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1 Problem One

1.1 Part a

In this problem, we’ll assume the fact that the sum of two complex numbers is
another complex number, and also that the product of two complex numbers is
another complex number.

Whenever we define a vector space, we need three things. The first thing is
the “field” over which the vector space is defined, which is a fancy way of saying
we need to say what the scalar multiples are (either real numbers, complex
numbers, or something weirder). The second thing we need are the vectors
themselves, and the third thing is an addition rule. In this problem it is explicitly
stated that the vectors are complex 2 by 2 matrices, while it is implicit that the
rule of addition is usual matrix addition, and the scalar multiples are complex
numbers.

Let’s first check that the set of 2 by 2 matrices is closed under this operation
(this isn’t one of the usual 8 axioms, but it’s always important, often times
implied, since the whole notion of addition on the vector space wouldn’t make
sense in the first place if we could add two 2 by 2 complex matrices and get
something that wasn’t a complex 2 by 2 matrix). If a, b, c, d, e, f, g, and h are
arbitrary complex numbers, then we see that, using the usual rules of matrix
addition, [

a b
c d

]
+
[
e f
g h

]
=
[
a+ e b+ f
c+ g d+ h

]
. (1)

Since the sum of two complex numbers is another complex number, we see that
both sides of this equation are elements of this set, and so the set of 2 by 2
complex matrices are indeed closed under this operation.

Now, to show the 8 axioms of a vector space, we start by checking the
associativity of addition, which is to say that for any three matrices A, B, and
C, we require

A+ (B + C) = (A+B) + C. (2)

Again, writing these as arbitrary complex matrices, we see that we have.([
a b
c d

]
+
[
e f
g h

])
+
[
i j
k l

]
=
[

(a+ e) + i (b+ f) + j
(c+ g) + k (d+ h) + l

]
, (3)

while it is also true that[
a b
c d

]
+
([
e f
g h

]
+
[
i j
k l

])
=
[
a+ (e+ i) b+ (f + j)
c+ (g + k) d+ (h+ l)

]
. (4)

Because addition of individual complex numbers is associative, we see that the
right side of the first equation is the same as the right side of the second equation,
showing that the two sums are equal. Thus, associativity of matrix addition is
verified.
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Likewise, the equation[
a b
c d

]
+
[
e f
g h

]
=
[
a+ e b+ f
c+ g d+ h

]
=
[
e+ a f + b
g + c h+ d

]
=
[
e f
g h

]
+
[
a b
c d

]
(5)

verifies the commutativity of matrix addition.
Next, we see that [

a b
c d

]
+
[
0 0
0 0

]
=
[
a b
c d

]
(6)

verifies the existence of a zero vector, which is just the matrix where every
element is zero.

To see that every element has an additive inverse, we notice that[
a b
c d

]
+
[
−a −b
−c −d

]
=
[
0 0
0 0

]
, (7)

which verifies that by negating every element of a matrix, we can arrive at its
additive inverse, thus proving that every matrix has an additive inverse.

Now, if λ is an arbitrary complex number, notice that

λ

([
a b
c d

]
+
[
e f
g h

])
= λ

[
a+ e b+ f
c+ g d+ h

]
=
[
λ(a+ e) λ(b+ f)
λ(c+ g) λ(d+ h)

]
. (8)

Because scalar multiplication distributes over individual complex numbers, we
see that this is equal to[

λa+ λe λb+ λf
λc+ λg λd+ λh

]
= λ

[
a b
c d

]
+ λ

[
e f
g h

]
(9)

which verifies that scalar multiplication distributes over addition of matrices.
To show that scalar multiplication distributes over the addition of scalar

multiples, first notice that, for complex numbers λ and γ, we have

(λ+ γ)
[
a b
c d

]
=
[
(λ+ γ) a (λ+ γ) b
(λ+ γ) c (λ+ γ) d

]
=
[
λa+ γa λb+ γb
λc+ γc λd+ γd

]
, (10)

which can be separated to yield

λ

[
a b
c d

]
+ γ

[
a b
c d

]
(11)

which verifies that scalar multiplication distributes over the addition of complex
numbers.

