
Fourier Series and Integral

Fourier series for periodic functions

Consider the space of doubly differentiable functions of one variable x defined
within the interval x ∈ [−L/2, L/2]. In this space, Laplace operator is
Hermitian and its eigenfunctions {en(x)}, n = 1, 2, 3, . . . defined as

∂2en

∂x2
= λn en , (1)

en(L/2) = en(−L/2) , e′n(L/2) = e′n(−L/2) (2)

form an ONB. With an exception for λ = 0, each eigenvalue λ turns out to
be doubly degenerate, so that there are many ways of choosing the ONB.
Let us consider

en(x) = eiknx/
√

L , (3)

λn = −k2
n, kn =

2πn

L
, n = 0,±1,±2, . . . . (4)

For any function f(x) ∈ L2[−L/2, L/2], the Fourier series with respect to
the ONB {en(x)} is

f(x) = L−1/2
∞∑

n=−∞
fn eiknx , (5)

where

fn = L−1/2
∫ L/2

−L/2
f(x)e−iknxdx . (6)

In practice, it is not convenient to keep the factor L−1/2 in both relations.
We thus redefine fn as fn → L−1/2fn to get

f(x) = L−1
∞∑

n=−∞
fn eiknx , (7)

fn =
∫ L/2

−L/2
f(x)e−iknxdx . (8)

If f(x) is real, the series can be actually rewritten in terms of sines and
cosines. To this end we note that from (8) it follows that

f−n = f∗n , if Im f(x) ≡ 0 , (9)
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and we thus have

f(x) =
f0

L
+ L−1

∞∑

n=1

[fn eiknx + f∗n e−iknx] =
f0

L
+

2
L

∞∑

n=1

Re fn eiknx . (10)

Now if we parameterize
fn = An − iBn , (11)

where An and Bn are real and plug this parametrization in (8) and (10), we
get

f(x) =
f0

L
+

2
L

∞∑

n=1

[ An cos knx + Bn sin knx ] , (12)

where

An =
∫ L/2

−L/2
f(x) cos knx dx , Bn =

∫ L/2

−L/2
f(x) sin knx dx . (13)

Eqs. (12)-(13)—and also Eq. (11)—hold true even in the case of complex
f(x), with the reservation that now An and Bn are complex.

Actually, the function f(x) should not necessarily be L-periodic. For
non-periodic functions, however, the convergence will be only in the sense
of the inner-product norm. For non-periodic functions the points x = ±L/2
can be considered as the points of discontinuity, in the vicinity of which the
Fourier series will demonstrate the Gibbs phenomenon.

Fourier integral

If f(x) is defined for any x ∈ (−∞,∞) and is well behaved at |x| → ∞, we
may take the limit of L →∞. The result will be the Fourier integral:

f(x) =
∫ ∞

−∞
dk

2π
fk eikx , (14)

fk =
∫ ∞

−∞
f(x)e−ikxdx . (15)

Indeed, at very large L we may consider (7) as an integral sum corresponding
to a continuous variable n. That is in the limit of L →∞ we can replace the
summation over discrete n with the integration over continuous n. Finally,
introducing the new continuous variable k = 2πn/L, we arrive at (14)-(15).

The function g(k) ≡ fk is called Fourier transform of the function f .
Apart from the factor 1/2π and the opposite sign of the exponent—both
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being matters of definition—the functions f and g enter the relations (14)-
(15) symmetrically. This means that if g is the Fourier transform of f , then
f is the Fourier transform of g, up to a numeric factor and different sign of
the argument. By this symmetry it is seen that the representation of any
function f in the form of the Fourier integral (14) is unique. Indeed, given
Eq. (14) with some fk, we can treat f as a Fourier transform of g(k) ≡ fk,
which immediately implies that fk should obey (15) and thus be unique for
the given f . For a real function f the uniqueness of the Fourier transform
immediately implies

f−k = f∗k , (16)

by complex-conjugating Eq. (14).

Application to Green’s function problem

Fourier transform is the most powerful tool for finding Green’s functions of
linear PDE’s in the cases with translational invariance. Below we illustrate
this by two simple (and closely related) examples: 1D heat equation and
1D Schrödinger equation. A detailed discussion of the application of the
Fourier transform technique to the Green’s function problem will be given
in a separate section.

