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1 Problem One

1.1 Part a

The key thing to notice here is that D and M have the same eigenvalues and the same determinant,
so if we can show that the product of the eigenvalues is equal to the determinant for D, then it
must also be true for M.

To see this, recall that we have, for any two matrices A and B,

det (AB) = det (A) det (B) , (1)

which is given in equation 6.6 in Boas. Therefore,

det(D) = det(C−1MC) = det(C−1) det(M) det(C) = det(C−1) det(C) det(M) =

det(C−1C) det(M) = det(I) det(M) = det(M),
(2)

and so the determinants are the same.
To see that the eigenvalues are the same, it is enough to show that the two matrices have the

same characteristic polynomial. Notice that

det(D − λI) = det(C−1MC − λC−1C) = det(C−1(M − λI)C) =

det(C−1) det(M − λI) det(C) = det(M − λI),
(3)

where again the last equality follows from

det(C−1) det(C) = det(C−1C) = det(I) = 1 (4)

So we see that M and D have the same characteristic polynomial, and thus the same eigenvalues.
As a result of this, if the determinant of D is given by the product of its eigenvalues, then the

same must hold for M, since it has the same determinant and same eigenvalues.
Showing this for D is quite trivial. Since D is diagonal, its determinant is just the product of

its diagonal entries, since no matter which row or column we expand along, there will only be one
non-zero term for each expansion. For example,

det


1 0 0 0
0 8 0 0
0 0 3 0
0 0 0 4

 = 1 ∗ det

8 0 0
0 3 0
0 0 4

 = 1 ∗ 8 ∗ det
(

3 0
0 4

)
= 1 ∗ 8 ∗ 3 ∗ 4. (5)

Likewise, the diagonal entries are the eigenvalues of D. To see this, note that D - λI is again
diagonal, with λ subtracted from each of the diagonal entries. So the characteristic equation
becomes

det(D − λI) =
∏
i

(Dii − λ) = 0, (6)

which is already the factorization of the polynomial, indicating that the diagonal entires of D are
the solutions to the eigenvalue problem.

So the determinant of D is just the product of its diagonal entries, which happen to also be the
eigenvalues, and so the determinant of D is just the product of its eigenvalues. This then also holds
for M.
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1.2 Part b

Recall that the trace of a product of matrices is preserved under cyclic permutations. That is, for
example,

Tr(ABC) = Tr(CAB), (7)

or,
Tr(QRST ) = Tr(STQR). (8)

So, as a result,
Tr(D) = Tr(C−1MC) = Tr(CC−1M) = Tr(M). (9)

We already know that the eigenvalues of D and M are the same, and now we know that their traces
are the same. So if the trace of D is the sum of its eigenvalues, then this also holds for M.

However, we know that since D is diagonal, its eigenvalues are just its diagonal entries. By
definition, the trace is the sum of the diagonal entries, so the trace of D is the sum of its eigenvalues.
This therefore also holds for M.

2 Problem Two

The physical set-up of this problem is similar to Figure 12.1 in Boas on page 165, except for the
value of the spring constants. Following Boas, I will denote the deviations of the masses from their
equilibrium positions as x and y. The calculation of the potential energy of the system proceeds in
much the same way as in the example in Boas, aside from the values of the spring constants. The
potential energy is now

V =
5
2
kx2 + k(x− y)2 + ky2, (10)

since the spring constants are now 5k, 2k, and 2k. The equations of motion then become

mẍ = −∂V∂x = −7kx+ 2ky

mÿ = −∂V∂y = 2kx− 4ky.
(11)

Now, if we assume oscillatory solutions

x = x0e
iwt ; y = y0e

iwt, (12)

then we find that
−mw2x = −7kx+ 2ky

−mw2y = 2kx− 4ky,
(13)

which can be written in matrix form as

λ

(
x
y

)
=
(

7 −2
−2 4

)(
x
y

)
, (14)

where,

λ ≡ mw2

k
. (15)
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So we have reduced the problem of finding w to the problem of finding the eigenvalues of the
above matrix. I’ll leave this eigenvalue calculation to you guys, and simply state that the two
eigenvalues can be found to be

λ1 = 3, λ2 = 8, (16)

so that the frequencies become

w1 =

√
3k
m
, λ2 =

√
8k
m
. (17)

The actual motion of the two masses for these frequencies can be found by finding the corresponding
eigenvectors. Any general solution to this system can be written as a linear combination of these
two solutions.

