Phys 100A - Summer 2011

Inst: Elijah Quetin, TA: Keith Fratus

Midterm Exam

July 7, 2011

Instructions:

- This is a closed notes, closed book exam.
- No calculators, laptops, phones, etc. are allowed.
- Each of 4 problems will be worth 25 points for a total of 100 points, worth 20 percent of your grade.
- Partial credit will be given for attempted solutions displaying competence of the material.
- No collaboration with other students is permitted.
- You have 80 minutes to complete the exam.

Good luck!

Phys 100A - Summer 2011

1.	Please pro	ve <u>one</u> of the	following two	theorems	about	Hermitian	operators.
(a)	Theorem:	Eigenvalues o	f a Hermitian	operator	are rea	1.	
Pro	of:						

(b) Theorem: Eigenvectors corresponding to different eigenvalues of a Hermitian operator are orthogonal. Proof:

Phys 100A - Summer 2011

2. The Pauli spin matrices, which represent electron "spin" in quantum mechanics, are given by

$$\sigma_x = egin{pmatrix} 0 & 1 \ 1 & 0 \end{pmatrix}, \; \sigma_y = egin{pmatrix} 0 & -i \ i & 0 \end{pmatrix}, \; \sigma_z = egin{pmatrix} 1 & 0 \ 0 & -1 \end{pmatrix}.$$

(a) Show that $(\sigma_x)^2 = (\sigma_y)^2 = (\sigma_z)^2 = I$, where I is the 2 × 2 identity matrix.

(b) Recall that the commutator of two operators, A and B, is the operator [A,B]=AB-BA. Compute the commutator for each pair of spin matrices in cyclic order; that is, compute $[\sigma_x,\sigma_y]$, $[\sigma_y,\sigma_z]$, and $[\sigma_z,\sigma_x]$.

Phys 100A - Summer 2011

2 cont.

(c) Show that the Pauli spin matrices are each Hermitian.

Phys 100A - Summer 2011

3. Let $\{|1\rangle, |2\rangle\}$ be an orthonormal basis of the two-dimensional vector space V and let $\{|1'\rangle, |2'\rangle\}$ be a new basis of V, where

$$|1'
angle=|1
angle+|2
angle$$

$$|2'\rangle = |1\rangle + i|2\rangle$$

(a) Write down the matrix R, representing the operator transforming vectors from the old basis to the new basis, and find R^{-1} .

(b) Is R a unitary matrix?

Phys 100A - Summer 2011

3 cont.

(c) Consider a vector $|x\rangle \in V$, expressed in terms of the old basis as $|x\rangle = |1\rangle - |2\rangle$. The components of $|x\rangle$ can be represented by a column vector α :

$$|x\rangle \longmapsto \alpha = \begin{pmatrix} 1 \\ -1 \end{pmatrix}.$$

Use R^{-1} from part (a) to express $|x\rangle$ in erms of the new basis; that is, find α' :

$$|x\rangle \longmapsto \alpha' = \begin{pmatrix} \alpha_1' \\ \alpha_2' \end{pmatrix}.$$

and write down $|x\rangle = \alpha_1'|1'\rangle + \alpha_2'|2'\rangle$.

(d) Consider the Hermitian spin matrix $\sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$ from problem 2, representing the operator $\hat{\sigma_y}$ in the old basis. Using R and R^{-1} find σ_y' , the matrix representing $\hat{\sigma_y'}$ in the new basis.

(e) Is σ_y' Hermitian? Is $\{|1'\rangle, |2'\rangle\}$ an orthonormal basis of V? Why or why not?

Phys 100A - Summer 2011

4. The "Green's function" operator used in electrostatics is given by the following:

$$\hat{G} = \int_{-\infty}^{\infty} dx' \frac{1}{|x - x'|}$$

Action on $|f\rangle \mapsto f(x) \in V$ thus looks like

$$|\hat{G}|f\rangle = \int_{-\infty}^{\infty} dx' \frac{f(x')}{|x - x'|}$$

and taking an inner product using \hat{G} with some $|g\rangle\mapsto g(x)\in V$ is done by

$$\langle g|\hat{G}|f\rangle = \int_{-\infty}^{\infty} dx g^*(x) \hat{G}f(x)$$

Show that \hat{G} is Hermitian by showing

$$\langle g|\hat{G}|f\rangle^* = \langle f|\hat{G}|g\rangle$$

(Hint: The inner product will be a double integral over both dx and dx' and exchanging these variables $x \leftrightarrow x'$ will be useful at some point. You need not evaluate any of the integrals.)