Previously, we have found that the Green’s function of the 1D heat
equation satisfies the relations

γGt = Gxx , (17)

lim
t→0

∫
G(x, t) q̃(x) dx = q̃(0) , ∀ q̃(x) . (18)

We introduce a new function, g(k, t), as the Fourier transform of G(x, t)
with respect to the variable x, the variable t playing the role of a parameter:

G(x, t) =
∫

dk

2π
eikxg(k, t) . (19)

We then plug it into (17), perform differentiation under the sign of integral,
which, in particular, yields

Gxx(x, t) = −
∫

dk

2π
k2 eikxg(k, t) , (20)

and get ∫
dk

2π
eikx [γgt + k2 g] = 0 . (21)
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By the uniqueness of the Fourier transform we conclude that

γgt + k2 g = 0 . (22)

We have reduced a PDE problem for G(x, t) to an ordinary differential
equation for g(k, t). The initial condition g(k, t = 0) is readily found from
(18). By definition,

g(k, t) =
∫

dx e−ikx G(x, t) , (23)

and, identifying e−ikx with q̃(x) in (18), we get

g(k, 0) = 1 . (24)

Solving (22) with (24), we find

g(k, t) = e−k2t/γ . (25)

Problem 37. Restore G(x, t) from this g(k, t).

Problem 38. Find g(k, t) for 1D Schrödinger equation and restore G(x, t).

Fourier integral in higher dimensions

The Fourier transform theory is readily generalized to d > 1. In 1D we
introduced the Fourier integral as a limiting case of the Fourier series at
L → ∞. Actually, the theory can be developed without resorting to the
series. In d dimensions, the Fourier transform g(k) of the function f(r) is
defined as

g(k) =
∫

e−ikrf(r) dr , (26)

where k = (k1, k2, . . . , kd) and r = (r1, r2, . . . , rd) are d-dimensional vectors,
dr =

∏d
j=1 drj , the integral is over the whole d-dimensional space. We use

a shorthand notation for the inner product of vectors: kr ≡ k · r. If the
integral (26) is not convergent, we may introduce an enhanced version of
the Fourier transform, say

g(k) = lim
ε0→+0

∫
e−ikr−ε0rf(r) dr , (27)
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or
g(k) = lim

ε0→+0

∫
e−ikr−ε0r2

f(r) dr . (28)

[The particular form of the enhancement is a matter of convenience and thus
is associated with the form of f(r).]

Moreover, if the limit ε0 → +0 is ill-defined, we may keep ε0 as a finite
parameter, say,

gε0(k) =
∫

e−ikr−ε0r2
f(r) dr . (29)

To put it different, if the function f(r) is not good enough for the conver-
gence of the integral (26), we replace it with a much better function, say,
e−ε0r2

f(r), keeping in mind that the two are unambiguously related to each
other.

The crucial question is: How to restore f(r) from a given g(k)? The
answer comes from considering the limit

I(r) = lim
ε→+0

∫
eikr−εk2

g(k) dk/(2π)d . (30)

Substituting the r.h.s. of (26) for g(k) and interchanging the orders of the
integrations, we get

I(r) = lim
ε→+0

∫
dr′f(r′)

∫
eik(r−r′)−εk2

dk/(2π)d . (31)

Then,
∫

eik(r−r′)−εk2 dk
(2π)d

=
d∏

j=1

∫
eikj(rj−r′j)−εk2

j
dkj

2π
. (32)

Utilizing the known result
∫ ∞

−∞
e−ax2+bx dx =

√
π

a
eb2/4a , (33)

we obtain

I(r) = lim
ε→+0

∫
dr′f(r′)

d∏

j=1

e−(rj−r′j)
2/ε

√
πε

. (34)

We see that the structure of the exponentials guarantees that if ε → 0, then
the contribution to the integral comes from an arbitrarily small vicinity of
the point r′ = r. We thus can replace f(r′) → f(r) and get

I(r) = f(r) lim
ε→+0

∫
dr′

d∏

j=1

e−(rj−r′j)
2/ε

√
πε

= f(r) lim
ε→+0

d∏

j=1

∫ e−(rj−r′j)
2/ε

√
πε

dr′j .

(35)
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In the r.h.s. we have a product of d identical integrals. From (33) we see
that they are ε-independent and equal to unity. Hence, I(r) ≡ f(r).

