
Physics 20 Homework 2
SIMS 2016

Due: Saturday, August 20th

Problem 1

(a) There will be two forces acting on the particle: its weight W , which always points
down, and the drag force Fdrag, which can point either up or down, depending on which
direction the particle is traveling. For our free body diagram, let’s assume the particle
is moving downward, so the drag force points upward. Then our diagram looks like this:

(b) Newton’s second law states that the net force on an object is equal to its mass times its
acceleration. If we choose the positive y-direction to be up, then the net force on the
particle is

Fnet = Fdrag −W
= −bv −mg
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where I used Stokes’ law to write Fdrag = −bv. But Fnet = ma, and therefore the
acceleration of the particle is

a =
Fnet

m
= −bv

m
− g

A constant velocity implies a zero acceleration; thus the velocity will remain constant
when the acceleration is zero. Thus the terminal velocity is defined by

a = 0 = −bvT
m
− g

vT = −mg
b

Note that the terminal velocity is negative: this means that the particle must be falling
down to achieve terminal velocity (no surprise).

In vacuum, there is no drag force, so b = 0. Then we see that the terminal velocity blows
up, i.e. an object falling in vacuum will always keep speeding up, so we conclude that
there is no terminal velocity in vacuum (if we ignore special relativity, anyway).

(c) Note that from our result above, the terminal velocity of an object falling in a fluid is
proportional to m/b. Now, the constant b depends on the size and shape of the falling
object, as well as the fluid the object is falling through. If we consider two object with
the same size and shape but with very different masses (say, a soap bubble and a ball of
lead), the constant b will be the same for both of them. Then the terminal velocity will
depend only on m, and so the heavier object will have a greater terminal velocity, and
fall faster.

(d) Let’s write a = dv/dt; then expression for the acceleration from part (b) becomes

dv

dt
= −bv

m
− g

To solve this equation, let’s rearrange:

dv

bv/m+ g
= −dt

Next, let’s integrate both sides: we’ll integrate the left-hand side from some initial
velocity v0 to a velocity v(t) at time t, and we’ll integrate the right-hand side from 0
to t: ∫ v(t)

v0

dv

bv/m+ g
= −

∫ t

0

dt′ = −t
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To integrate the left-hand side, let’s make the u-substitution u = bv/m + g; then du =
(b/m)dv, or dv = (m/b)du, and we get

m

b

∫ bv(t)/m+g

bv0/m+g

du

u
= −t

[lnu]
bv(t)/m+g
bv0/m+g = − bt

m

ln(bv(t)/m+ g)− ln(bv0/m+ g) = − bt
m

ln

(
bv(t)/m+ g

bv0/m+ g

)
= − bt

m

bv(t)/m+ g

bv0/m+ g
= e−bt/m

bv(t)

m
+ g =

(
bv0

m
+ g

)
e−bt/m

v(t) = −mg
b

+
(
v0 +

mg

b

)
e−bt/m

We recognize the quantity −mg/b as the terminal velocity vT , so we have

v(t) = vT + (v0 − vT ) e−bt/m

In the limit of very late time, i.e. t→∞, the exponential factor goes to zero, and we get

v(t→∞) = vT + 0 = vT

so at large times, the velocity will always approach the terminal velocity, no matter what
the initial velocity v0 was.
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Problem 2

(a) Because the cart is accelerating towards the block, the block must accelerate with the
cart. In order to do so, by Newton’s second law there must be a net horizontal force
acting on the block; this horizontal force is provided by the normal force of the cart on the
block. The block would like to fall down, but static friction opposes this motion; since the
maximum force of static friction is proportional to the normal force, and the normal force
is proportional to the acceleration of the cart, a greater acceleration implies a greater
maximum force of static friction. If the acceleration is great enough, the maximum force
of static friction should exceed the weight of the block, and the block will not fall.

(b) Below is a free body diagram with all the forces on the block labeled: its weight W , the
force of static friction Ff , and the normal force N .

