
Physics 20 Homework 3
SIMS 2016

Due: Thursday, August 25th

Special thanks to Sebastian Fischetti for problems 1, 5, and 6. Edits in red made by
Keith Fratus.

1. The ballistic pendulum is a device used to measure the speed of a bullet. A bullet of
mass m is fired into a block of mass M hanging on a pendulum of length L, into which
it embeds itself; this causes the pendulum to swing up to some maximum angle θ, as
shown. Calculate the initial speed of the bullet in terms of m, M , θ, L, and g. Hint:
What conservation laws might you be able to apply in this problem? When can you
apply each one, and when can you not?

Figure 1: The operation of a ballistic pendulum. Special thanks to Sebastian Fischetti for
the figure.
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2. In lecture, we discussed the definition of potential energy for a single particle which
is subjected to an external force. However, we know that in reality, forces arise from
the interactions between multiple particles. It is possible to generalize the definition of
potential energy to describe two particles interacting with each other as a closed system.
As an example, the potential energy of a pair of neutral atoms can be modelled, to a
very good approximation, by the Lennard-Jones potential, given by

U(r) = U0

[(r0

r

)12

− 2
(r0

r

)6
]

Here U0 and r0 are constants, and r is the distance between the two atoms. Despite the
fact that the atoms are electrically neutral overall, the charge due to the protons and
electrons is spread out over a non-zero region, so there is still a small, residual electrical
interaction between the two. In this special case in which the potential energy only
depends on the distance between the two particles, the force acting on a given atom is
given by

F = −dU
dr

r̂,

where r̂ is the vector pointing from that body, towards the other one.

(a) Using this potential energy function, find the force and equilibrium distance be-
tween the two atoms.

(b) Sketch a graph of the Lennard-Jones potential, labeling any relative extrema (your
results from part (a) may help).

(c) The atoms are pushed closer together until the distance between them isR. Explain
why there exists a critical inter-atomic distance σ such that when the atoms are
released from rest, if R > σ, the atoms will oscillate back and forth, while if R < σ,
the atoms will fly apart to infinity. Find the value of σ in terms of r0 (Hint: what
is the total energy of the system? Hint # 2: look at your graph from part (b)!).

(d) By examining the overall shape of the above potential energy function, explain
why physical objects tend to expand in size when they are heated. Hint: What
does heating an object do to its internal energy at a microscopic level?
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3. (Young & Freedman, problem 6.102) An airplane in flight is subject to an air
resistance force proportional to the square of its speed,

Fdrag = αv2

where α is some constant. This force points opposite to the velocity. If we assume that
the plane flies on a level path, this velocity points entirely in the horizontal direction,
since the plane is not moving up or down. But there is an additional resistive force
because the airplane has wings. Air flowing over the wings is pushed down and slightly
forward, so from Newton’s third law the air exerts a force on the wings and airplane
that is up and slightly backward, as shown below. The upward force is the lift force
that keeps the airplane aloft, and the backward force is called induced drag. At flying
speeds, the induced drag is inversely proportional to v2:

Finduced = β/v2

where β is another constant. Thus the total air resistance force can be expressed
by

Fair = αv2 + β/v2

In steady flight, the engine must provide a forward force that exactly bal-
ances the air resistive force.

(a) Calculate the speed at which the airplane will have the maximum range (that is,
will travel the greatest distance) for a given quantity of fuel.

(b) Calculate the speed at which the airplane will have the maximum endurance
(that is, will remain in the air the longest time) for a given quantity of fuel.

Hint: The amount of fuel that the engine uses during some amount of time is propor-
tional to how much work the engine does in that amount of time. The amount of fuel
the plane can carry is some finite amount, so the total amount of work the engine can
perform is some finite amount. The rate at which the engine performs this work is
the power. How does the power supplied by the engine relate to the force it supplies
to the plane, and the velocity at which the plane travels? If the engine supplies some
amount of power for some amount of time, how much work is done during that time?
You’ll need to read the last page of my notes on work and kinetic energy to find this
information about power. Your final answers for parts a and b won’t actually depend
on the amount of fuel the plane is carrying with it.
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4. Imagine a situation similar to the one described in lecture, in which an object is given
an initial shove, and is allowed to move along the floor until it comes to rest. However,
this time, the object is constrained to move along a particular path, due to moving
along some sort of guiding track. This might be something similar to the guiding track
in the image below. In particular, we assume that if we set up a coordinate system
at the initial position of the block before it receives a shove, the shape of the guiding
track it is constrained to move along is given by the function

y = x2.

