Introduction to Special Relativity

Keith Fratus

SIMS 2016 Physics 20

August 24th, 2016

Maxwell's Equations

 \blacktriangleright Maxwell's Equations deduced in 19th century:

- \blacktriangleright Tell us the behavior of electric and magnetic fields in response to currents and charges
- \blacktriangleright In addition, Lorentz force law tells us force on charge:

$$
\vec{F} = q\left(\vec{E} + \vec{v} \times \vec{B}\right)
$$

Electromagnetic Waves

 \triangleright When no charges or currents, we find a wave equation

$$
\frac{1}{c^2} \frac{\partial^2 \mathbf{E}}{\partial t^2} - \nabla^2 \mathbf{E} = 0 \,, \quad \frac{1}{c^2} \frac{\partial^2 \mathbf{B}}{\partial t^2} - \nabla^2 \mathbf{B} = 0 \,,
$$

 \blacktriangleright The value of c is

$$
c=\frac{1}{\sqrt{\mu_0\varepsilon_0}}=2.99792458\times 10^8\,{\rm m~s}^{-1}
$$

 \blacktriangleright The nature of light answered at last!

 \blacktriangleright Predicted by Maxwell, verified by Hertz

The Luminiferous Aether

 \triangleright But what is this c with respect to?

- \triangleright Michelson Morley experiment in 1887 sets out to measure motion with respect to Aether
- \triangleright Motion through Aether should change velocity of light, similar to a boat riding next to a water wave
- \triangleright Of course, their conclusion is...

Invariance of Speed of Light

 \blacktriangleright There is no change!

- \triangleright Verified today to high level of accuracy that c is strictly same for every observer!
- ▶ You can never "ride" a wave of light

Special Relativity

- \triangleright Despite efforts by many, speed of light always seen to be same
- \blacktriangleright This idea was ultimately embraced by Einstein, who noticed a fundamental problem with our understanding of space and time
- \blacktriangleright In 1905, he introduced the theory of Special Relativity
- \blacktriangleright The postulates:
	- \triangleright Any two inertial frames with constant relative velocity are equally valid
	- \triangleright The speed of light in vacuum is a universal constant, independent of the motion of the emitting body
- \triangleright What are the consequences of Special Relativity?

- \triangleright Observer on ground watches observer on train pass by
- \triangleright Observer on train shines light beam from ground to ceiling, and then it reflects back
- \blacktriangleright This serves as a primitive time-keeping device
- \blacktriangleright How long does it take for this to happen?

 \blacktriangleright Let's ask observer on train:

 \blacktriangleright Let's also ask observer on ground:

 \blacktriangleright By Pythagorean theorem:

$$
D=\sqrt{L^2+\left(\frac{1}{2}v\Delta t'\right)^2}
$$

 \triangleright Solving for ground time,

$$
\Delta t' = \frac{2D}{c'} = \frac{2}{c'} \sqrt{L^2 + \left(\frac{1}{2} \nu \Delta t'\right)^2} \Rightarrow
$$

$$
\Delta t' = \frac{(2L/c')}{\sqrt{1 - \frac{v^2}{(c')^2}}}
$$

 \blacktriangleright But c is invariant!

$$
\Delta t' = \frac{(2L/c)}{\sqrt{1 - \frac{v^2}{c^2}}} = \frac{\Delta t}{\sqrt{1 - \frac{v^2}{c^2}}} \equiv \gamma \Delta t
$$

- \triangleright The only possible conclusion: the times are different
- \blacktriangleright The two observers, making measurements with their clocks, will disagree on the amount of time it takes for this to happen

Proper Time

- \triangleright We could repeat this experiment with the roles reversed
- \blacktriangleright How does the light clock on the ground behave?
- \blacktriangleright Reversed experiment would swap the expression

$$
\Delta t = \frac{\Delta t'}{\sqrt{1-\frac{v^2}{c^2}}} \equiv \gamma \Delta t'
$$

- \triangleright Each observer believes that the other one has a clock which is ticking away too slowly
- \triangleright Neither of them is right or wrong

A Tiny Effect

- \blacktriangleright Why don't we ever see this?
- \triangleright We have the Taylor series expansion, for small values of x,

$$
\frac{1}{\sqrt{1-x^2}} \approx 1 + \frac{1}{2}x^2 + \frac{3}{8}x^4 + \dots
$$

 \triangleright For small velocities compared with speed of light,

$$
\gamma = \frac{1}{\sqrt{1 - (v/c)^2}} \approx 1 + \frac{1}{2} \left(\frac{v}{c}\right)^2 + \frac{3}{8} \left(\frac{v}{c}\right)^4 + \dots
$$

 \blacktriangleright Typical effects are incredibly tiny!