To show that scalar multiplication is associative, we first see that

(λγ)
[
a b
c d

]
=
[
(λγ) a (λγ) b
(λγ) c (λγ) d

]
. (12)
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Because scalar multiplication of complex numbers is associative, we can write
this as [

λ (γa) λ (γb)
λ (γc) λ (γd)

]
= λ

[
γa γb
γc γd

]
= λ

(
γ

[
a b
c d

])
(13)

which verifies the associativity of scalar multiplication.
Lastly, we must verify there exists a multiplicative identity. Notice that

1 ∗
[
a b
c d

]
=
[
1 ∗ a 1 ∗ b
1 ∗ c 1 ∗ d

]
=
[
a b
c d

]
(14)

verifies the existence of this object, which is just the usual multiplicative identity
in the complex numbers.

1.2 Part b

Our proposed inner product is

〈A|B〉 =
1
2
Tr
(
A†B

)
, (15)

where we recall that the trace of an N by N square matrix is given by

Tr (A) =
N∑

i=1

Aii. (16)

In other words, the trace is the sum over the diagonal entries. We must verify
that this is a valid inner product on S, or in other words, it satisfies the three
axioms of an inner product.

First, notice that, for any matrix C, we have,

Tr
(
C†
)

= (Tr (C))∗ . (17)

To see this, recall that from the definition of the Hermitian conjugate, the
diagonal elements of C† will obey,(

C†
)
ii

= (Cii)
∗ (18)

since the diagonal elements are unaffected by the transposition of rows and
columns. Thus

Tr
(
C†
)

=
N∑

i=1

(
C†
)
ii

=
N∑

i=1

(Cii)
∗ =

(
N∑

i=1

Cii

)∗
= (Tr (C))∗ , (19)

where the third equality follows from the fact that complex conjugation is a
linear operation. Now, choosing C = A†B, we see that

〈A|B〉 =
1
2
Tr
(
A†B

)
=

1
2
Tr
((
B†A

)†)
=

1
2
Tr
(
B†A

)∗
= 〈A|B〉∗, (20)
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where we used the rule for taking the Hermitian conjugate of a product of two
matrices (make sure to review this if it’s something you’re not comfortable with).
Thus, the first axiom of the inner product is satisfied.

Next, recall that the trace is a linear operation, since we have,

Tr (λC + γD) =
N∑

i=1

(λCii + γDii) = λ

N∑
i=1

Cii+γ
N∑

i=1

Dii = λTr (C)+γTr (D) .

(21)
Therefore

〈A|λB〉 =
1
2
Tr
(
A†(λB)

)
=

1
2
Tr
(
λA†B

)
=
λ

2
Tr
(
A†B

)
= λ〈A|B〉, (22)

where in the second equality I used the fact that scalar multiplication of matrices
commutes through any product. Likewise,

〈A|B + C〉 =
1
2
Tr
(
A†(B + C)

)
=

1
2
Tr
(
A†B

)
+

1
2
Tr
(
A†C

)
= 〈A|B〉+ 〈A|C〉,

(23)
and thus the second axiom is verified.

Lastly, recall that the product of two matrices can be written in component
form as

(CD)ij =
N∑

k=1

CikDkj . (24)

As a result, we can write

〈A|A〉 =
1
2
Tr
(
A†A

)
=

N∑
i=1

(
A†A

)
ii

=
N∑

i=1

N∑
k=1

(
A†
)
ik
Aki =

N∑
i=1

N∑
k=1

|Aki|2, (25)

where in the last equality I used(
A†
)
ik
Aki = (Aki)

∗
Aki = |Aki|2. (26)

Now, this double sum runs over every single element in the matrix. Because
the norm of a complex number is never negative, we can see that this sum will
never be negative, and the only way it can be zero is for every single term in
the sum, and thus every single element in the matrix, to be zero, which would
imply that A is the zero matrix. Thus, we have verified the third axiom, which
is that the inner product is positive definite.