We thus conclude that given the Fourier transform g of the function f ,
we can unambiguously restore f by the formula

f(r) = lim
ε→+0

∫
eikr−εk2

g(k) dk/(2π)d . (36)

Actually, the factor e−εk2
and, correspondingly, taking the limit is necessary

only if the integral is not well defined (as is the case in many practical
applications!). It is also instructive to look at the function e−εk2

g(k) as
the Fourier transform of some function fε(r), such that fε(r) → f(r), as
ε → +0. From such an interpretation of (36) we conclude that the form of
the ε-correction is a matter of convenience, and we can also write, say,

f(r) = lim
ε→+0

∫
eikr−εkg(k) dk/(2π)d . (37)

As in 1D case, we see a a symmetry between (26)-(29)and (36)-(37). This
symmetry implies, in particular, the uniqueness of the Fourier transform in
the following sense. If f(r) is representable in the form (36), or (37), then
the function g(k) is unique. For a real function f from the uniqueness it
follows that

g(−k) = g(k)∗ . (38)

Rotational symmetry. In practice, we often deal with functions f(r)
that depend only on r = |r|. These functions remain the same under the
rotational transformation of the radius vector

r → r′ = Ur , (39)

where U is a unitary matrix. In such cases, the angular parts of the Fourier
integrals are done by one and the same generic procedure. Before we start
describing the procedure, it is worth noting that if f(r) ≡ f(r), then g(k) ≡
g(k), and vice versa. This is easily seen by performing the transformation

k → k′ = Uk (40)

in the Fourier integral (26) and changing the integration variable by

r = Ur′ . (41)
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By definition of the unitary matrix, U †U = 1, implying | detU | = | detU †| =
1, we have

r · k′ = (Ur′) · (Uk) = r′ · (U †Uk) = r′ · k , (42)

and
dr = | detU | dr′ = dr′ . (43)

Hence,

g(k′) =
∫

e−ik′rf(r) dr =
∫

e−ikr′f(Ur′) | det U | dr′ =

=
∫

e−ikr′f(r′) dr′ = g(k) , (44)

and thus g(k) ≡ g(k). The proof that from g(k) ≡ g(k) it follows that
f(r) ≡ f(r) is analogous.

Consider the integral

g(k) =
∫

e−ikrf(r) dr (45)

in three and two dimensions.

3D case. We have
∫

d3r (. . .) =
∫ ∞

0
dr r2

∫ 2π

0
dϕ

∫ π

0
dθ sin θ (. . .) . (46)

Taking the z-axis along the vector k and introducing the new variable

χ = sin θ ,

∫ π

0
dθ sin θ (. . .) =

∫ 1

−1
dχ (. . .) , (47)

we get (the integral over ϕ is trivial since the function is ϕ-independent)

g(k) =
∫ ∞

0
dr r2 f(r)

∫ 1

−1
dχ e−ikrχ . (48)

Doing the integral

∫ 1

−1
dχ e−ikrχ =

e−ikrχ

−ikr

∣∣∣∣∣
χ=1

χ=−1

=
2
kr

sin kr , (49)

we ultimately have

g(k) =
4π

k

∫ ∞

0
dr r f(r) sin kr . (50)
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Similarly,

f(r) =
1

2π2r

∫ ∞

0
dk k g(k) sin kr . (51)

Hence, the 3D integrals are reduced to 1D ones.

2D case. Here we have
∫

d2r (. . .) =
∫ ∞

0
dr r

∫ 2π

0
dϕ (. . .) . (52)

Taking the x-axis along the vector k, we get

g(k) =
∫ ∞

0
dr r f(r)

∫ 2π

0
dϕ e−ikr cos ϕ =

=
∫ ∞

0
dr r f(r)

∫ 2π

0
dϕ cos(kr cosϕ) . (53)

Here we take into account that by shifting the variable ϕ → ϕ + π and
keeping the limits of integration the same (which does not effect the value
of the integral due to 2π-periodicity of the integrand) we have

∫ 2π

0
dϕ sin(kr cosϕ) = −

∫ 2π

0
dϕ sin(kr cosϕ) , (54)

which means that the integral is zero. The integral over ϕ leads to the Bessel
function: ∫ 2π

0
dϕ cos(kr cosϕ) = 2πJ0(kr) . (55)

Finally,

g(k) = 2π
∫ ∞

0
dr r f(r)J0(kr) , (56)

and similarly,

f(r) =
1
2π

∫ ∞

0
dk k g(k)J0(kr) . (57)

Hence, the 2D integrals are reduced to 1D ones, but in contrast to the 3D
case a special function enters the generic expression. In view of this fact
sometimes it is convenient to do the integral over r or k first.—It may then
occur that the angular part of the integral can be done in terms of the
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elementary functions.

