
Separation of Variables in 3D/2D Linear PDE

The method of separation of variables introduced for 1D problems is
also applicable in higher dimensions—under some particular conditions that
we will discuss below. The general idea is the same—to work with ONB’s
of eigenvectors of Hermitian operators. Once again the most important
operator is the Laplace operator (for the sake of definiteness, we consider
the 3D case)

∆ ≡ ∇2 ≡ ∂α∂α . (1)

We use the notation ∂α = ∂/∂rα, (r1 = x, r2 = y, r3 = z); here and in
what follows, the summation over recurring subscripts is implied. Given a
vector space ν of functions u(r), r ∈ Ω, where Ω is a domain bounded by
a surface S, we want to reveal the boundary conditions for the functions u
on the surface S that (i) are consistent with the vector properties of ν and
(ii) under which Laplace operator is Hermitian in ν. We assume that the
inner product is defined by the integral with the weighting function equal
to unity,

〈 f | g 〉 =
∫

Ω
f∗g d3r , (2)

and write

〈 f |∆| g 〉 =
∫

Ω
f∗∂α∂αg d3r =

∫

Ω
[∂α(f∗∂αg)− (∂αf∗)∂αg)] d3r =

=
∫

Ω
[∂α(f∗∂αg)− ∂α(g∂αf∗) + g∂α∂αf∗] d3r =

=
∫

Ω
div(f∗∇g) d3r −

∫

Ω
div(g∇f∗) d3r + 〈∆f | g 〉 =

=
∫

S
(f∗∇g) dS −

∫

S
(g∇f∗) dS + 〈∆f | g 〉 . (3)

We see that for the Laplace operator to be Hermitian the two surface inte-
grals should be equal to zero. The two characteristic cases when this takes
place are when ∀f ∈ ν either

f = 0 |r∈S , (4)

or
∇f ⊥ n |r∈S , (5)

where vector n is normal to the surface at the given r.
For definiteness, let us discuss the heat equation

ut = ∆u . (6)
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In terms of the heat equation, the condition (4) means that the temperature
is kept fixed at one and the same value—equal to zero without loss of gen-
erality, as a constant can be always subtracted off—on the surface S, while
the condition (5) is the condition of the absence of the heat flux through the
surface—it takes place when the system is thermally isolated.

Introducing ONB of the eigenfunctions of the Laplace operator, {em(r)}
(we define the eigenvalues of Laplace operator with the sign minus as we
expect that these will be non-positive),

∆em = −λmem , (7)

we expand the solution in the Fourier series with respect to this basis—the
same way we did it in 1D:

u(r, t) =
∑
m

qm(t) em(r) . (8)

We then plug this into the heat equation, and get ordinary differential equa-
tions for q’s,

q̇m = −λmqm , (9)

with the initial conditions

qm(0) =
∫

dr e∗m(r) u(r, t = 0) . (10)

The real problem, however, is to find {em(r)} and λ’s. In a general
case of arbitrary shape of the surface S, Eq. (7)—the so-called Helmholtz
equation—can be solved only numerically. The two simple cases when it is
possible to obtain analytic solutions are: (i) the case of rectangular geometry
and (ii) the case of rotationally-symmetric geometry. Also simple is the case
of cylindrical symmetry in 3D, which corresponds to rotational symmetry
in the xy-plane, and rectangular geometry along the z-axis.

Helmholtz and Laplace Equations in Rectangular Geometry

Suppose the domain Ω is a rectangle: x ∈ [0, Lx], y ∈ [0, Ly], and z ∈ [0, Lz].
We want to solve Helmholtz equation (7) with canonical boundary conditions
at the faces x = 0, x = Lx, y = 0, and y = Ly. As we will see later, it is not
important whether the boundary conditions at the faces z = 0 and z = Lz

are canonical or not. For example,

e |x=0 = e |x=Lx = 0 , (11)
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ey |y=0 = ey |y=Ly = 0 . (12)

We start by noticing that 3D Laplace operator

∆ =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
, (13)

contains a 1D Laplace operator ∂2/∂x2, which is Hermitian for in the vector
space of the functions of x satisfying (11). We thus can introduce corre-
sponding ONB, {Xmx(x)},