Notice that all three of these axioms could be proven with a brute-force ap-
proach, by writing down two arbitrary 2 by 2 complex matrices and working out
all of the matrix multiplications. However, this approach will become virtually
impossible when the matrices become large enough, and so it is good to have
some familiarity with how to do these things in other ways.
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1.3 Part c

We need to verify two things about this collection of matrices. The first is that
they are orthonormal (in the sense of the inner product given in part b), and
the second is that they form a basis for all complex 2 by 2 matrices.

Verifying that they are all orthonormal is straight-forward. We simply com-
pute the inner product of each pair of matrices. First, notice that the Pauli
matrices are “Hermitian”, which means that they are equal to their own Her-
mitian conjugate (please check this for yourself if you are unfamiliar with this
idea). So we can effectively ignore the Hermitian conjugation in the definition
of the inner product.

To see that the identity is orthonormal under this inner product, we compute

〈I|I〉 =
1
2
Tr (I ∗ I) =

1
2
Tr (I) =

1
2
∗ (1 + 1) = 1, (27)

where we have used the fact that the square of the identity matrix is again the
identity matrix.

Furthermore, there is a property of the Pauli matrices which is that the
square of any Pauli matrix is the identity. That is,

σi ∗ σi = I (28)

where the index i can represent either x, y, or z. Thus, for any of the Pauli
matrices, we have

〈σi|σi〉 =
1
2
Tr (σi ∗ σi) =

1
2
Tr (I) =

1
2
∗ (1 + 1) = 1, (29)

which verifies that all of the Pauli matrices are normalized under this inner
product.

To see that all of the Pauli matrices are orthogonal to each other, we first
notice that the product of any two Pauli matrices, up to a factor of ± i, is
another Pauli matrix. That is,

σx ∗ σy = iσz, σy ∗ σx = −iσz, (30)

σy ∗ σz = iσx, σz ∗ σy = −iσx (31)

σz ∗ σx = iσy, σx ∗ σz = −iσy, (32)

which can be verified by explicitly computing the above matrix products. Thus,
if i, j, and k are all different, we have

〈σi|σj〉 =
1
2
Tr (σi ∗ σj) =

1
2
Tr (±iσk) =

±i
2
Tr (σk) . (33)

However, it turns out that all of the Pauli matrices have zero trace (which is
something you should verify for yourself if you haven’t seen it before). Thus,
we arrive at the conclusion

〈σi|σj〉 =
±i
2
Tr (σk) = 0, (34)
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and so the Pauli matrices are indeed orthonormal under this inner product.
To show that these matrices form a basis for all complex 2 by 2 matrices,

we need to verify that these matrices are a set of linearly independent matrices
from which any other 2 by 2 complex matrix can be written. The fact that
they are linearly independent immediately follows from the fact that they are
orthonormal (if any of the vectors could be written as a linear combination of
the others, then their inner products amongst themselves could not be zero,
and hence they would not be orthonormal). The fact that any complex 2 by 2
matrix can be written as a linear combination of them can be seen by explicitly
finding the coefficients in the expansion. If a, b, c, and d are arbitrary complex
numbers, and x, y, z, and w are the proposed coefficients in the linear expansion,
then we want to try to solve the equation[

a b
c d

]
= x σx + y σy + z σz + w ∗ I. (35)

If we use the explicit form of the Pauli matrices, a short exercise in matrix
algebra reduces the above expression to[

a b
c d

]
=
[
z + w x− iy
x+ iy −z + w

]
. (36)

This matrix equation is really a set of four simultaneous equations, which we
can easily solve to find

x =
1
2

(b+ c), y =
i

2
(b− c) (37)

z =
1
2

(a− d), w =
1
2

(a+ d). (38)

Because I have explicitly found these four coefficients for any arbitrary 2 by 2
matrix that I can think of, I have proven that it is indeed always possible to
do this. Notice that I had four equations in four unknowns. If the number of
matrices in my proposed basis was either more or less, then these equations
would either be under-determined or overdetermined, respectively.