This is illustrated below in the figure. Additionally, the floor on which the block is
moving has been sanded down in a very strange way. The coefficient of kinetic friction
between the block and the floor varies depending upon where we are, in such a way
that

µk = A
√
x2 + 4y2,

where A is some constant number with units of inverse length.

After we give the block some initial shove with an initial speed v0, it travels for some
distance along the guiding track, before coming to rest at some final position

rf = (xf , yf ) .

We would like to compute how much work was done as it travelled along the track,
using our totally general formula for work,

W =

∫
F (r (t)) · v (t) dt.

Unfortunately, as the block was travelling, we didn’t pay attention to what its tra-
jectory was, so we’re not sure what r (t) was. However, there is still a way we can
compute the work, without knowing exactly what the position as a function of time
was. Let’s see in detail how we can do this.
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(a) Let’s assume that the block starts moving at time t = 0, comes to rest at some
later time t = T , and that its x coordinate evolves according to

x (t) =

(
t

T

)
xf .

That is, let’s assume the x coordinate evolves linearly from 0 to xf . This is probably
not the way the x coordinate actually evolves in time, but let’s assume it is anyway.
In this case, what must y(t) be equal to, so that the block moves along the track?

(b) Assuming the block follows the trajectory in part a, what is the velocity, v (t)?
Remember that velocity is a vector!

(c) Remember that as the block moves, the frictional force always points in the oppo-
site direction of the velocity, so that the force acting on the block is

F = fk = −fkv̂,

where v̂ is a unit vector that points in the direction of the velocity. Compute what
this force vector is equal to, in terms of t, T , xf , A, m (the mass of the block),
and g (the acceleration due to gravity). Remember that fk depends on µk, which
depends on position, and that the position depends on time.

(d) Now that you have explicit expressions for F and v, as functions of time, you can
compute the work integral

W =

∫ T

0

F (t) · v (t) dt.

Perform this integral, and express your answer in terms of the relevant physical
quantities. Does your answer depend on T?
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(e) Repeat the previous steps, except this time, assume that the x coordinate evolves
according to a different function,

x (t) =

(
t

T

)2

xf .

The time coordinate still evolves from t = 0 to t = T , and the x coordinate still
arrives at x = xf when t = T . What answer do you find for the total work? Is it
the same as the value you found when you made a different assumption about the
block’s trajectory? The result you’ve found, that different possible trajectories give
the same answer for the work, is called, in fancy technical terms, reparametrization
invariance. It is a very general result, and is always true, so long as F only depends
on the position of the block. Proving this, however, is a bit beyond the scope of
this course.

(f) What must the initial speed, v0, be equal to, in order for the block to arrive at
some final x coordinate xf? In other words, solve for the initial speed v0 in terms
of xf and the other relevant quantities in the problem.
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5. A block lies on a flat, frictionless plane against a spring with spring constant k com-
pressed from its equilibrium position by a distance x. At the other end of the plane
is a ramp inclined at an angle θ. The coefficients of friction (both kinetic and static)
of the ramp vary with the distance along it as µ(y) = Ay, where A is some constant
and y is the distance from the bottom of the ramp; that is, the ramp is frictionless at
the bottom, and the coefficients of friction increase linearly as you move up the ramp
(here, we’re assuming the coefficients of friction are equal: µk = µs = µ). The system
is sketched below.

The block is released and pushed along the frictionless plane by the spring, and then
moves up the ramp. By using energy methods (i.e. conservation of energy, the work-
energy theorem), show that when the block comes to rest on the incline, it will remain
at rest if

x2 ≥ 3mg sin2 θ

Ak cos θ

Hint: what determines whether a block at rest on an incline will begin to slide down
or not?
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6. Extra Credit A bowl of mass m rests on a table cloth in the middle of a table of
length L, as shown. The table cloth is then pulled out at speed v from underneath
the bowl. Assume that the table cloth slides under the bowl; the coefficient of kinetic
friction between the bowl and the cloth is µ1, and the coefficient of kinetic friction
between the bowl and the surface of the table is µ2.

(a) Discuss qualitatively the behavior of the bowl, and explain why if the table cloth is
pulled fast enough, the bowl will not fall off the table (Hint: there are two “stages”
in this problem: when the table cloth is being pulled out from underneath the bowl,
and when the bowl is sliding on the table. What is the motion of the bowl during
each stage?)