X ′′
mx

(x) = −λ(x)
mx

Xmx(x) , (14)

and expand the solution in the Fourier series:

e(r) =
∑
mx

Qmx(y, z) Xmx(x) . (15)

The idea is precisely the same as when solving 1D time-dependent equations.
Now instead of variable t we have a pair of variables (y, z). Correspondingly,
we plug (15) into (7), take advantage of (14) and of the orthogonality of
|X 〉’s. This yields

(
∂2

∂y2
+

∂2

∂z2

)
Qmx = −λ̃Qmx , (16)

with
λ̃ = λ− λ(x)

mx
. (17)

From (16) we see that the function Qmx actually does not depend on mx,
since λ̃ is just one of the eigenvalues of this equation and Eq. (17) is just
a relation between this number and the global eigenvalue λ. Remarkably,
after separating out the variable x we arrive at the problem similar to the
original one, but in lower dimensions. Hence, we can use the trick once
again—now with the variable y:

Y ′′
my

(y) = −λ(y)
my

Ymy(y) , (18)

Q(y, z) =
∑
my

Zmy(z) Ymy(y) , (19)

Z ′′my
(z) = −˜̃

λZmy(z) , (20)

with
˜̃
λ = λ̃− λ(x)

mx
= λ− λ(x)

mx
− λ(y)

my
. (21)
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From (20) we conclude that Zmy does not depend on my.
The final step depends on the type of the problem being solved in terms

of the boundary conditions at z = 0 and z = Lz. If these are the canonical
conditions and we are looking for all eigenfunctions and eigenvalues, then
(20) has the same meaning as (14) and (18):

Z ′′mz
(z) = −λ(z)

mz
Zmz(z) , (22)

and we arrive at the following final answers for the 3D basis:

emx my mz(r) = Xmx(x) Ymy(y) Zmz(z) , (23)

and for the eigenvalues:

λmx my mz = λ(x)
mx

+ λ(y)
my

+ λ(z)
mz

. (24)

In the case when we need to find the solution of the Helmholtz equation

∆u + λu = 0 (25)

with some given λ and non-canonical boundary conditions for the vari-
able z, Eq. (20) together with these conditions simply fixes the coefficients
Zmx my(z) in the Fourier expansion

u(x, y, z) =
∑

mx my

Zmx my(z) Xmx(x) Ymy(y) . (26)

Note that in the case of λ = 0 Eq. (25) becomes Laplace equation

Problem 30. Find the lowest eigen frequency of the rectangular 3D resonator
described by the wave equation (c is the sound velocity)

utt = c2∆u , x ∈ [0, Lx], y ∈ [0, Ly], z ∈ [0, Lz] , (27)

with the boundary conditions

u |x=0 = u |x=Lx = 0 , (28)

uy |y=0 = uy |y=Ly = 0 , (29)

u |z=0 = 0 , uz |z=Lz = 0 . (30)

Comment. An eigen frequency is a frequency corresponding to a normal mode. And
the normal mode is the solution which is an eigenfunction of the Laplace operator
and thus does not change its shape—up to the time-varying amplitude—during the
evolution.
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2D Helmholtz and Laplace Equations in Polar Coordinates

Consider Helmholtz equation (25) in two dimensions with the function u
defined in 2D plane in the region between two circles, the smaller one of
the radius r1, and the lager one of the radius r2 (see Fig. 1). The limiting
cases r1 → 0 and r2 → ∞ are also included. The function u ≡ u(ρ, ϕ)—
we use polar coordinates—is subject to certain boundary conditions at the
boundaries of its domain of definition. For example,

u(ρ = r1, ϕ) = f1(ϕ) , u(ρ = r2, ϕ) = f2(ϕ) . (31)

If f1 = f2 = 0, these conditions are canonical and we are dealing with an
eigenvalue problem.—The solution exists only for some special λ’s. We face
such a problem when constructing ONB of Laplace operator. Alternatively,
the value of λ can be fixed—say, λ = 0, in which case (25) becomes Laplace
equation, and the boundary conditions may be arbitrary.

