
Physics 20 Homework 1
SIMS 2016

Due: Wednesday, August 17th

Problem 1

The idea of this problem is to get some practice in approaching a situation where you might
not initially know how to proceed, and need to get a sense of how to assess what is relevant
in the problem.

Human nutrition is of course a complicated (and sometimes controversial) subject. How-
ever, we can probably assume that as a basic approximation, the driving factor influencing
someone’s required diet is that they need to consume a certain number of calories each day.
This will vary to some extent based on an individual’s diet, but the average number quoted
on nutritional food labels is 2,000 calories. While this number may fluctuate somewhat, we
know it’s certainly not 200, and definitely not 20,000, so we should be able to safely make
some order of magnitude estimates with this number.

Now, it turns out that an ear of corn contains about 60 calories, which is a number
documented in a few different sources. If we round this number and say that 50 calories
per ear of corn is close enough, then in order to consume 2,000 calories of corn each day,
a human would need to eat 40 ears of corn each day. Multiplying this by an approximate
world population of 7 billion people, we find that each day, about 280 billion ears of corn
would be consumed.

If we assume that the world’s consumption of food is roughly distributed evenly over the
day, then dividing this by the number of seconds in a day (86,400), we find that each second,
the human population would be consuming about 3.2 million ears of corn.

Now, certainly this end result would depend on what specific assumptions we made
regarding the above numbers, but it should certainly be roughly correct. The consumption
of corn would definitely not be one thousand ears per second, nor would it be one billion
- these numbers are much too low and high, respectively. While this example may seem
silly, this type of calculation is very important in physics all the time, and plenty of other
fields as well. Often times this sort of reasoning can get us an answer very quickly, without
wasting time doing further calculations. For example, imagine some enterprising company
had developed a scheme to profit off of the world’s consumption of corn, but for some reason
they had decided that it would only be feasible if the world consumption of corn was one
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billion ears per second. Well, we can see that even if the world ate nothing but corn, that
number is still a thousand times more than the world consumption. Looks like the company
should come up with another plan...

Problem 2

If c = a + b, then we have

c2 = c · c
= (a + b) · (a + b)

= a · a + b · b + 2a · b

But a · a = a2 and likewise for b, and by definition of the dot product, a · b = ab cos θ, so

c2 = a2 + b2 + 2ab cos θ

as desired. Now, note that cos θ attains a maximum value of 1 (when θ = 0, corresponding
to a and b being parallel), so we have that

2ab cos θ ≤ 2ab

and therefore,
c2 = a2 + b2 + 2ab cos θ ≤ a2 + b2 + 2ab = (a+ b)2

Since a, b, and c are all positive (they’re magnitudes of vectors), we can take the positive
square root of both sides to obtain

c ≤ a+ b

or
|a + b| ≤ |a|+ |b|

as desired (here, I simply wrote by definition a = |a|, c = |c| = |a + b|, etc.)
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Problem 3

If we write the expression for the dot product in terms of components, we have

d

dt
(v ·w) =

d

dt
(vxwx + vywy + vzwz) ,

or
d

dt
(v ·w) =

d

dt
(vxwx) +

d

dt
(vywy) +

d

dt
(vzwz) .

Now, since the individual components are simply numbers, the product rule from calculus
applies to them. In other words,

d

dt
(vxwx) =

dvx
dt
wx + vx

dwx

dt
,

and likewise for the other components. Therefore, we can write

d

dt
(v ·w) =

dvx
dt
wx + vx

dwx

dt
+
dvy
dt
wy + vy

dwy

dt
+
dvz
dt
wz + vz

dwz

dt
.

Now, if we regroup terms slightly, we can write

d

dt
(v ·w) =

(
vx
dwx

dt
+ vy

dwy

dt
+ vz

dwz

dt

)
+

(
dvx
dt
wx +

dvy
dt
wy +

dvz
dt
wz

)
.