The physical system we have considered is of course a very idealized one, which is why we
were able to write the system of equations (11) in such a simple form. One may wonder if this
technique has any applicability for more general systems. The answer is that it most certainly
does. The reason is that for any system for which we can deduce the equations of motion, it is
(almost) always possible to Taylor expand the terms showing up in (11), for when we expect to
have small deviations from equilibrium. Thus, we can use this method to find the characteristic
small oscillations for any system, which are referred to as the normal modes of the system. If we
use the Lagrangian formalism to find the equations of motion, the coordinates don’t even need to
be spatial coordinates; they could be totally general degrees of freedom. For those interested, Boris
Svistunov’s notes on small oscillations talk about this subject in more depth.

3 Problem Three

3.1 Part a

As always, we find the eigenvalues according to

det(M − λI) = det
(
−λ 1
1 −λ

)
= λ2 − 1 = 0, (18)

which implies
λ = ±1. (19)

To find the eigenvector corresponding to λ = +1, we have(
0 1
1 0

)(
a
b

)
=
(
a
b

)
⇒
(
b
a

)
=
(
a
b,

)
(20)

which means we can take the normalized eigenvector to be

|λ1〉 =
1√
2

(
1
1

)
. (21)

In a similar fashion, we can find the normalized eigenvector corresponding to λ = -1 as

|λ2〉 =
1√
2

(
1
−1

)
. (22)
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3.2 Part b

As derived by Eli in class, we know that we can construct the Green’s function as

Ĝ =
N∑
i=1

|λi〉〈λi|
λi − λ

, (23)

so long as λ is not equal to one of the eigenvalues. In our case, this becomes

Ĝ =
|λ1〉〈λ1|
1− λ

− |λ2〉〈λ2|
1 + λ

, (24)

so that the solution reads

|a〉 = Ĝ|f〉 =
|λ1〉〈λ1|f〉

1− λ
− |λ2〉〈λ2|f〉

1 + λ
. (25)

Now, we have

〈λ1|f〉 =
1√
2

(
1 1

)(1
2

)
=

3√
2
, (26)

along with

〈λ2|f〉 =
1√
2

(
1 −1

)(1
2

)
=
−1√

2
. (27)

Thus, we find that

|a〉 =
1
2

(
3

1− λ

(
1
1

)
+

1
1 + λ

(
1
−1

))
, (28)

which can be further simplified if one so chooses. If you have any questions as to where these
formulas come from, please feel free to ask me questions regarding the subject.

4 Problem Four

I’ll address this problem by giving my advice on where to read about these subjects. For parts a,
b, and e, my personal advice would be to get a copy of “Introduction to Quantum Mechanics” by
David Griffiths, second edition. I would also recommend “Modern Quantum Mechanics” by J. J.
Sakurai.

For parts c and d, I don’t know that I would suggest any one book in particular, so I would
personally recommend doing a Google Books search for these subjects.

Feel free to ask me questions about these subjects if you would like to know more.

5 Problem Five

We assume that our solution has a power series expansion given by

y(x) =
∞∑
n=0

anx
n. (29)
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From this it follows that

y′(x) =
∞∑
n=0

nanx
n−1, (30)

along with

y′′(x) =
∞∑
n=1

n(n− 1)anxn−2 =
∞∑
n=2

n(n− 1)anxn−2. (31)

By using k = n-2, we can re-index the previous sum as

y′′(x) =
∞∑
k=0

(k + 2)(k + 1)ak+2x
k. (32)

For now we will not re-index the sum for the first derivative, the reason for which will become
obvious in a moment.