2 Problem Two

2.1 Part a

We can show that this operation is not a linear operation through a simple
counter example. For an operator T to be linear, we must have

T (λx) = λT (x), (39)

where λ is a scalar multiple and x is an element in the space of objects being
acted on by T (which may or may not be a vector space, depending upon the
context in which T is being introduced). But in our case, the objects in question
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are positive real numbers, and the operator T is the square root, and so our
proposed relation is √

λx = λ
√
x (40)

for positive real numbers x and scalar multiples λ. But of course we know this
is not true at all, and thus the square root is not a linear operation.

2.2 Part b

This is also not a linear operation, which we can again see by a counter-example.
We have

ln (1 + 1) = ln (2) , (41)

while we also have

ln (1) + ln (1) = 2 ln (1) = ln
(
12
)

= ln (1) 6= ln (2) , (42)

and so we see that linearity does not hold.

2.3 Part c

First, recall that the derivative is a linear operation, which is to say that for
any functions f and g, and any constant multiples a and b, we have

d

dx
(a ∗ f(x) + b ∗ g(x)) = a ∗ df

dx
+ b ∗ dg

dx
. (43)

Next, notice that for two linear operators T and U, the result

TU(a∗f+b∗g) = T (U(a∗f+b∗g)) = T (a∗(Uf)+b∗(Ug)) = a∗(TUf)+b∗(TUf)
(44)

implies that the product of two linear operators is another linear operator.
Thus, because the first derivative is a linear operator, and because any repeated
application of this operator will yield another linear operator, we see that the
nth-derivative is indeed a linear operator.

2.4 Part d

If T and U are linear operators, a, b, c, and d are constant multiples, and f and
g are vectors, then notice that we have

(cT + dU) (a ∗ f + b ∗ g) = cT (a ∗ f) + cT (b ∗ g) + dU(a ∗ f) + dU(b ∗ g). (45)

Using the linearity property of T and U, we can pull out the constant multiples
a and b, and then rearrange this expression to find that this is equal to

a(cT + dU) (f) + b(cT + dU) (g) (46)

which shows that the linear combination of operators, cT+dU, is also another
linear operator itself. Now, because we know that the nth-derivative and the
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identity are linear operator, and that linear combinations of linear operators are
also linear operators themselves, we see that the operator

α
d2

dx2
+ β

d

dx
+ γÎ (47)

is indeed a linear operator.

2.5 Part e

Notice that we have
(I + I)−1 = (2I)−1 =

1
2
I (48)

where I is the identity operator. However,

I−1 + I−1 = I + I = 2I, (49)

and so we see that the matrix inverse cannot be a linear operation, since it fails
in this case.

3 Problem Three

3.1 Part a

The logic for this problem proceeds in the same way as the proof given in class;
however, we want to use bra-ket notation.

To begin the proof, we recall that for any vector |w〉, we have

〈w|w〉 ≥ 0. (50)

Since this can be any vector, we choose

|w〉 = |α〉+ λ|β〉 (51)

where |α〉 and |β〉 are vectors, and λ is a complex scalar multiple. Now, the
dual vector of this, in bra-ket notation, will be

〈w| = 〈α|+ λ∗〈β|, (52)

so we can write the inner product in bra-ket notation as

(〈 α|+ λ∗〈β|) ∗ (|α〉+ λ|β〉) ≥ 0, (53)

which we can expand out to get

〈α|α〉+ λ〈α|β〉+ λ∗〈β|α〉+ |λ|2〈β|β〉 ≥ 0. (54)