Experimental Verification

- \triangleright Of course, theory must have some testable effects
- \triangleright Muons are subatomic (point) particles created in cosmic ray collisions
- \blacktriangleright Muons mostly decay before reaching ground

Experimental Verification

 \blacktriangleright Muons decay with a characteristic rate

$$
N(t) = N_0 e^{-\lambda t}
$$

 \blacktriangleright How many with velocity v make it to ground from an initial detector at height D?

$$
t=\frac{D}{v}\Rightarrow N=N_0e^{-\lambda D/v}
$$

 \triangleright We can do this experiment by setting up detectors at the top and bottom of a mountain

 \blacktriangleright The actual measured result is...

Experimental Verification

- \triangleright More than this we used the wrong time!
- \triangleright The muon appears to have a slow clock as compared with ours, so it makes it further before decaying!
- \triangleright Muon time in terms of earth time is

$$
t_m = \frac{t_e}{\gamma} = \frac{D}{v\gamma}
$$

 \blacktriangleright Therefore:

$$
N = N_0 e^{-\lambda D/(\nu \gamma)}.
$$

- \triangleright This result has been verified experimentally in the Frisch-Smith experiment, and many others since
- \triangleright Notice the universality of the result no material-dependent properties
- \triangleright Modern particle accelerations verify this effect all the time

Length Contraction

- \triangleright But wait what about equivalence of all inertial frames?
- \triangleright Muon believes IT is at rest and sees Earth approach it
- \blacktriangleright How do we reconcile this?
- \blacktriangleright Inevitable conclusion lengths are contracted

$$
D_m = \frac{D}{\gamma}
$$

- \triangleright Muon believes it lives for normal time, while traveling shorter distance than measured on Earth
- \blacktriangleright From muon perspective

$$
N = N_0 e^{-\lambda t_m} = N_0 e^{-\lambda D_m/v} = N_0 e^{-\lambda D/(v\gamma)}
$$

 \blacktriangleright Same result!

Length Contraction

 \blacktriangleright Muon and Laboratory observers have different opinions

- \triangleright Either picture is valid! There are no paradoxes here
- \blacktriangleright The physically measurable quantity is the number of muons, and all observers agree on this number

The Barn and Ladder Paradox

- \blacktriangleright Imagine running relativistically at open barn with ladder
- \blacktriangleright Ground observer watches
- \blacktriangleright Is ladder ever fully contained in barn?

- **In Ground observer says yes ladder contracts enough**
- \triangleright Runner says no BARN contracts, becoming even smaller
- \triangleright Conclusion: we can no longer maintain simultaneity

Causality

- \triangleright What if now back door is closed
- \triangleright Front door has sensor opening back door when ladder fully enters
- \triangleright Does ladder smash into back door?

$$
L_0 = 4 m
$$
\n
$$
m \uparrow \uparrow
$$
\n
$$
\downarrow \downarrow
$$
\n
$$
\downarrow
$$

- ▶ Ground observer says no ladder contracts enough to open door
- \triangleright Runner says yes BARN contracts, becoming even smaller, so door not opened in time
- \triangleright Resolution: signal from sensor must move slower than c, thereby resulting in both agreeing on crash

Relativistic Mechanics

- \triangleright Can we still maintain a coherent picture of mechanics?
- \blacktriangleright Yes, with slight modifications
- \triangleright Newton's second law still true for a body, with

$$
\vec{p}=\gamma m \vec{v}
$$

 \triangleright Expression for energy of free particle changes

$$
E = \gamma mc^2 \approx mc^2 \left(1 + \frac{1}{2} \left(\frac{v}{c} \right)^2 + \frac{3}{8} \left(\frac{v}{c} \right)^4 + \dots \right) =
$$

$$
mc^2 + \frac{1}{2}mv^2 + \frac{3}{8}mc^2 \left(\frac{v}{c} \right)^4 + \dots
$$

- \blacktriangleright Mass is energy!
- \triangleright Colliding particles that stick convert kinetic energy into rest mass!

General Relativity

 \triangleright One last issue - Newton's law of gravitation violates causality, depending on instantaneous distance

$$
F=G\frac{m_1m_2}{r^2}
$$

- \triangleright Solution: Replace with gravitational field that propagates
- \blacktriangleright However, gravity is special gravitational and inertial mass the same

- \triangleright All bodies move under gravitational field in the SAME way
- \triangleright Perhaps gravity is a property of space (and time) itself?
- \blacktriangleright Allows a geometric description of space and time, upon combining Special Relativity with Gravity, known as General Relativity

Thanks!

- \blacktriangleright That's it for the SIMS 2016 Physics 20 lectures
- \blacktriangleright Thank you for being excellent students this year!
- \triangleright Good luck on the exam tomorrow!