If we recall that
dv

dt
=

(
dvx
dt
,
dvy
dt
,
dvz
dt

)
,

and likewise for w, then it becomes clear that our expression is equal to

d

dt
(v ·w) = v ·

(
dw

dt

)
+

(
dv

dt

)
·w.
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Problem 4

(a) The circumference of the circle is 2πR. If the object is moving at speed v, then the time
it takes for the object to go once around the circumference of the circle is

T =
2πR

v

(b) The object is traveling in a circle of radius R centered on the origin, so we should be
able to parametrize its motion as

x(t) = R cos θ(t)

y(t) = R sin θ(t)

where θ(t) is the angle the object makes with the x-axis at time t. Now, since the object
starts at the position r(0) = (R, 0), we have that θ(0) = 0. Since the object must return
to its initial position after a time T , we must also have that θ(T ) = 2π. Since θ must
increase linearly in time (can you explain why this is true by thinking about how arc
length is related to angle?), we can therefore conclude that θ(t) = 2πt/T = vt/R, and
thus

r(t) = (x(t), y(t)) = R(cos(vt/R), sin(vt/R))

(c) Differentiating once, we get that the velocity of the object is

v(t) =
dr

dt
= v(− sin(vt/R), cos(vt/R))

Differentiating once more, we get that the acceleration is

a(t) =
dv

dt
= −v

2

R
(cos(vt/R), sin(vt/R))

But note that we can write the unit radial vector r̂ as

(cos(vt/R), sin(vt/R)) =
r(t)

R
≡ r̂

and therefore

a = −v
2

R
r̂

as desired.
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Problem 5

Let’s assume that we’ve placed the origin of a coordinate system at the point P. Using our
results from lecture, this corresponds to a projectile motion problem with h = 0, so that the
position of the object as a function of time is given by

r (t) =

(
v0 cos θt

v0 sin θt− 1
2
gt2

)
Now, the mathematical equivalent of the statement “its distance from P is always increasing”
is that the derivative of the distance from P is always greater than zero. In more mathematical
terms, we require

dD

dt
=

d

dt

(√
r2x + r2y

)
> 0.

Now, we could compute the derivative of D, but if we think for a moment, we realize that
because D is a strictly positive quantity, if D is always increasing, that must mean that D2

is also always increasing. It’s a little bit easier to take a derivative of D2 than it is to take
a derivative of D, so we’ll revise our statement a little bit to be

dD2

dt
=

d

dt

(
r2x + r2y

)
> 0.

Using our results for projectile motion, this statement becomes

dD2

dt
=

d

dt

(
v20 cos2 θt2 + v20 sin2 θt2 − gv0 sin θt3 +

1

4
g2t4

)
> 0,

or,
dD2

dt
=

d

dt

(
v20t

2 − gv0 sin θt3 +
1

4
g2t4

)
> 0.

Taking the derivative, we have

2v20t− 3gv0 sin θt2 + g2t3 > 0.

Now, since we are always interested in times in the future, t is always positive, and so
we can divide both sides of the inequality by t, in order to find

2v20 − 3gv0 sin θt+ g2t2 > 0.

We now have an inequality which is quadratic in time. What we want to be the case is that
there is never a time at which this quantity is negative, which is to say, there is never a time
at which the distance is decreasing. In order for this to be true, there must never be a root
which solves the quadratic equation

2v20 − 3gv0 sin θt+ g2t2 = 0.
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When does a quadratic equation never have a solution? If the solutions to the quadratic
equation are given by

t± =
1

2a

(
−b±

√
b2 − 4ac

)
,

then we know that a real solution to the quadratic equation never exists when the term in
the square root of the quadratic formula is negative,

b2 − 4ac < 0.

In our case, this condition becomes

9g2v20 sin2 θ − 8g2v20 < 0,

or

sin2 θ <
8

9
.