Such a geometry allows one to separate the variables. Analyzing the
structure of 2D Laplace operator in polar coordinates,

∆ =
1
ρ

∂

∂ρ
ρ

∂

∂ρ
+

1
ρ2

∂2

∂ϕ2
, (32)

we see that the variable ϕ enters the expression in the form of 1D Laplace
operator ∂2/∂ϕ2. This operator is Hermitian in the space of single-valued
functions of the angle ϕ, because single-valuedness is equivalent to the 2π-
periodicity, and Laplace operator is Hermitian in the space of periodic func-
tions. Hence, we can utilize ONB of the eigenfunctions of the operator
∂2/∂ϕ2:

Φm(ϕ) = eimϕ/
√

2π , m = 0,±1,±2, . . . , (33)

∂2Φm

∂ϕ2
= −m2 Φm , (34)

∫ 2π

0
Φm(ϕ)∗Φn(ϕ) dϕ = δmn . (35)

We expand the function u(ρ, ϕ) in the Fourier series

u(ρ, ϕ) =
∞∑

m=−∞
Rm(ρ) Φm(ϕ) (36)

and plug this expansion in (25). Taking into account (34) and constructing
inner products with the functions Φm(ϕ) we obtain an independent equation
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2r

Figure 1: Domain of definition of the function u.

for each Rm: (
1
ρ

d

dρ
ρ

d

dρ
− m2

ρ2
+ λ

)
Rm(ρ) = 0 , (37)

which can be rewritten as

ρ2R′′
m + ρR′

m + (λρ2 −m2)Rm = 0 . (38)

Eq. (38) is called Bessel equation. [And its solutions are Bessel functions.]
Bessel equation is a second-order ordinary differential equation, which im-
plies that each Rm is defined up to two unknown constants to be fixed by
the boundary conditions:

∞∑

m=−∞
Rm(r1)Φm(ϕ) = f1(ϕ) , (39)

∞∑

m=−∞
Rm(r2)Φm(ϕ) = f2(ϕ) , (40)

from which we get

Rm(r1) =
∫ 2π

0
e−imϕf1(ϕ) dϕ/

√
2π , (41)

Rm(r2) =
∫ 2π

0
e−imϕf2(ϕ) dϕ/

√
2π . (42)
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In the case r1 → 0 (or r2 → ∞) the corresponding boundary condition
is replaced with the requirement that the function Rm be finite. This re-
quirement works as a boundary condition for the following reason. A generic
solution to the Bessel equation is divergent in both limits, ρ → 0 and ρ →∞.
The requirement that the function Rm(ρ) be finite, say, at ρ → 0 is equiva-
lent to the requirement that the amplitude of the divergent at ρ → 0 term be
zero. Hence, the requirement just fixes one of the two unknown parameters
of the generic solution. In the case of the eigenvalue problem and, corre-
spondingly, canonical boundary conditions, it is impossible to fix both pa-
rameters from the boundary conditions. Indeed, by definition, the canonical
boundary conditions are consistent with the vector properties of correspond-
ing set of functions, which means that they should be insensitive to multi-
plying a function by any constant. [And that is why the solution in this case
exists only at some special λ’s—the eigenvalues.] Typical canonical bound-
ary conditions in polar coordinates are R(ρ = rb) = 0 or R′(ρ = rb) = 0,
where rb is the boundary radius. Note that the above-discussed require-
ments that R(ρ = 0) or R(ρ = ∞) be finite are also canonical.—They are
consistent with vector properties.

Eigenfunctions of Laplace operator. The structure of the eigenfunctions of
Laplace operator in the 2D polar geometry is as follows.

emn(r) = Rmn(ρ)Φm(ϕ) , (43)

∆emn(r) = −λmn emn(r) , (44)

where the subscript n enumerates the eigenvalues and corresponding solu-
tions Rmn(ρ) of the Bessel equation Eq. (38). Since this equation is different
for different m’s, both the eigenvalue and the solution depend on m. As is
expected for a Hermitian operator, the eigenfunctions are orthogonal:

〈 em1n1 | em2n2 〉 ≡
∫ r2

r1

dρ ρ

∫ 2π

0
dϕ e∗m1n1

(r) em2n2(r) = δm1m2 δn1n2 (45)

in view of the following two separate orthogonality relations:

〈Φm1 |Φm2 〉 ≡
∫ 2π

0
dϕΦ∗m1

(ϕ)Φm2(ϕ) = δm1m2 , (46)

〈Rmn1 |Rmn2 〉 ≡
∫ r2

r1

dρ ρ R∗
mn1

(ρ) Rmn2(ρ) = δn1n2 . (47)

Note that two functions R are orthogonal only when they correspond to one
and the same m, because only in this case they are eigenfunctions of one and
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the same Hermitian operator. Note also that the proper weighting function
ρ unambiguously follows from the form of the Sturm-Liouville operator in
Eq. (37).

Laplace equation. This case, λ = 0, is especially simple, because Rm’s
now are just polynomials (A’s and B’s are constants):

Rm(ρ) = Amρm + Bmρ−m , m 6= 0 , (λ = 0) , (48)

R0(ρ) = A0 + B0 ln ρ , (λ = 0) . (49)

Example. Suppose we are looking for the function u(ρ, ϕ) that satisfies the
Laplace equation

∆u = 0 (50)

everywhere in 2D plane, except for the two circles (Fig. 1), where it is subject
to the boundary conditions

u(ρ = r1, ϕ) = sinϕ , (51)

u(ρ = r2, ϕ) = cosϕ , (52)

and tends to zero at ρ →∞.

Solution. First we note that there are 3 independent regions:

(a) ρ ∈ [0, r1] ,
(b) ρ ∈ [r1, r2] ,
(c) ρ ∈ [r2,∞).

We thus have to separately solve the problem in each of the regions.
(a) Here we have the boundary condition (62) and the requirement that u
be finite at ρ = 0. The latter means that we exclude the singular terms from
the solution (36), (48)-(49), and write

u =
∞∑

m=−∞
Amρ|m|Φm(ϕ) ≡ A0 +

∞∑

m=1

ρm(Cm sinmϕ + Dm cosmϕ) . (53)

The representation in terms of sines and cosines is convenient here, because
of the particular form of the boundary conditions.—We immediately see that
only one term of the series is non-zero. Namely, the one with sinϕ; and the
answer is

u = (ρ/r1) sin ϕ ≡ y/r1 . (54)
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(c) This case is similar to the previous one. Now we exclude the terms
divergent in the limit of ρ →∞ and write

u =
∞∑

m=1

ρ−m(Cm sinmϕ + Dm cosmϕ) . (55)

The relevant boundary condition is Eq. (52), from which we see that the
only non-zero term is that with cosϕ, and find

u = (r2/ρ) cos ϕ . (56)

(b) Once again we use the sine-cosine representation:

u = A0 +B0 ln ρ+
∞∑

m=1

{[
Cmρm +

C̃m

ρm

]
sinmϕ +

[
Dmρm +

D̃m

ρm

]
cosmϕ

}
.

(57)
We have two terms that are non-orthogonal to the boundary conditions,
the term with sinϕ and the term with cosϕ. Corresponding coefficients are
easily found from the boundary conditions:

C1 r1 + C̃1/r1 = 1 , C1 r2 + C̃1/r2 = 0 , (58)

D1 r1 + D̃1/r1 = 0 , D1 r2 + D̃1/r2 = 1 . (59)

The final answer is:

u =
r1 (r2

2/ρ− ρ) sinϕ

r2
2 − r2

1

+
r2 (ρ− r2

1/ρ) cos ϕ

r2
2 − r2

1

. (60)

Problem 31. Find the function u(ρ, ϕ) defined in the region ρ ∈ [r1, r2]—here ρ
and ϕ are the polar coordinates—and satisfying the Laplace equation,

∆u = 0 , (61)

with the boundary conditions

u(r1, ϕ) = 1 , u(r2, ϕ) = sin ϕ . (62)
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Helmholtz/Laplace Equation in 3D: Spherical Coordinates

Let us generalize the two-dimensional consideration of the previous section
to the 3D case. We have 3D Helmholtz (Laplace, if λ = 0) equation:

∆u + λu = 0 , (63)

where the function u is defined in 3D space in the region between two spheres,
the smaller one with the radius r1, and the lager one, with the radius r2

(Fig. 1). In this geometry, it is convenient to use spherical coordinates
r, θ, ϕ:

z = r cos θ ,

x = r sin θ cosϕ ,

y = r sin θ sinϕ .

