Linear Response

Suppose we have an equilibrium macroscopic system (no matter, quantum or classical) and a weak time-dependent perturbation of the form

$$V(t) = -xf(t) , (1)$$

where V is the perturbation potential energy, x is one of generalized coordinates of the system, and f is a time-dependent generalized force. If $V \equiv 0$, then the system is in equilibrium and $\bar{x}(t) \equiv 0$, where \bar{x} is the coordinate x averaged over corresponding equilibrium ensemble of states. The question now is what is the generic form of $\bar{x}(t)$, provided $f(t) \neq 0$, but arbitrarily small. The smallness of |f| implies the linearity of the response as a functional of f. The causality requires that the response at time t comes from times $t_1 \leq t$. The most general form of a functional satisfying the linearity and causality constraints is

$$\bar{x}(t) = \int_{-\infty}^{t} \alpha(t, t_1) f(t_1) dt_1,$$
 (2)

where α is some f-independent function. Finally, the time-translation invariance (independence of the unperturbed Hamiltonian on time) requires

$$\alpha(t, t_1) \equiv \alpha(t - t_1) \,, \tag{3}$$

and thus

$$\bar{x}(t) = \int_{-\infty}^{t} \alpha(t - t_1) f(t_1) dt_1 \equiv \int_{0}^{\infty} \alpha(\tau) f(t - \tau) d\tau .$$
 (4)

Hence, the response of the system to a weak force f is totally described by a function $\alpha(\tau)$ defined in the region $\tau \geq 0$. In what follows, we confine ourselves with the case when the static response—time-independent f—is well defined. This implies convergence of the integral

$$\int_0^\infty \alpha(\tau) \, d\tau \ . \tag{5}$$

Now comes a very practical question: What is the easiest way to measure $\alpha(\tau)$ experimentally? It is amazing that to answer this most practical question a deep theoretical complex-number analysis is crucial. To this end, consider a response of the system to a harmonic perturbation

$$f(t) = f_0 \cos(\omega t) \equiv (f_0/2) \left[e^{i\omega t} + e^{-i\omega t} \right] .$$
 (6)

The representation of cosine in terms of two complex exponentials is very helpful since after plugging it into (4) the variables t and τ factorize, and we get

$$\bar{x}(t) = (f_0/2) \left[\alpha_{\omega}^* e^{i\omega t} + \alpha_{\omega} e^{-i\omega t} \right] \equiv f_0 |\alpha_{\omega}| \cos(\omega t - \varphi_{\omega}), \qquad (7)$$

where

$$\alpha_{\omega} = \int_{0}^{\infty} \alpha(\tau) e^{i\omega\tau} d\tau , \qquad (8)$$

which implies—because $\alpha(\tau)$ is real—

$$\alpha_{-\omega} = \alpha_{\omega}^* \,. \tag{9}$$

The phase shift φ_{ω} comes from the phase of α_{ω} :

$$\alpha_{\omega} \equiv |\alpha_{\omega}| e^{i\varphi_{\omega}} . \tag{10}$$

From (7) we see that (i) the response is harmonic and (ii) by measuring the amplitude and phase shift of the response we get α_{ω} by Eq. (10). The theory of Fourier transforms—we will cover it later on in this course—says that if α_{ω} is defined by (8) then it contains a complete information about $\alpha(\tau)$ at $\tau \geq 0$, and, moreover, the latter can be restored by doing the integral

$$\alpha(\tau) = \int_{-\infty}^{\infty} \alpha_{\omega} e^{-i\omega\tau} d\omega / 2\pi . \qquad (11)$$

Hence, by measuring the amplitude and phase shift of a harmonic response for all frequencies we can find $\alpha(\tau)$.

It turns out, however, that we can do an easier job by measuring just the *energy absorption rate* as a function of frequency of harmonic perturbation. This surprising fact relies on the Kramers-Kronig dispersion relations.

Consider the (averaged over a period of oscillation $2\pi/\omega$) amount of energy absorbed by the system per unit time, which is known to be given by the following formula

$$\Omega = -(\omega/2\pi) \int_0^{2\pi/\omega} \bar{x}(t) \,\dot{f}(t) \,dt \,. \tag{12}$$

In Quantum Mechanics, this relation is derived as follows.

$$\frac{dE}{dt} = \frac{d}{dt} \langle \psi(t) | H(t) | \psi(t) \rangle = \langle \dot{\psi} | H | \psi \rangle + \langle \psi | \dot{H} | \psi \rangle + \langle \psi | H | \dot{\psi} \rangle
= i \langle \dot{\psi} | \dot{\psi} \rangle + \langle \psi | \dot{H} | \psi \rangle - i \langle \dot{\psi} | \dot{\psi} \rangle = \langle \psi | \dot{H} | \psi \rangle = -\dot{f} \langle \psi | x | \psi \rangle \equiv -\dot{f} \bar{x} .$$
(13)

Here H is the total Hamiltonian of the system, including the perturbation; its time dependence is totally due to f(t). Then we just need to average this expression over a period of oscillation.

We have

$$\Omega = -(f_0^2 \omega / 8\pi) \int_0^{2\pi/\omega} \left[\alpha_\omega^* e^{i\omega t} + \alpha_\omega e^{-i\omega t} \right] \left[i\omega e^{i\omega t} - i\omega e^{-i\omega t} \right] dt . \quad (14)$$

Doing the integral kills the oscillating terms and we end up with the very important result

$$\Omega = (f_0^2 \omega/2) \operatorname{Im} \alpha_\omega . \tag{15}$$

The energy absorption rate is quadratic in the amplitude of perturbation and is proportional to the imaginary part of α_{ω} . That is to find $\operatorname{Im} \alpha_{\omega}$ we just need to measure Ω :

$$\operatorname{Im} \alpha_{\omega} = \frac{2\Omega}{f_0^2 \, \omega} \,. \tag{16}$$

The real part of α can be found then by Kramers-Kronig relation. Indeed, the convergence of the integral (5) guaranties the convergence of the integral (8) for any complex ω , provided $\operatorname{Im} \omega \geq 0$. Hence, α_{ω} has no singularities in the upper half-plane of complex ω , including the real axis. This justifies the applicability of the dispersion relations.

Introducing short-hand notation

$$\alpha'_{\omega} = \operatorname{Re} \alpha_{\omega} , \qquad \alpha''_{\omega} = \operatorname{Im} \alpha_{\omega} , \qquad (17)$$

we have

$$\alpha'_{\omega_0} = \frac{1}{\pi} P \int_{-\infty}^{\infty} \frac{\alpha''_{\omega}}{\omega - \omega_0} d\omega .$$
 (18)

We can also exclude negative frequencies by noting that from (9) it follows that

$$\alpha'_{-\omega} = \alpha'_{\omega} , \qquad \alpha''_{-\omega} = -\alpha''_{\omega} , \qquad (19)$$

and thus

$$\alpha'_{\omega_0} = \frac{2}{\pi} P \int_0^\infty \frac{\omega \alpha''_{\omega}}{\omega^2 - \omega_0^2} d\omega . \qquad (20)$$

Summarizing, the procedure of experimentally obtaining the linear response function $\alpha(\tau)$ is as follows.

- (i) Find α''_{ω} by measuring the energy absorption rate, Eq. (16).
- (ii) Find α'_{ω} from Kramers-Kronig relation (20).
- (iii) Find $\alpha(\tau)$ by doing the integral (11), which in view of (19) reduces to

$$\alpha(\tau) = (1/\pi) \int_0^\infty [\alpha_\omega' \cos \omega \tau + \alpha_\omega'' \sin \omega \tau] d\omega . \tag{21}$$