitrarily
steep function. And the solution (50)-(52) is just what we need for taking
this limit, since it contains only the integrals of the function g(x), which are
well defined even for a discontinuous function.
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Even if the evolution of u(x) starts from a stepwise initial condition
(84), at any finite t the solution is smooth. However, the convergence of the
series towards this smooth solution is rather peculiar. Let us explore this
convergence. Explicitly doing the integrals, we get

g0 = 1/2 , (85)

gm =
∫ 1/2

0
cos(πmx) dx =

{
(−1)n/πm , m = 2n + 1 ,
0 , m = 2n

(86)

[here n is integer] and arrive at the final answer

u(x, t) = 1/2 + (2/π)
∞∑

n=0

(−1)n

2n + 1
e−π2(2n+1)2t cos[(2n + 1)πx] . (87)

In Figs. 1 and 2 we plot some partial sums of the series (87), with nmax

being the maximal n in the sum. We see that at t = 0 the convergence
is not homogeneous: No matter how large is nmax, there is always a finite
amplitude overshoot in the vicinity of the point x = 0.5. Such an overshoot
is generic for Fourier expansions of stepwise functions. It is called Gibbs
phenomenon. In Fig. 2 we present truncated series at a very small, but finite
t. We see a qualitative difference. While at small enough nmax the result
is indistinguishable from that of t = 0, at larger nmax Gibbs phenomenon
disappears.

A similar situation with Gibbs phenomenon arises when the initial con-
dition does not satisfy one or both boundary conditions. See, for example,
problem 20. The solution will satisfy the boundary conditions at any t > 0,
but not at t = 0. Correspondingly, at the boundary at which the boundary
condition is not satisfied at t = 0, the Gibbs phenomenon in the Fourier
series (but not in real life!) will be seen in the limit of small enough times.
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Figure 1: The t = 0 case.
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Figure 2: The t = 0.00006 case. At this time moment the cross-over from
Gibbs-phenomenon behavior to a smooth behavior takes place at nmax ∼ 25.
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