Notice that in bra-ket notation, the scalar multiples are “already pulled out,” in
the sense that the complex conjugation of the scalar multiples is already taken
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care of when we write down the form of the dual vector. Now, since λ can be
anything, we are free to choose

λ = −〈β|α〉
〈β|β〉

. (55)

If we substitute this value of λ into the previous expression, the simplified result
becomes

〈α|α〉〈β|β〉 − 〈α|β〉〈β|α〉 ≥ 0. (56)

Now, if we recall that
〈β|α〉 = 〈α|β〉∗, (57)

then the previous result can be written as

〈α|α〉〈β|β〉 − |〈α|β〉|2 ≥ 0⇒ 〈α|α〉〈β|β〉 ≥ |〈α|β〉|2, (58)

and since the norm is an inherently non-negative quantity, we can take the
square root of both sides to get√

〈α|α〉〈β|β〉 = |α||β| ≥ |〈α|β〉| (59)

which is the Cauchy-Schwarz inequality.

3.2 Part b

The position operator is defined by

X̂i ψ(x) = xi ψ(x), (60)

which is to say that the action of the operator is to multiply the function ψ(x) by
a factor of xi, where xi can be either one of the three usual position coordinates,
x, y, and z (corresponding to i = 1, 2, and 3). Likewise, the momentum operator
is defined by

P̂i ψ(x) = −ih̄ ∂

∂xi
ψ(x). (61)

When evaluating these commutators, the easiest way to avoid mistakes is to
use a “test function.” For any two linear operators T and U, the commutator,
which is defined by

[T,U ] = TU − UT, (62)

is a linear operator itself, since sums and products of linear operators produce
other linear operators. So what we want to compute is

[T,U ]f = TUf − UTf, (63)

where f is some arbitrary function which we will throw away at the end of the
calculation. The reason we do this is because these commutator calculations
often include using various rules of differentiation, and attempting to do this in
the abstract without acting on an actual function can lead to mistakes.
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To begin, let’s compute the commutator

[X̂i, X̂j ] = X̂iX̂j − X̂jX̂i. (64)

Using a test function, we see that this becomes

[X̂i, X̂j ]f = X̂i

(
X̂jf

)
− X̂j

(
X̂if

)
= xi(xjf)− xj(xif). (65)

Now, because xi and xj are just coordinates, which are merely numbers, their
multiplication is associative and commutative. So we can write the above ex-
pression as

[X̂i, X̂j ]f = xixjf − xjxif = xixjf − xixjf = 0. (66)

Now, because the action of the commutator on any arbitrary function is zero,
then the commutator itself must be the zero operator, and so we have

[X̂i, X̂j ] = 0 (67)

as expected.
To verify the second commutation relation, we again use a test function, and

compute

[P̂i, P̂j ]f = P̂i

(
P̂jf

)
−P̂j

(
P̂if
)

= −ih̄
(

∂

∂xi

(
−ih̄ ∂

∂xj
f

)
− ∂

∂xj

(
−ih̄ ∂

∂xi
f

))
.

(68)
If we pull through the numerical factors, this becomes

[P̂i, P̂j ]f = −h̄2

(
∂

∂xi

∂

∂xj
f − ∂

∂xj

∂

∂xi
f

)
. (69)

Now, if a function is at least twice continuously differentiable (which means that
you can at least take its second derivative and that that second derivative is
continuous), then we know that the mixed partial derivatives of that function
will all be equal. We are told that these operators act on functions which are
members of C∞, which is to say that they can be differentiated an infinite
number of times, and thus they more than meet the requirement to have their
partial derivatives be equal. Because of this, we have

∂

∂xi

∂

∂xj
f =

∂

∂xj

∂

∂xi
f ⇒ [P̂i, P̂j ] = 0 (70)

as expected.
To prove the final commutator expression, we begin by writing

[X̂i, P̂j ]f = X̂i

(
P̂jf

)
− P̂j

(
X̂if

)
= −ih̄

(
xi ·

∂f

∂xj
− ∂

∂xj
(xi · f)