The threshold angle thus becomes

θ = arcsin

(√
8

9

)
≈ 70.53◦

Intuitively, we know that if we fire a projectile horizontally, it will always move away
from us. We also know however that if we fire a projectile straight up, its distance to us will
certainly decrease at some point as it falls back down towards us. Our answer tells us that
the threshold angle in between these two limiting extremes is about 70.53 degrees. Notice
that this number is universal! It does not depend on the acceleration due to gravity, or the
initial speed of the projectile.
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Problem 6

If I were to set up this hypothetical third direction, I have some freedom as to how to shift
its axis. For the sake of simplicity, if I call this the z direction, then I’ll say that z = 0 is the
location of the bullet initially. However, I know that I’ve chosen my initial velocity to point
along the x and y directions, which is a choice I can always make, since I’m choosing how to
orient my axes, and I do so such that they point along these two directions alone. So there
is no z component of the initial velocity either.

Now, the important question is what the component of acceleration is along this third
direction. While I can choose to orient my axes so that the initial position and velocity have
no z component, if there is an acceleration along the z direction, then they will not stay this
way. However, my third direction, if it is perpendicular to x and y, would point along the
surface of the Earth. Physically, I know that gravity only exerts a force downwards, and so
there is also no acceleration along this third direction.

Because there is no initial velocity or acceleration along this third direction, then the
component of the position along the direction always stays zero. So, while it is technically
still there, it always stays the same, and so it is not really interesting to us. Notice that this
would not have been the case if there were some other force (for example maybe an Electric
force) pointing along the surface of the Earth, in a direction different from the initial velocity
of the bullet. Then I would need all three directions to specify the trajectory of the bullet.

What we say in this case is that the surface of the Earth has rotational symmetry, in the
sense that as I rotate around, all horizontal directions along the surface of the Earth have
the same property of not having any force acting along them. The fact that this symmetry
allows me to work with an effectively two-dimensional system represents a specific example
of a much more general relationship between symmetries and the ease with which I can solve
a problem.

Problem 7

The negative solution represents the time at which I could have fired the bullet from the
ground behind me, and had it follow the same trajectory.

If I imagine that I were someone standing on the other side of a wall, and got hit with
the projectile, I might try to figure out when it was fired. However, there are multiple points
along the trajectory from which I could have fired the projectile. If I were to take my gun,
and hold it at some position further along the trajectory, and fire it with an initial velocity
that the bullet would have otherwise had at that point, then it will continue to finish moving
along the rest of the trajectory that it otherwise would have had. This is because once I fire
a bullet, its initial position and velocity are enough to completely determine the rest of its
motion.

If you really want to convince yourself of this, you can figure out what the negative
solution is, and then take our expressions we found for the position and velocity, and evaluate
them at that time. If you redo the problem, starting with that time, position, and velocity,
you should end up with exactly the same trajectory.
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Problem 8

In this problem, we want to find the minimum possible velocity, and also the maximum
possible velocity, such that the ball will land in the back of the truck. Before we dive into
any math, its helpful to think about why there should be a minimum velocity in the first
place, and why there should be a maximum velocity. If we think over this question, we
realize that a minimum velocity exists because if we fire the projectile too slowly, the truck
will move away from the ball too quickly, and the ball will not be able to catch up with the
back of the truck. The minimum velocity therefore corresponds to the limiting case in which
the ball just barely grazes the back of the truck as it lands inside. In the opposite extreme,
if we fire the ball too quickly, it will overshoot the truck, landing on the other side before
the truck has reached that point. The maximum velocity in this case clearly corresponds to
the situation in which the ball lands at the very front of the trunk, where it would smash
into the back window if it were moving any faster.

Let’s now explore the motion of the ball in a slightly more quantitative fashion. In the
case in which the ball just barely makes it into the back of the trunk, the total horizontal
distance that it will travel before landing is

d = d0 + V T,

where V is the speed of the truck, and T is the total time of flight. This is just the statement
that in order to land in the back of the truck after some total time T , the ball must move
a horizontal distance which corresponds to the initial distance from the truck, d0, plus the
extra distance the truck has travelled, which is V T . We also know that the total time T the
ball will spend in the air during its flight is

T =
2v0 sin θ

g
.

We know this by using the results we derived in lecture, for the case h = 0. Thus, in the
case in which the ball barely makes it into the truck, we have

d = d0 + V
2v0 sin θ

g
.