Example—Coulomb potential in 3D. We want to find the Fourier transform
from

f(r) = 1/r . (58)

Plugging this into (50), we get a divergent integral

g(k) =
4π

k

∫ ∞

0
dr sin kr (59)

and understand that first we need to regularize the problem. We choose the
regularization

1/r → e−εr/r , (60)

which is especially convenient for this case:

g(k) =
4π

k

∫ ∞

0
dr e−εr sin kr =

4π

k
Im

∫ ∞

0
dr eikr−εr =

4π

k2 + ε2
. (61)

Now we can set ε = 0 and get the result

g(k) =
4π

k2
. (62)

Note that as a by-product we have obtained the Fourier transform of the
screened-Coulomb potential e−κr/r, where κ is called the inverse screening
radius. The Fourier transform in this case is g(k) = 4π/(k2 + κ2).

Problem 39. Use (51) to restore a 3D function f(r) from its Fourier transform
g(k), if

(a) g(k) = 4π/k2,
(b) g(k) = 4π/(k2 + κ2).

Problem 40. Find the Green’s function for the d-dimensional heat equation by
the Fourier transform method. Hint. In this particular case the inverse transform
is most easily done in the Cartesian coordinates.

Problem 41. The same for d-dimensional Schrödinger equation.
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Fourier integral as a unitary operator

Consider the set of complex-valued functions f(r) for which the integral
(over the whole d-dimensional space of r)

∫
|f(r)|2 dr (63)

is well defined. This set is a Hilbert space with the inner product defined as

〈g|f〉 =
∫

g∗(r)f(r) dr . (64)

Within this space of functions, the Fourier integral can be viewed as a linear
operator, F , that transforms one vector, |f〉, into another, |g〉:

|g〉 = F |f〉 . (65)

Let us find the operator F †. By definition, ∀ f1, f2, 〈F †f1|f2〉 = 〈f1|F |f2〉.
Hence, to find F † we need to analyze an explicit expression for 〈f1|F |f2〉.
We have

〈f1|F |f2〉 =
∫

dk dr e−ikrf∗1 (k)f2(r) =
∫

dr
[∫

dk eikrf1(k)
]∗

f2(r) , (66)

and thus
F †|f1〉 =

∫
dk eikrf1(k) , ∀f1 . (67)

We see that up to a factor 1/(2π)d, the action of the operator F † is equivalent
to restoring an original function from its Fourier transform. That is, ∀f ,

F †F |f〉 = (2π)d F †

(2π)d
F |f〉 = (2π)d |f〉 . (68)

This means that up to a constant factor—which is just a matter of definition—
operator F is unitary:

F †F = (2π)d . (69)

An immediate consequence of this fact is the following relation, in which
g(k) is the Fourier transform of f(r).

∫
|g(k)|2 dk = (2π)d

∫
|f(r)|2 dr . (70)
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Indeed, in the vector notation we have

〈g|g〉 = 〈Ff |Ff〉 = 〈F †Ff |f〉 = (2π)d 〈f |f〉 . (71)

Generalized functions and their Fourier transforms

The Green’s function technique for solving translational invariant PDE’s
implies existence of the function G(x, t), such that the solution u(x, t)—
for the sake of definiteness, we discuss a one-dimensional time-evolution
problem—is related to the initial condition, u(x, 0), by

u(x, t) =
∫

G(x− x0, t) u(x0, 0) dx0 . (72)

However, for many problems this is not the case. In particular, G(x, 0) is
always ill defined, since otherwise we would have