(b) Let vc be the critical speed necessary for the table cloth to slide out from under
the bowl and for the bowl to come to rest right at the edge of the table. Find
an equation relating vc to the given quantities in the problem (that is, find an
equation that contains vc, µ1, µ2, L, and g, without finding vc explicitly) (Hint:
what is the net work done on the bowl during this process? What is/are the only
force(s) doing work on the bowl?). Extra Extra Credit: Calculate vc.
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7. Extra Credit Imagine a rocket which is out in empty space, so that there is negligible
gravity. The initial mass of the rocket is m0. After starting from rest, the rocket begins
burning fuel in order to accelerate at a constant rate a, until it reaches a final speed
of vf . The rocket has some mass m (t), and some velocity v (t). This is illustrated in
the figure below. We are interested in finding the total work done by the rocket’s
engines.

Figure 2: The motion of the rocket as it releases a small amount of fuel in a time dt.

(a) Show that the work done on the rocket itself is given by

Wr =

∫ vf/a

0

(
ma+ at

dm

dt

)
at dt.

Hint: Start with the basic definition of work

Wr =

∫ d

0

F (x) dx =

∫ t(d)

0

F (t) vdt

and remember Newton’s second law

F (t) =
dp

dt
=

d

dt
(mv) .

(b) Show that the total work done on the fuel exhausted out the back is

Wfuel = −
∫ vf/a

0

dm

dt
(v (t) − vex)2 dt.

Hint: For an infinitesimal piece of exhaust being ejected out the back,

dWfuel = F (t) vfuel (t) dt =
dpfuel
dt

(v (t) − vex) dt,

where v (t) is the velocity of the rocket, and vex is the speed that the exhaust is
emitted from the rocket, with respect to the rocket. Remember that the mass of
the infinitesimal amount of ejected fuel is dm.
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(c) Add these two expressions to find

WT =

∫ vf/a

0

ma2t+
dm

dt

(
2atvex − (vex)2) dt

(d) Take the rocket equation we found in class

v − v0 = vex ln
(m0

m

)
,

and differentiate both sides with respect to time, in order to find

dv

dt
= −vex

m

dm

dt
.

Use this differential equation to findm (t). Hint: Use the chain rule, and remember
the acceleration is constant.

(e) Use this expression for m (t) to explicitly compute the work integral, and show
that

WT = mfvexvf .

(f) Extra Extra Credit: There is a common mistake people tend to make when
computing the total work done by the rocket’s engines in the previous problem.
They decide to find the kinetic energy of each piece of fuel that leaves the rocket,
integrate this to get a total, and then add it to the final kinetic energy of the rocket.
But this actually does not give the correct answer, and the reason is because you
are missing some work which is done when thinking about it that way. Explain
exactly where this missing energy went.
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8. Challenge Problem The subject of scattering is incredibly important in physics. In a
typical scattering experiment, a source of highly energetic particles is aimed at a target
material, and by measuring the scattering angles of different particles, we can learn
something about the target material. A rough sketch of such an experiment is shown
in Figure 3. In most high energy particle experiments, this is the way that we actually
deduce the structure of subatomic particles like atoms - we scatter lighter particles
off of them with some impact parameter, and measure their deflection. This is how
Rutherford figured out the structure of the atom in his famous gold foil experiment.

In this problem we’re going to study this subject in a quantitative way for a simple
two-dimensional system. Consider the physical setup in Figure 4. The red dot is a
particle sitting still at the origin of some coordinate system we’ve set up, and the
purple dot is an incoming particle. The incoming particle comes in from very far away,
and when it is very far away, it is traveling in a straight line with a constant velocity
v0. When it is very far away, its y coordinate above the origin is equal to b, a number
which is called the impact parameter .

Figure 3: A typical scattering experiment between two particles. Figure taken from “Quan-
tum Mechanics: A Modern Development,” by Leslie Ballentine.

We assume that the red particle is much, much heavier than the incoming one, and so
it effectively sits still at the origin. The purple dot interacts with the red dot, and as a
result, is subjected to a potential U(r), which only depends on the distance from the
origin. The interaction between the particles is conservative, so that the total energy
of the incoming particle,

E =
1

2
mv2 + U (r) (1)

is conserved. We assume that the potential is positive, so that the two objects repel
each other. The blue line shows the path that the incoming particle would take if
there were no interaction, while the dashed purple line shows the trajectory that the
incoming particle will take as it is scattered away.
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Figure 4: A typical scattering experiment between two particles.

(a) In this problem, it will be most useful to describe our system using the angle θ,
along with the distance between the two particles, r. Derive an expression for the
kinetic energy in terms of r, θ, and their time derivatives. Use this expression
to write the total energy in terms of r, θ, and their time derivatives. Hint: The
easiest way to do this is to first set up a coordinate system with the usual x and y
coordinates, write down the position vector in terms of r and θ, and then use the
chain rule to find the velocity vector in terms of r, θ, and their time derivatives.