For the boundary conditions for the function u ≡ u(r, θ, ϕ) we take—for
the sake of definiteness—the 3D analog of (31):

u(r = r1, θ, ϕ) = f1(θ, ϕ) , u(r = r2, θ, ϕ) = f2(θ, ϕ) . (64)

The problem (63)-(64) is solved by separating the variable r from the angular
variables. The 3D Laplace operator in the spherical coordinates is:

∆ =
1
r2

∂

∂r
r2 ∂

∂r
− 1

r2
l̂2 , (65)

where

l̂2 = −
[

1
sin θ

∂

∂θ
sin θ

∂

∂θ
+

1
sin2 θ

∂2

∂ϕ2

]
. (66)

It is worth noting that the operator l2 is the square of a Hermitian vector
operator

l̂ = −ir×∇ , (67)

playing a very important role in Quantum Mechanics.—The operator h̄̂l
is the operator of angular momentum of a quantum particle. Note also
that while the sign minus in (67) is a matter of definition, the number i is
crucial; without it the operator would be anti-Hermitian (an operator L is
anti-Hermitian if L† = −L).

The operator l̂2 is a Hermitian operator in the space of single-valued
functions of the angular variables (θ, ϕ). Hence, it features ONB of eigen-
functions, Y ≡ Y (θ, ϕ),

l̂2 Y = λ̃ Y . (68)
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These functions are called spherical harmonics. Analyzing the structure of
Eq. (66), we see that the ϕ-dependent part of the operator l̂2 is nothing else
than the Hermitian operator ∂2/∂ϕ2, which is already known to us from
the 2D case. This means that one can solve (68) by separating ϕ from θ in
terms of the eigenfunctions Φm(ϕ)—see (33)-(35):

Y (θ, ϕ) =
∞∑

m=−∞
Θm(θ)Φm(ϕ) . (69)

We plug this into (68), take into account (66) and (34), and the orthogonality
of |Φm〉’s. This results in the following Sturm-Liouville problem

[
1

sin θ

d

dθ
sin θ

d

dθ
− m2

sin2 θ

]
Θm = −λ̃Θm , (70)

in which the number m plays a role of an external parameter. By definition
of spherical coordinates, θ ∈ [0, π], and the boundary conditions for our
problem are just the requirements that Θ(θ) be finite at θ = 0 and θ =
π. For any given m, there is an infinite number of the eigenfunctions and
eigenvalues. The theory of Eq. (70) says that the eigenvalues are

λ̃ml = l(l + 1), l = |m|, |m|+ 1, |m|+ 2, . . . . (71)

Note that while the eigenvalues do not depend on m explicitly, the smallest
possible number l is equal to |m|. Corresponding solution Θml is given—up
to a normalization factor Clm—by the so-called associated Legendre polyno-
mials, Plm(cos θ).

Θml(θ) = ClmPlm(cos θ) . (72)

There exists an explicit expression for the associated Legendre polynomi-
als (which are, strictly speaking, polynomials only up to a certain non-
polynomial pre-factor):

Plm(χ) =
1

2ll!
(1− χ2)m/2 dl+m

(dχ)l+m
(χ2 − 1)l . (73)

For Plm(cos θ) it can be also written as

Plm(cos θ) =
1

2ll!
sinm θ

dl+m

(d cos θ)l+m
(cos2 θ − 1)l . (74)
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For example,

P0,0(cos θ) = 1 ,

P1,0(cos θ) = cos θ ,

P1,1(cos θ) = sin θ ,

P1,−1(cos θ) = − sin θ .

The orthonormalization relation for the functions Θml is [the weighting func-
tion follows from the form of the Sturm-Liouville operator in Eq. (70)]

∫ π

0
dθ sin θ Θml1Θml2 = δl1l2 . (75)

It implies that ∫ π

0
dθ sin θ (Θml)2 = 1 . (76)

Eq. (76) is satisfied when

Clm =

√
(2l + 1)(l −m)!