We now have an equation which involves v0, the quantity which we would like to solve
for, but we can’t quite solve it yet, since we need to know exactly what d is. However, we
also have an expression for this quantity, in terms of v0, from our results derived during
lecture. This quantity is given according to

d = 2
v20 sin θ cos θ

g
,

where we have again set h = 0. Equating these two expressions for d,

d0 + V
2v0 sin θ

g
= 2

v20 sin θ cos θ

g
,
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we now have an equation that we can solve for v0. Rearranging slightly, we have

2 sin θ cos θ

g
v20 −

2V sin θ

g
v0 − d0 = 0,

which is a quadratic equality in v0, which we can solve by using the quadratic equation.
Using the quadratic equation, taking the positive solution (since speeds are positive!), and
using the specific values listed in the problem statement, we find

v0 ≈ 15.824 m/s

as the minimum velocity.
Now, what about the maximum velocity? In concrete mathematical terms, the statement

that the ball just barely avoids overshooting the trunk is the statement that it travels a total
horizontal distance

d = d0 + L+ V T.

This is just the mathematical statement that the ball must travel the distance d0, in addition
to the distance the truck has moved, V T , plus the length of the truck bed L. Thus, everything
about solving this case is precisely the same as the previous case, with the mere replacement

d0 → d0 + L.

The equation which we must solve is therefore

2 sin θ cos θ

g
v20 −

2V sin θ

g
v0 − d0 − L = 0,

the solution of which we eventually find to be

v0 ≈ 17.041 m/s

as the maximum allowed velocity.
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Problem 9

(a) Mathematically speaking, this equation tells us that the rate of change is proportional
to how many rabbits are present. We might imagine that this roughly accounts for
the fact that the more rabbits there are, the more breeding that is taking place, and
the more breeding that is taking place, the more rabbits are being born. This might
be the simplest possible formula we could assume for the rate of change of the rabbit
population. If the constant k is positive, the rabbit population would be increasing in
proportion to the number of rabbits. We might be able to imagine some situations in
which the constant is negative, although it seems unlikely that any model would predict
that the rabbit population should always be decreasing, in proportion to how many
rabbits there are (maybe this model would be appropriate for sterile rabbits that are
in the process of fighting each other to the death, for some strange reason). Notice in
particular that there are many things this simple equation does not account for. There
are no limitations due to finite resources, no terms accounting for predators, and so on.
While all of these things are indeed important considerations, our model might still be
valid if we are considering what happens when we introduce an invasive species to a
new area, where it has no natural predators, and while it still has ample resources to
consume.

(b) If we rearrange the equation in part a, we find

1

R

dR

dt
= k

If we integrate both sides with respect to time, this becomes∫
1

R

dR

dt
dt =

∫
kdt ⇒

∫
dR

R
=

∫
kdt ⇒ lnR = kt+ C

We can rearrange this expression by taking the exponential of both sides. Because the
exponential of a logarithm simply gives back the argument of the logarithm, we find

R = ekt+C = eCekt

So we see that according to this model, the rabbit population increases exponentially.

(c) According to the information we have about the rabbit population, and the solution we
found above,

R (t = 0) = eCek·0 = eC · 1 = R0

Therefore, the additive constant satisfies

eC = R0 ⇒ C = lnR0

More importantly, this information lets us write the solution to our differential equation
in terms of the more physically relevant quantity R0,

R = R0e
kt
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(d) Our solution tells us that the rabbit population will keep increasing exponentially for-
ever. However, our intuition tells us that most animal populations don’t keep increasing
exponentially forever. Eventually, other factors come into play, such as limited resources,
disease, natural predators, and so on.

(e) When R is much smaller than N , we have

R� N ⇒ R

N
� 1

So we suspect that the term in the parentheses is probably very closely equal to one,

1− R

N
≈ 1,

since the second term doesn’t subtract very much. So our differential equation becomes
approximately

dR

dt
≈ kR,

which is the same equation as in part a. Now, when R is much bigger than N, then we
have

R� N ⇒ R

N
� 1

In this case, the 1 in the parentheses is probably pretty unimportant in comparison with
the second term,

1− R

N
≈ −R

N
.

