
Laplace Transform

Suppose we have a function f(t) defined for t ∈ [0,∞). [In typical cases t is
time and f(t) is either a solution for some Cauchy problem with the initial
condition at t = 0, or some external force.] The function

F (p) =
∫ ∞

0
e−ptf(t) dt (1)

is called Laplace transform of the Function f(t). The idea behind the
Laplace transform is the same as the idea behind the Fourier transform.—It
converts derivatives into polynomials and thus is a powerful tool for solving
Cauchy problems for linear differential equations. Doing the integral

Fn(p) =
∫ ∞

0
e−ptf (n)(t) dt (2)

by parts, we find (f (0) = f and F0 = F )

Fn(p) = −f (n−1)(0) + pFn−1(p) . (3)

That is

Fn(p) = −
n∑

j=1

p(n−j)f (j−1)(0) + pnF (p) . (4)

In contrast to the Fourier transform, the inverse Laplace transform has
to deal with the analytic continuation of the function F (p) into the complex
plane of the variable p. Defining

p1 = Re p , p2 = Im p , (5)

we have
F (p1 + ip2) =

∫ ∞

0
e−(p1+ip2)tf(t) dt . (6)

Introducing then a new function

f̃(t) =

{
e−p1tf(t) , t ≥ 0 ,
0 , t < 0 ,

(7)

we notice that F (p1 + ip2) is nothing else than its Fourier transform:

F (p1 + ip2) =
∫ ∞

−∞
e−ip2tf̃(t) dt , (8)
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were p2 is the variable of the transform and p1 is a parameter. Normally,
the integral (8) converges perfectly for large enough p1. For example, this
is always the case when ∃ γ such that

|f(t)| < eγt , (9)

and it is sufficient to take p1 > γ. Below we will be assuming that Eq. (9)
holds true. Restoring the function f̃(t) by the inverse Fourier transform,

f̃(t) =
∫ ∞

−∞
eip2tF (p1 + ip2) dp2/2π , (10)

we ultimately get

f(t) =
∫ ∞

−∞
e(p1+ip2)tF (p1 + ip2) dp2/2π . (11)

Calculating the derivative ∂/∂p∗ under the sign of the integral in (6), we see
that

∂F (p)
∂p∗

≡ 0 , (p1 > γ) . (12)

[The condition p1 > γ guaranties the convergence of the integral.—Otherwise
differentiating under the sign of integral is ill-defined.] Hence, the function
F (p) is analytic at Re p > γ, and we can look at the integral (11) as the
contour integral

f(t) =
1

2πi

∫

C0

eptF (p) dp , (13)

where C0 is a vertical line in the complex-p plane (so that dp = i dp2)
corresponding to Re p > γ. Normally the contour C0 can be closed into the
closed contour C—see Fig. 1—by the Jordan’s lemma.

f(t) =
1

2πi

∮

C
eptF (p) dp , (14)

Hence, the contribution to f(t) comes from all the poles of the function
eptF (p), since there are no poles at the right-hand side of the contour C0.

2



p
1

p
2

Figure 1: Contour C.

Application to linear differential equations

We illustrate the Laplace transform technique by a simple example of har-
monic oscillator with a time-dependent external force f(t) = t.

ẍ + ω2x = t , (15)

x(0) = a , ẋ(0) = b . (16)

The starting point is to Laplace-transform the equation:
∫ ∞

0
dt e−pt [ẍ + ω2x] =

∫ ∞

0
dt e−pt t . (17)

For the derivatives in the l.h.s. of (17) we use (4), with (16) taken into
account. This yields

∫ ∞

0
dt e−pt [ẍ + ω2x] = (p2 + ω2)X(p)− pa− b , (18)

where
X(p) =

∫ ∞

0
dt e−pt x(t) . (19)

The integral in the r.h.s. of (17) needs to be done explicitly:
∫ ∞

0
dt e−pt t = − ∂

∂p

∫ ∞

0
dt e−pt = − ∂

∂p

1
p

=
1
p2

. (20)

We thus have
(p2 + ω2)X(p)− pa− b =

1
p2

, (21)

and find

X(p) =
1 + p2(pa + b)
p2(p2 + ω2)

=
1 + p2(pa + b)

p2(p− iω)(p + iω)
. (22)
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Now we perform the inverse transform

x(t) =
1

2πi

∫

C

[1 + p2(pa + b)] ept

p2(p− iω)(p + iω)
dp . (23)

That is we sum up all the residues of the function

[1 + p2(pa + b)] ept

p2(p− iω)(p + iω)
. (24)

There are three poles. The two simple poles p = ±iω come from the l.h.s.
of the original differential equation, while the second-order pole at p = 0 is
totally due to the particular form of the external force. The residue calculus
routine leads to the final answer

x(t) = t/ω2 + a cosωt + (b/ω − 1/ω3) sinωt . (25)

Problem 45. Use the Laplace transform method to solve for the evolution of a
damped harmonic oscillator with a time-independent external force:

ẍ + ω2x + γẋ = f0 , (26)

x(0) = 0 , ẋ(0) = 0 , (27)

Find x(t); make sure it is real and does satisfy the equation and the initial condi-
tions. Compare two cases: 0 < γ < 2ω and γ ≥ 2ω.

If we are dealing with a system of linear differential equations, the proce-
dure is the same. We Laplace-transform each of the equations and arrive at
a system of algebraic equations for the Laplace transforms of the unknown
functions. From this system we find each of the Laplace transforms and
then perform the inverse transforms.

Problem 46. Use the Laplace transform method to solve for the evolution of
one of two coupled harmonic oscillators (the coupling force is proportional to the
relative displacement of the oscillators, the proportionality coefficient λ > 0):

ẍ1 + ω2
1x1 = λ(x2 − x1) , (28)

ẍ2 + ω2
2x2 = λ(x1 − x2) . (29)

Find x1(t) for t > 0 under the following initial conditions:

x1(0) = 0 , ẋ1(0) = 0 , x2(0) = 0 , ẋ2(0) = 1. (30)

Make sure x1(t) is real and does satisfy the initial conditions.
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