∫
G(x, 0) q(x) dx = q(0) , ∀ q(x) , (73)

which is obviously impossible in terms of any regular function G(x, 0). When
arriving at (72) from considering the limit of L → ∞ in the Fourier-series
solution of a finite-interval problem, x ∈ [−L/2, L/2], we interchange the
orders of summation over the basis vectors and integration over x0, which is
not always legitimate. Nevertheless, the structure of the solution in terms
of the Fourier series allows us to make a less restrictive statement that,
speaking the vector language, the solution |u(t)〉 is related to the initial
condition |u(0)〉 by a certain linear operator Ĝ:

|u(t)〉 = Ĝ |u(0)〉 . (74)

The next observation is that if we cannot represent some linear operator in
the form (72), we can try—and this works in all practical cases!—to use a
more general formula

u(x, t) = lim
ε→+0

∫
Gε(x− x0, t)u(x0, 0) dx0 , (75)

where ε is some parameter and Gε(x − x0, t) is some function of this pa-
rameter which is well defined at ε > 0. And now we can use the Fourier
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transform technique to find gε(k), the Fourier transform of Gε(x), and then
restore Gε(x). It is important that in contrast to the ill-defined limit

lim
ε→+0

Gε(x) , (76)

normally there exists the limit

g(k) = lim
ε→+0

gε(k) (77)

and when solving the problem we can actually look for g(k). Having found
g(k), we then need to introduce gε(k), because the inverse transform from
g(k) is supposed to be divergent—otherwise a regular function G(x) would
exist. The replacement g(k) → gε(k), called regularization, is arbitrary,
provided the Fourier transform from gε(k) converges. The nature of this
arbitrariness is due to the fact that we are interested only in the limiting
value of the integral in the r.h.s. of (75).

Example 1. Consider the simplest case g(k) ≡ 1. To obtain corresponding
Gε(x), we need to introduce a regularization. Let us try three different reg-
ularizations:

(a) gε(k) = 1 · e−ε|k| ,

(b) gε(k) = 1 · e−εk2
,

(c) gε(k) = 1 · eiεk2
.

All the integrals are readily done (in the first case we integrate separately
over k < 0 and k > 0), and the results are:

(a) Gε(x) =
1
π

ε

x2 + ε2
,

(b) Gε(x) =
e−x2/4ε

√
4πε

=
e−x2/ε0

√
πε0

(ε0 = 4ε) ,

(c) Gε(x) =
eix2/4ε

√−4iπε
=

eix2/ε0
√−iπε0

(ε0 = 4ε) .

Considering the integral
∫

Gε(x− x0) f(x0) dx0 , (78)
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where f is some fixed continuous function an ε is arbitrarily small—since
ultimately we are interested in the limit ε → 0—we notice that we can
replace q(x0) with q(x) and pull it out from the integral. Indeed, for all the
three functions the contribution to the integral comes from a small region
around the point x0 = x. In the cases (a) and (b) this happens because the
function Gε(x) rapidly vanishes away from x = 0, while in the case (c) it
is strongly oscillating which is equivalent to vanishing in the integral sense.
Finally, we note that in all the three cases

∫
Gε(x) dx ≡ gε(k = 0) = 1 , (79)

and get

lim
ε→+0

∫
Gε(x− x0) f(x0) dx0 = f(x) , ∀ f(x) . (80)

Hence, the operator Ĝ that corresponds to this limiting procedure is just
the unity operator:

Ĝ |f〉 = |f〉 . (81)

Example 2. Consider g̃(k) = ik. Note that whatever the regularization g̃ε(k)
is taken, we always have

G̃ε(x) =
∫

dk

2π
eikx g̃ε(k) =

∫
dk

2π
eikx ik gε(k) , (82)

where gε(k) = g̃ε(k)/ik is a certain regularization of the function g(k) ≡ 1.
This allows us to reduce the problem to that of the Example 1, because

G̃ε(x) =
∫

dk

2π
eikx ik gε(k) =

d

dx

∫
dk

2π
eikx gε(k) = G′

ε(x) . (83)

Hence,

lim
ε→+0

∫
G̃ε(x−x0) f(x0) dx0 = lim

ε→+0

∫
G′

ε(x−x0) f(x0) dx0 = f ′(x) , (84)

and we see that the operator Ĝ in this case is the differential operator:

Ĝ |f〉 = |f ′〉 , f ′(x) ≡ df(x)
dx

. (85)
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Actually, it is very convenient to treat the ill-defined limit (76) as a
generalized function in the following sense. A generalized function, say,