We need to apply Newton’s second law twice, once per direction. In the x-direction, we
have

Fnet,x = max

The net force in the x-direction is just the normal force N , and the acceleration in
the x-direction is a, so we have

N = ma

Likewise, in the y-direction we have

Fnet,y = may

The net force in the y-direction is Ff −W = Ff −mg, and we want the acceleration in
the y-direction to be zero (i.e. we want the block to not fall), so by Newton’s second
law, we require the force of static friction to satisfy

Ff −mg = 0⇒ Ff = mg
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Now, recall that the force of static friction satisfies the inequality Ff ≤ µsN . From our
expression for the normal force, this means that Ff ≤ µsma. But in order for the block
to not slip, we required Ff = mg; thus the block will not slip if the maximum force of
static friction, µsma, is greater than the required force of static friction, mg:

µsma ≥ mg

a ≥ g

µs

(c) (i) The gravitational field that corresponds to a uniform acceleration a has the same
magnitude but points in the opposite direction to the acceleration; thus the equiv-
alent gravitational field geq has magnitude a and points to the left.

(ii) The usual gravitational field g points down; thus our two gravitational fields form
a right triangle, as shown:

The effective gravitational field therefore has magnitude

geff =
√
g2 + g2

eq =
√
g2 + a2

and the angle it makes with the x-axis is given by tan θ = g/geq = g/a, so

θ = arctan(g/a)

(iii) Note that if we rotate our coordinate system so that geff points “down,” the front
of the cart effectively becomes an inclined plane, as shown:
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Now we can completely forget about the accelerating cart, and only work with an
inclined plane problem! In particular, we know from class that the block will not
slide when tan θ ≤ µs. We found above that tan θ = g/a, so in order for the block
not to slide, we require

tan θ ≤ µs ⇒
g

a
≤ µs

a ≥ g

µs

in agreement with our result from part (b). Thus we get the same answer in a
completely different way! In this particular problem, we had to do about the same
amount of work with either method, but there are times when you can obtain a
result with the equivalence principle with far less work than other methods, and
gain some insight into the system to boot.
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Problem 3

(a) The key observation here is that relative to the ground, the velocity of the boat will be
the velocity of the boat as it would be in still water, plus the velocity of the water. If
we choose the x-axis to point downstream and the y-axis to point across the river, and
if the boat faces an angle θ from the y-axis, the components of its velocity relative to
the water will be

vBWx = −vBW sin θ

vBWy = vBW cos θ

To get the components of the boat’s velocity relative to the ground, we simply add the
velocity of the water relative to the ground:

vBGx = −vBW sin θ + vWG

vBGy = vBW cos θ

Now, in order for the boat to travel straight across the water, its x-velocity relative to
the ground must be zero, so we require

vBGx = −vBW sin θ + vWG = 0

or
vBW sin θ = vWG ⇒ sin θ =

vWG

vBW

(the angle θ exists, since vBW > vWG and therefore vWG/vBW < 1). The boat should
therefore travel at an angle

θ = arcsin

(
vWG

vBW

)
upstream.

(b) The y-component of the boat’s velocity is

vBGy = vBW cos θ

Using the trigonometric identity cos2 θ + sin2 θ = 1, we can write cos θ =
√

1− sin2 θ,
and using our result from part (a), we get

cos θ =

√
1−

(
vWG

vBW

)2

and thus the y-component of the boat’s velocity is

vBGy =
√
v2
BW − v2

WG
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If the width of the river is d, then the time it takes the boat to cross the river is

t =
d

vBGy

Plugging in our result for vBGy, we get

t =
d√

v2
BW − v2

WG

Note that as vWG gets closer to vBW , the time it takes for the boat to cross becomes
infinite; this is because if the speed of the river equals the speed of the boat in still water,
then in order to not be carried downstream, the boat must face directly upstream, and
the component of its velocity across the river vanishes.

(c) As before, if the boat faces an angle θ upstream from the y-axis, its velocity relative to
the ground will be

vBGx = −vBW sin θ + vWG

vBGy = vBW cos θ

Now, the angle φ that the boat’s velocity must make to go from point A to point B is
given by

tanφ =
x

d
But we also have that

tanφ =
vBGx
vBGy

Combining these results, we require that

x

d
=
vWG − vBW sin θ

vBW cos θ

or
vBW

(x
d

cos θ + sin θ
)

= vWG

Now, using the formula given in the hint, we can write

x

d
cos θ + sin θ =

√(x
d

)2

+ 1 sin(θ + δ)

where tan δ = x/d. We then get

vBW

√(x
d

)2

+ 1 sin(θ + δ) = vWG

or

sin(θ + δ) =
vWG/vBW√
(x/d)2 + 1

⇒ θ = arcsin

(
vWG/vBW√
(x/d)2 + 1

)
− δ
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The angle the boat should face is therefore

θ = arcsin

(
vWG/vBW√
(x/d)2 + 1

)
− arctan (x/d)

Note that when x = 0 (i.e. when the boat needs to travel directly across the river), we
end up with θ = arcsin(vWG/vBW ), in agreement with our result from part (a). What
about the limiting cases? Well, if point B were very far downstream, i.e. if x/d → ∞,
then

arcsin

(
vWG/vBW√
(x/d)2 + 1

)
→ 0

arctan (x/d)→ π

2

so θ → −π/2, which means the boat would need to face straight downriver - no surprise!