(b) We will now define a quantity known as the angular momentum ,

J = mr2θ̇ = mr2dθ

dt
. (2)

It turns out that whenever we have a potential energy that only depends on
the quantity r, and has no dependence on θ, then the quantity J will always be
conserved. That is to say, it does not change over time. In this problem, what is the
angular momentum of the incoming particle? Express your answer in terms
of m, b, and v0. Hint: To find the angular momentum, you can make use of the
fact that so long as the potential energy only depends on r, the angular momentum
is always conserved no matter what. If we have a particle that is initially coming
in from very far away, then it will always keep the same angular momentum it
has from the beginning, whether or not the scattering red dot is there. Thus, the
angular momentum stays the same over the course of its motion, whether it follows
the blue line or the purple dotted line. Calculating the angular momentum
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is easiest by pretending the particle follows the blue line instead, and considering
the point in time when the y coordinate is equal to the radius, and the x coordinate
is zero. That is, try calculating the angular momentum when the purple particle
is sitting above the red particle. In order to do this, it’s useful to find the angle in
terms of b, v0, and t, and take a time derivative.

(c) Use the expression you found for the angular momentum to eliminate dθ/dt = θ̇
from the expression for the total energy. Write the expression for the total energy
in terms of the radius r, along with m, b, and v0, the initial speed.

(d) You should now have the total energy in a form which looks like

E =
1

2
mṙ2 + U (r) + f (r) , (3)

where the last piece, f (r), depends on the radius, as well as the angular momentum
(which you expressed in terms of the other parameters of the problem). Notice
that if we define a new function,

Ueff = U (r) + f (r) , (4)

then mathematically, our problem looks like a particle moving in just one dimen-
sion, described by r, under the influence of an effective potential. The rotational
symmetry of the problem, or the fact that the potential energy only depends on
the radius r, has allowed us to effectively reduce the number of dimensions we need
to focus on. What must be true about the value of the effective potential
when the incoming blue particle is at its point of closest approach to the
red particle (that is, when the distance between the two particles is a minimum)?

(e) Using the chain rule,
dr

dt
=
dr

dθ

dθ

dt
, (5)

write the total energy only in terms of r, constant parameters, and the derivative
dr/dθ.

(f) If you rearrange the expression you found above, you should be able to write
something that looks like

dr

dθ
= ±h (r) , (6)

where h (r) is some function of r, and also depends on various constant parameters
of the problem. The ± sign should come from having taken a square root. Now
consider breaking the motion of the particle up into two stages - the first stage is
when the purple particle comes in towards the red particle, and the second stage
is when it scatters away after having reached its point of closest approach. Which
stage of the motion should correspond to the plus sign, and which stage should
correspond to the minus sign? Hint: During each stage, is the radius decreasing,
or increasing? Likewise, is the angle decreasing, or increasing? What should the
sign of the derivative be if both are increasing or decreasing together? What should
it be if one is increasing while the other is decreasing?
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(g) The expression in the previous part can be viewed as a differential equation re-
lating the radius and angle. Using the usual techniques of separation, derive an
expression for the angle of the particle when it is at its point of closest
approach, and has reached the end of the first stage of motion. Spec-
ify your answer in terms of the quantity r∗, the radius of closest approach. Your
answer should be in the form of an integral over some function of radius, with
boundary terms that involve the quantity r∗. Hint: This is fundamentally no dif-
ferent from the previous differential equations you have solved - during the first
stage of the motion, the angle increases as a function of radius, and you want to
know the value of the angle at some particular radius r∗. What is the initial
angle?

(h) Again, use the method of separation to study the motion of the particle during
the second phase of its motion. Separate the differential equation (remembering
to use the opposite sign now!) to compute the total change in angle as the particle
undergoes the second stage of motion. Add this value to the result from the
previous section to find the final outgoing angle after the particle has
scattered away from the red dot. Your answer will still be specified in terms
of the radius of closest approach, r∗.

(i) For the case that the potential is the Coulomb potential,

U (r) =
α

r
, (7)

where α is some parameter describing the interaction of the particles. For this
choice of potential, what is the radius of closest approach?

(j) For the case of the Coulomb potential, find the final scattering angle by explicitly
performing the integral expression in the previous sections. You may use Mathe-
matica or a calculator to do this.

You have now derived the famous Rutherford scattering formula, one of the most
important results in all of physics.
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