In this situation, our differential equation is approximately

dR

dt
≈ − k

N
R2.

When N and R are equal, then the term in parentheses is zero, and so the rate of change
of the rabbit population is zero. Notice that when the rabbit population is less than N ,
the rate of change is positive, so that the population will increase towards N . When the
rabbit population is more than N , the rate of change is negative, so that the population
will decrease towards N . When the population is equal to N , it will stay there, since the
rate of change is zero. In the language of differential equations, we say that the point
R = N represents a stable equilibrium of the rabbit population.

(f) If we rearrange the differential equation in question, we have

1(
1− R

N

)
R

dR

dt
= k.

We now want to perform an integration on both sides with respect to time. Since we
know what the rabbit population is at time zero, and we want to know what it is at
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some later time T, it seems natural that these are probably the times we would want to
use for the boundaries of a definite integral. We’ll see in a moment that this does indeed
help us arrive at the answer we want. Performing this integration, we have∫ T

0

1(
1− R

N

)
R

dR

dt
dt =

∫ T

0

k dt = kT.

Now, we have to be careful about the boundaries of integration on the left side. If we
change variables from t to R (t), then my integration is now between the endpoints R (0)
and R (T ). Therefore, we find ∫ R(T )

R(0)

dR(
1− R

N

)
R

= kT.

If we use an integral table to look up the value of the integral on the left (or use something
like Wolfram Alpha, or a TI-89), then we find the integral on the left to be

ln

(
R

R−N

)∣∣∣∣R(T )

R(0)

= kT

If we evaluate the anti-derivative between the two endpoints, we find

ln

(
R (T )

R (T )−N

)
− ln

(
R (0)

R (0)−N

)
= kT.

Using the rules of logarithms, we can combine the two terms on the left, to get

ln

(
R (T )

R (T )−N
R (0)−N
R (0)

)
= kT.

If we take the exponential of both sides of this equation, we find

R (T )

R (T )−N
R (0)−N
R (0)

= ekT

With a little bit more algebraic rearranging, we finally arrive at the expression

R (T ) = NR0
ekT

R0ekT +N −R0

.

Notice that because we performed a definite integral and took into account the bound-
aries to begin with, we didn’t have to deal with an intermediate constant C at any
point.

(g) Some plots of the solutions are included below. The blue curve shows the case R0 = 10,
while the purple curve shows the case R0 = 200. Notice that both plots tend to converge
on the value N = 100. For these reason, this parameter is typically referred to as the
carrying capacity of the population. It reflects the fact that typically, a population
will reach a point at which limited resources and environmental factors inhibit further
growth. If a population starts out below this value, the population will increase, while
if the population starts out above this value, it will decrease.
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In the second plot, we’ve compared what the solution to the R0 = 10 case would be if
we had used the approximate form of the differential equation,

dR

dt
≈ kR.

This plot is in gold. Notice that for times close to zero, it agrees reasonably well with
the exact solution, but tends to diverge badly at later times. This reflects the fact that
well before the population has reached its carrying capacity, it effectively does not feel
the limitations of its environment. But this exponential growth cannot continue forever,
and eventually the population tapers off to a fixed value. This type of growth is known
as logistic growth.
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We’ve also included a third plot, which shows the exact solution for the case R0 = 200,
along with what the solution would be if we had used the approximate formula,

dR

dt
≈ − k

N
R2.

This plot is shown in green. Even though 200 is not that much larger than 100, the
plots still have reasonable agreement for small times. However, they eventually tend to
deviate over longer times. Can you derive what the solution to the above approximate
equation is?
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(h) The second model takes into account the fact that populations typically experience lim-
itations to their growth. The various ways in which these limitations occur can be very
complex. They can include diseases, limited resources, seasonal and environmental ef-
fects, natural predators, and so on. What this model does is incorporate these effects
in the simplest possible way, using a differential equation that gives negative values
above the carrying capacity, positive values below the carrying capacity, and zero at the
carrying capacity. Of course, we could imagine much more complicated differential equa-
tions which reproduce this behaviour, but this model still captures the major qualitative
features of limited population growth.
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