2(l + m)!
. (77)

We have constructed the ONB of spherical harmonics,

Ylm(θ, ϕ) = Clm Plm(cos θ)Φm(ϕ) (78)

featuring the following properties

l̂2 Ylm(θ, ϕ) = −l(l + 1)Ylm(θ, ϕ) , (79)

〈Yl1m1 |Yl2m2〉 ≡
∫ 2π

0
dϕ

∫ π

0
dθ sin θ Y ∗

l1m1
(θ, ϕ) Yl2m2(θ, ϕ) = δl1l2 δm1m2 . (80)

Now we expand the solution u(r, θ, ϕ) in the Fourier series with respect to
this ONB:

u(r, θ , ϕ) =
∞∑

l=0

l∑

m=−l

Rlm(r) Ylm(θ, ϕ) . (81)

Plugging this into (63) and taking into account (65)-(66) and (79), we get

∞∑

l=0

l∑

m=−l

Ylm(θ, ϕ)
[

1
r2

d

dr
r2 d

dr
− l(l + 1)

r2
+ λ

]
Rlm(r) = 0 . (82)
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In view of (80), this implies
[

1
r2

d

dr
r2 d

dr
− l(l + 1)

r2
+ λ

]
Rlm(r) = 0 , (83)

or, equivalently,

r2R′′
lm + 2rR′

lm + [λr2 − l(l + 1)]Rlm = 0 . (84)

The boundary conditions follow from

u(r1, θ , ϕ) =
∞∑

l=0

l∑

m=−l

Rlm(r1) Ylm(θ, ϕ) , (85)

u(r2, θ , ϕ) =
∞∑

l=0

l∑

m=−l

Rlm(r2) Ylm(θ, ϕ) . (86)

That is

Rlm(r1) = 〈Ylm|f1〉 ≡
∫ 2π

0
dϕ

∫ π

0
dθ sin θ Y ∗

lm(θ, ϕ)f1(θ, ϕ) , (87)

Rlm(r2) = 〈Ylm|f2〉 ≡
∫ 2π

0
dϕ

∫ π

0
dθ sin θ Y ∗

lm(θ, ϕ)f2(θ, ϕ) . (88)

The problem of finding functions Rlm in 3D is analogous to its 2D counter-
part, considered previously. Moreover, introducing the new variable

Qlm =
√

r Rlm , (89)

we reduce Eq. (84) to the Bessel equation

r2Q′′
lm + rQ′

lm + [ λr2 − (l + 1/2)2 ] Qlm = 0 . (90)

As in 2D, the solution is especially simple in the case of Laplace equation
(λ = 0):

Rlm(r) = Alm rl + Blm r−(l+1) (λ = 0) . (91)

Here A’s and B’s are constants.

Problem 32. Find the solution u(r, θ, ϕ) of the stationary heat equation

∆u = 0 (92)

within a ball of the radius R; the boundary condition on the surface is

u |r=R = cos θ. (93)
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Eigenfunctions of Laplace operator. The structure of the eigenfunctions of
Laplace operator in the 3D spherical geometry is as follows.

elmn(r) = Rln(r) Ylm(θ, ϕ) , (94)

∆elmn(r) = −λln elmn(r) , (95)

where the subscript n enumerates the eigenvalues and corresponding solu-
tions Rln(r) of Eq. (83). Since neither (83) nor canonical boundary condi-
tions depend on m, both R and λ are m-independent. As is expected for a
Hermitian operator, the eigenfunctions are orthogonal:

〈 el1m1n1 | el1m2n2 〉 ≡
∫ r2

r1

dr r2
∫ π

0
dθ sin θ

∫ 2π

0
dϕ e∗l1m1n1

(r) el2m2n2(r) =

= δl1l2 δm1m2 δn1n2 (96)

in view of Eq. (80) and

〈Rln1 |Rln2 〉 ≡
∫ r2

r1

dr r2R∗
ln1

(r) Rln2(r) = δn1n2 . (97)

Note that two functions R are orthogonal only when they correspond to
one and the same l, because only in this case they are eigenfunctions of one
and the same Hermitian operator. The proper weighting function r2 follows
from the form of the Sturm-Liouville operators in Eq. (83).
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