)
. (71)
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Now, if i 6= j, which means that xi and xj are different coordinates, then we
have

∂

∂xj
(xi · f) = xi ·

∂f

∂xj
(72)

since xi is just a constant with respect to the differentiation. Thus, the com-
mutator becomes,

[X̂i, P̂j ]f = −ih̄
(
xi ·

∂f

∂xj
− xi ·

∂f

∂xj

)
= 0, (73)

so that
[X̂i, P̂j ] = 0, (74)

as expected. Now, if i = j, then we have instead

∂

∂xj
(xi · f) =

∂

∂xi
(xi) · f + xi ·

∂

∂xi
(f) = f + xi ·

∂f

∂xi
, (75)

which implies that the commutator becomes

[X̂i, P̂j ]f = −ih̄
(
xi ·

∂f

∂xj
− f − xi ·

∂f

∂xi

)
= ih̄f, (76)

which is to say that the action of the commutator on any arbitrary function is
to multiply it by ih̄, or,

[X̂i, P̂j ] = ih̄. (77)

Combining the two cases, we can write

[X̂i, P̂j ] = ih̄δij , (78)

as expected.

4 Problem Four

The statement of the triangle inequality is, for any two vectors x and y,

||x+ y|| ≤ ||x||+ ||y||, (79)

or, in bra-ket notation,√
(〈x|+ 〈y|) (|x〉+ |y〉) ≤

√
〈x|x〉 +

√
〈y|y〉. (80)

To prove this inequality, we begin by writing

(〈x|+ 〈y|) (|x〉+ |y〉) = 〈x|x〉+ 〈x|y〉+ 〈y|x〉+ 〈y|y〉. (81)

Now, notice that

〈x|y〉+ 〈y|x〉 = 〈x|y〉+ 〈x|y〉∗ = 2Re[〈x|y〉], (82)
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and because the real part of a complex number is always less than or equal to the
absolute value of that complex number (which you should verify for yourself),
we have

2Re[〈x|y〉] ≤ 2|〈x|y〉|, (83)

which implies

(〈x|+ 〈y|) (|x〉+ |y〉) ≤ 〈x|x〉+ 2|〈x|y〉|+ 〈y|y〉. (84)

Now, by the Cauchy-Schwarz inequality, we have

|〈x|y〉| ≤
√
〈x|x〉

√
〈y|y〉, (85)

so we can further write

(〈x|+ 〈y|) (|x〉+ |y〉) ≤ 〈x|x〉+ 2
√
〈x|x〉

√
〈y|y〉+ 〈y|y〉. (86)

Finally, noticing that

〈x|x〉+ 2
√
〈x|x〉

√
〈y|y〉+ 〈y|y〉 =

(√
〈x|x〉+

√
〈y|y〉

)2

, (87)

we ultimately get

(〈x|+ 〈y|) (|x〉+ |y〉) ≤
(√
〈x|x〉+

√
〈y|y〉

)2

, (88)

which gives the desired result when we take the square root of both sides.
The triangle inequality shows up all the time when calculating limits from

the definition, and also has an obvious geometric interpretation in a variety of
physical contexts.

5 Problem Five

Let’s begin by normalizing the first vector in our space, the function f(x) = 1.
Remember that for a norm derived from an inner product, we have

||f || =
√
〈f |f〉, (89)

which in our case implies,

||f || =

√∫ ∞
−∞

e−x2f∗(x)f(x) dx =

√∫ ∞
−∞

e−x2 |f(x)|2 dx. (90)

Thus, the norm of f(x) = 1 is

||1|| =

√∫ ∞
−∞

e−x2 |1|2 dx =

√∫ ∞
−∞

e−x2 dx =
√√

π = π
1
4 (91)
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where the value of the integral can be found in a table or computed with some
program like Mathematica. Now that we have the norm of f(x) = 1, we can
take our first basis vector to be

ê1 =
1
||1||

= π−
1
4 (92)