Inserting these results into our original differential equation, we have( ∞∑
k=0

(k + 2)(k + 1)ak+2x
k

)
+ x

( ∞∑
n=0

nanx
n−1

)
+

( ∞∑
n=0

anx
n

)
= 0. (33)

However, since k is just a dummy variable, we can just rename it back to n and bring the sums
together, to get

∞∑
n=0

(n+ 2)(n+ 1)an+2x
n + xnanx

n−1 + anx
n = 0, (34)

which simplifies to
∞∑
n=0

[ (n+ 2)(n+ 1)an+2 + (n+ 1)an ]xn = 0. (35)

For this equation to be satisfied identically, we must have the coefficient on each power of x go to
zero. In other words, we must have

(n+ 2)(n+ 1)an+2 + (n+ 1)an = 0, (36)

which yields

an+2 =
−an

(n+ 2)
. (37)

Now, my claim is that the above result tells us

a2k =
(−1)k

(2k)!!
a0 ; a2k+1 =

(−1)k

(2k + 1)!!
a1, (38)

where the double factorial is given by

n!! ≡ n(n− 2)(n− 4)...n0, (39)

where n0 is equal to 2 if n is even, and 1 if n is odd. If n is equal to zero, then the double factorial
is just defined to be 1. To check this, first notice that it holds correctly for the k = 0 cases. To
check the expansion for the odd terms, notice that

a2k+3 = a2(k+1)+1 =
(−1)k+1

(2k + 3)!!
a1 =

−(−1)k

(2k + 3)(2k + 1)!!
a1 =

−1
(2k + 3)

a2k+1, (40)
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and with n = 2k+1, this result reads

a2k+1+2 = an+2 =
−1

(n+ 2)
an, (41)

which is indeed the correct recursion relation. The formula for the even terms can be verified in a
similar manner.

Realizing what the formula should be is somewhat of an art, and involves being able to recognize
common patterns when they arise. For example, for the odd terms, if we start doing explicit
computations, we see that

a1 = a1 ; a3 = −1
3
a1 ; a5 =

1
5
· 1

3
a1, (42)

and so we start to realize there is a double factorial pattern emerging, with alternating signs. The
same idea occurs with the even terms. However, once we realize what the pattern should be,
verifying it is relatively straight-forward using induction, as I did above.

Now that we know the coefficients for the even and odd terms, we can use them to write our
final result. If we split the summation into even and odd terms, we have

y(x) =
∞∑
k=0

a2kx
2k +

∞∑
k=0

a2k+1x
2k+1, (43)

which allows us to write

y(x) = a0

∞∑
k=0

(−1)k

(2k)!!
x2k + a1

∞∑
k=0

(−1)k

(2k + 1)!!
x2k+1. (44)

In order to find a0 and a1, we would need to know some initial conditions. Notice that

y(0) = a0 ; y′(0) = a1 (45)

(which you should verify for yourself), so that we can alternatively write

y(x) = y(0)
∞∑
k=0

(−1)k

(2k)!!
x2k + y′(0)

∞∑
k=0

(−1)k

(2k + 1)!!
x2k+1, (46)

which gives the full solution in terms of initial conditions.
As an aside, the above result can also be written as

y(x) = y(0)e−
x2
2 +
√

2y′(0)F
(
x√
2

)
, (47)

where the function F(x) is the Dawson Integral, something which I’ll let you look up on your own.
Personally, I found these explicit summations by looking them up with Mathematica. So the even
portion has a summation which comes out to a nice looking function, but the same is not quite true
of the odd portion. Notice that if the initial value of the derivative is zero, then we only have the
even portion, and the final result is a Gaussian.
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6 Problem Six

6.1 Part a

We assume we can write our solution as

y(x) =
∞∑
l=0

alx
l, (48)

from which it follows

y′(x) =
∞∑
l=0

lalx
l−1, (49)

along with

y′′(x) =
∞∑
l=0

l(l − 1)alxl−2. (50)

Notice that we have

xy′(x) =
∞∑
l=0

lalx
l, (51)

along with

x2y′′(x) =
∞∑
l=0

l(l − 1)alxl. (52)

If we plug these results back into our original differential equation, we find that we have( ∞∑
l=0

l(l − 1)alxl−2

)
−

( ∞∑
l=0

l(l − 1)alxl
)
−

( ∞∑
l=0

lalx
l

)
+

( ∞∑
l=0

n2alx
l

)
= 0, (53)

where I brought the n2 term into the last summation. If we re-index the first sum, we can write
this as( ∞∑

l=0

(l + 2)(l + 1)al+2x
l

)
−

( ∞∑
l=0

l(l − 1)alxl
)
−

( ∞∑
l=0

lalx
l

)
+

( ∞∑
l=0

n2alx
l

)
= 0, (54)

and so we can bring the summation all together to get

∞∑
l=0

[
(l + 2)(l + 1)al+2 − l(l − 1)al − lal + n2al

]
xl = 0, (55)

or,
∞∑
l=0

[
(l + 2)(l + 1)al+2 + (n2 − l2)al

]
xl = 0. (56)

Again, since each coefficient must be identically zero, this implies

al+2 = − (n2 − l2)
(l + 2)(l + 1)

al. (57)

7



In some sense, our problem is now solved. The above formula allows us to generate any arbitrary
coefficient in terms of a0 and a1, and these two numbers can be found from initial conditions. I’ll
leave it as an exercise for you guys to see if there’s a “pretty” way to write out the solution, instead
of leaving it in terms of the above implicit recursion relation.