Λ(x) = lim
ε→+0

Gε(x) , (86)

is meaningful only if it is a part of an integral over x. And its precise
meaning is: ∫

Λ(x) f(x) dx = lim
ε→+0

∫
Gε(x) f(x) dx . (87)

For example, the generalized function corresponding to the unity operator
is known as Dirac delta-function, δ(x− x0). In accordance with the results
of the Example 1, the delta-function can be represented as

δ(x) = lim
ε→+0

1
π

ε

x2 + ε2
= lim

ε→+0

e−x2/ε

√
πε

= lim
ε→+0

eix2/ε

√−iπε
. (88)

Then, ∫
δ(x− x0) f(x0) dx0 = f(x) . (89)

Defining the derivative Λ′(x) of a generalized function Λ(x) as

Λ′(x) = lim
ε→+0

G′
ε(x) , (90)

we get (doing the integral by parts)
∫

Λ′(x) f(x) dx = − lim
ε→+0

∫
Gε(x) f ′(x) dx . (91)

We conclude that with our definitions the generalized functions behave the
same way as the ordinary functions. This proves to be very convenient for
various manipulations with integrals (like differentiating with respect to a
parameter or integrating by parts). The concept of the generalized function
also allows us not to write explicitly the limiting expressions. For example,
in accordance with the results of the Example 1, we may write

∫
eikx dk/2π = δ(x) . (92)

The precise meaning of this expression is as follows. If during some ma-
nipulations with the integrals (interchanging variables) we get the l.h.s. of
Eq. (92) under the sign of integration with respect to x, then this means that

14



the interchanging was not legitimate, but we could regularize our functions—
introducing corresponding limiting procedure—in such a way that the limit-
ing procedure leads to the delta-function. By the way, this is exactly what we
did when establishing the formula for the inverse Fourier transform. From
now on we can simply use (92).

The definition (90) of the generalized derivative is also good for functions
with jumps.

Example 3. Consider the so-called θ-function

θ(x) =

{
1 , x ≥ 0 ,
0 , x < 0 .

(93)

Noting that

θ(x) = lim
ε→+0

1
π

arctan(x/ε) + 1/2 , (94)

we find
θ′(x) = lim

ε→+0

1
π

ε

x2 + ε2
= δ(x) . (95)

Delta-function in higher dimensions. The definition of the d-dimensional
δ-function, δ(d)(r), is as follows

∫
δ(d)(r− r0) f(r0) dr0 = f(r) . (96)

Once again δ(d)(r) is understood as a limiting procedure. It is readily seen
that δ(d)(r) can be written in terms of one-dimensional δ-functions:

δ(d)(r− r0) =
d∏

j=1

δ(rj − r0j) . (Cartesian coordinates) (97)

δ(2)(r− r0) = r−1 δ(r − r0) δ(ϕ− ϕ0) . (Polar coordinates) (98)

δ(3)(r−r0) = ρ−1 δ(ρ−ρ0) δ(ϕ−ϕ0) δ(z−z0) . (Cylindrical coord.) (99)

δ(3)(r− r0) =
δ(r − r0) δ(ϕ− ϕ0) δ(θ − θ0)

r2 sin θ
. (Spherical coord.) (100)

The d-dimensional analog of (92) immediately follows from (97):
∫

eikr dk/(2π)d = δ(d)(r) . (101)
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Problem 42. The convolution, Q(r), of two functions, f1(r) and f2(r), is defined
as

Q(r) =
∫

f1(r− r0) f2(r0) dr0 . (102)

[Note, that Eq. (72) is a typical example of convolution.] Use Eq. (101) to prove
the formula

Q(r) =
∫

eikr F1(k)F2(k) dk/(2π)d , (103)

where F1 and F2 are the Fourier transforms of the functions f1(r) and f2(r).

Problem 43. Show that if f(x) is a smooth function such that

f(xj) = 0 , j = 1, 2, . . . , n , (104)

then

δ(f(x)) =
n∑

j=1

|f ′(xj)|−1 δ(x− xj) . (105)

Problem 44. A linear operator L̂ is represented by a generalized function Λ(r):

L̂f(r) =
∫

Λ(r− r0) f(r0) dr0 . (106)

The Fourier transform of the generalized function Λ(r) is λ(k) = k2.
Find:
(a) the generalized function Λ(r)
(b) the operator L̂.
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