To find the second orthonormal basis vector, we want to take the original
second vector, f(x) = x, and subtract off the portion of it which is parallel to
the first basis vector. This will leave a vector which is orthogonal to the first
basis vector, which we can then normalize to get the second basis vector. The
portion of the original second vector which is parallel to the first basis vector is
given by

|x〉‖ = 〈e1|x〉 ê1, (93)

which is the component along the first orthonormal basis vector, times the first
basis vector. Notice that if ê1 were not already normalized, we would need
to divide the above expression by the norm of ê1, which is the more general
expression for the projection along a given direction. Now, the above inner
product is given by

〈e1|x〉 =
∫ ∞
−∞

e−x2
π−

1
4 x dx = 0, (94)

which follows from the fact that we are integrating an odd function over a
symmetric interval. So the original second vector is already orthogonal to the
first basis vector. Thus, we merely need to normalized the original second vector.
This norm is given by

||x|| =

√∫ ∞
−∞

e−x2 |x|2 dx =

√∫ ∞
−∞

e−x2x2 dx =

√√
π

2
=

1√
2
π

1
4 , (95)

so that we can take our second basis vector to be

ê2 =
x

||x||
=
√

2 π−
1
4 x. (96)

To find the third basis vector, we will start with the original third vector,
and then subtract off the portion which is parallel to ê1, and also the portion
which is parallel to ê2. Formally, this is

|x2〉⊥ = |x2〉 − |x2〉‖ = |x2〉 − 〈e1|x2〉 ê1 − 〈e2|x2〉 ê2. (97)

Now, we have

〈e1|x2〉 =
∫ ∞
−∞

e−x2
π−

1
4 x2 dx =

1
2
π

1
4 , (98)

while we also have

〈e2|x2〉 =
∫ ∞
−∞

e−x2√
2 π−

1
4 x · x2 = 0 (99)
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which is a result of the integrand being an odd function. So we see that we have

|x2〉⊥ = |x2〉 − 1
2
π

1
4 ê1 = x2 − 1

2
. (100)

Finally, to normalize this vector, we have,

||x2
⊥|| =

√
⊥〈x2|x2〉⊥ =

√∫ ∞
−∞

e−x2 | x2 − 1
2
|2 dx =

√√
π

2
=
π

1
4

√
2

(101)

so that our third basis vector becomes

ê3 =
|x2〉⊥
||x2
⊥||

=
√

2 π−
1
4 (x2 − 1

2
). (102)

Finally, to find the fourth vector in our basis, we need to find the portion of
the fourth original vector which is perpendicular to the three basis vectors we
have so far. This looks like

|x3〉⊥ = |x3〉 − |x3〉‖ = |x3〉 − 〈e1|x3〉 ê1 − 〈e2|x3〉 ê2 − 〈e3|x3〉 ê3 (103)

Using Mathematica, or a table, or some other means of computing the integrals,
we find

〈e1|x3〉 =
∫ ∞
−∞

e−x2
π−

1
4 x3 dx = 0, (104)

〈e2|x3〉 =
∫ ∞
−∞

e−x2√
2 π−

1
4 x · x3 dx =

3π
1
4

2
√

2
, (105)

〈e3|x3〉 =
∫ ∞
−∞

e−x2√
2 π−

1
4 (x2 − 1

2
) · x3 dx = 0. (106)

Thus, we have,

|x3〉⊥ = |x3〉 − 3π
1
4

2
√

2
ê2 = x3 − 3

2
x (107)

The norm of this perpendicular portion is found to be

||x3
⊥|| =

√
⊥〈x3|x3〉⊥ =

√∫ ∞
−∞

e−x2 | x3 − 3
2
x |2 dx =

√
3
√
π

4
=
√

3
2

π
1
4 ,

(108)
which finally lets us write

ê3 =
|x3〉⊥
||x3
⊥||

=
2π−

1
4

√
3

(x3 − 3
2
x). (109)
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