6.2 Part b

In order to have polynomial solutions, the series expansion needs to terminate at some point. Notice
that if we choose n to be an integer, then when n = l, we have

al+2 = − (n2 − l2)
(l + 2)(l + 1)

al = − (n2 − n2)
(n+ 2)(n+ 1)

al = 0, (58)

which will terminate one of the two recursion chains (keep in mind that since we have a formula for
al+2 in terms of al, then there are two separate chains, one based on a0 and the other based on a1).
In order to have the other chain terminate, we need to impose that either a0 or a1 is equal to zero,
depending on whether or not n is even or odd. This will make sure that one chain terminates, while
the other one never begins in the first place, guaranteeing that we get a finite polynomial result.

For T0, with n = 0, we choose a1 = 0, in order to simply get

T0 = a0, (59)

since all higher order terms will vanish. If we want to impose that T0(1) = 1, then we simply choose

T0 = 1. (60)

For T1, we choose a0 = 0, and thus we find

T1 = a1x. (61)

Again, imposing that T1(1) = 1, we have simply

T1 = x. (62)

For T2, we choose a1 = 0, and we find that

a2 = − 22 − 02

(0 + 2)(0 + 1)
a0 = −2a0, (63)

and so we have
T2(x) = a0(1− 2x2). (64)

To achieve the proper boundary conditions, we choose

T2(x) = 2x2 − 1, (65)

which indeed respects T2(1) = 1.
Lastly, for T3, we choose a0 = 0, and we have

a3 = − 32 − 12

(1 + 2)(1 + 1)
a1 = −4

3
a1, (66)
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which leads to
T3(x) = a1(x− 4

3
x3). (67)

In order to respect the boundary conditions, we choose a1 so that

T3(x) = 4x3 − 3x. (68)

6.3 Part c

As Eli derived in class, we know that if we have an operator

L̂ = α(x)
∂2

∂x2
+ β(x)

∂

∂x
+ γ(x), (69)

then a suitable weighting function is given by

w(x) =
1

α(x)
exp

(∫
β(x)
α(x)

dx

)
. (70)

In our case, we can identify
α(x) = 1− x2 ; β(x) = −x, (71)

so that we have ∫
β(x)
α(x)

dx =
∫

x

x2 − 1
dx =

1
2

ln(1− x2) = ln((1− x2)
1
2 ), (72)

where we have chosen the constant of integration to be zero, since this constant of integration leads
to an overall multiplicative constant on the inner product. Thus we have

w(x) = 1
α(x) exp

(∫ β(x)
α(x) dx

)
= 1

1−x2 exp(ln((1− x2)
1
2 )) =

√
1−x2

1−x2 = 1√
1−x2 .

(73)

7 Problem Seven

7.1 Part a

Recall the the Legendre polynomials are either even or odd, depending on whether or not the integer
describing them is even or odd. For example, P0 is even while P5 is odd. There are a number of
ways to see this. One of them is to see that the Rodrigues formula,

Pn(x) =
1

2nn!
dn

dxn
[(x2 − 1)n], (74)

involves the nth derivative of an even function. Remembering that the derivative of an even function
is odd, and vice versa, we see that indeed, the Legendre polynomials must be even or odd, depending
on whether n is even or odd.

9



We can summarize this statement with the notation

Pn(−x) = (−1)nPn(x), (75)

from which it follows
Pn(−1) = (−1)nPn(1). (76)

However, the Legendre polynomials by definition are normalized such that

Pn(1) = 1, (77)

so that we arrive at
Pn(−1) = (−1)n. (78)

7.2 Part b

Please see Figure 1.
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Figure 1: The first six Legendre polynomials, courtesy of Wikipedia
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