(d) Now, in order for the angle θ to exist, the argument of the inverse sine must be less
than 1 (because the domain of the inverse sine is [−1, 1]). This means that in order for
the boat to be able to reach the ground at point B, we must have

vWG/vBW√
(x/d)2 + 1

≤ 1

or

vBW ≥
vWG√

(x/d)2 + 1

When x = 0, the minimum speed the boat can have to reach the opposite ground is vWG,
as we assumed in part (a) above. As x increases, the boat can reach point B with lower
and lower speeds, until we send x→∞, in which case the boat can reach point B even
if vBW is zero (in this case, the river simply carries the boat all the way downstream).
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Problem 4

(a) We know that the position vector, in terms of the angle and radius, can always be written
as

r = r cos θx̂+ r sin θŷ,

so using the definition of the unit vector r̂, we have

r̂ =
r

r
= cos θx̂+ sin θŷ.

Now, the vector θ̂ is defined to be a ninety degree rotation counter-clockwise from r̂,
which is simply

θ̂ = − sin θx̂+ cos θŷ.

In order to check that this is the correct choice of signs, consider the limiting cases! Does
this expression make sense when θ = 0?

(b) This one is simple - based on the definition of r̂, we merely have

r̂ =
r

r
⇒ r = rr̂.

There is of course no component along θ̂.

(c) We know that the position vector, in terms of r and θ, can be written as

r = r cos θx̂+ r sin θŷ.

Therefore, computing the velocity in the original Cartesian basis, we find

v =
dr

dt
=

d

dt
(r cos θ) x̂+

d

dt
(r sin θ) ŷ,

or, making use of the product rule (since r and θ both depend on time!),

v =
(
ṙ cos θ − rθ̇ sin θ

)
x̂+

(
ṙ sin θ + rθ̇ cos θ

)
ŷ.

If we rearrange this equation slightly, we can write

v = ṙ (cos θx̂+ sin θŷ) + rθ̇ (− sin θx̂+ cos θŷ) .

Now, comparing with our expressions from part a, we see that this expression for the
velocity can also be written as

v = ṙr̂ + rθ̇θ̂.
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(d) Examining our results from the previous sections, we found that

gr

(
r, θ, ṙ, θ̇

)
= ṙ,

whereas
d

dt
fr (r, θ) =

d

dt
(r) = ṙ.

Thus, for the r-component, both expressions agree. Physically, this result tells us that
the rate of change of position, along the direction of the position vector, is the rate of
change of the length of the vector.

As for the θ component, we found above that

gθ

(
r, θ, ṙ, θ̇

)
= rθ̇,

whereas
d

dt
fθ (r, θ) =

d

dt
(0) = 0.

These expressions are certainly not equal! At least, not as long as r and θ̇ are non-zero.
Physically, this result tells us that the rate of change of the position vector, in a direction
perpendicular to the rate of change of radius, is dependent on both the radius itself, and
the rate of change of the angular coordinate. The rate of change in this direction gives
a sense of how much the particle’s trajectory is being rotated around the origin, and
because the basis vectors in this case depend on time and are not fixed in space, the
simple expressions we derived in lecture for the Cartesian basis vectors no longer apply.
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Problem 5

(a) At the instant I let the bodies go, their separation is r, and I can use the law of gravitation
to compute the magnitude of the force on each object. I can also use this law to compute
the magnitude of the acceleration of each object. For body one, I have

a1 =
F1

m1

=
Fg
m1

= G
m1m2

m1r2
= G

m2

r2

So we see that the magnitude of the acceleration of body one, at the instant I let it go,
does not depend on its own mass. The direction of the acceleration also does not depend
on its mass, since the direction is defined to point towards the second body. So then
in total, the acceleration of the first body does not depend on its own mass. By going
through the same calculation for the second body, we can see that its acceleration does
not depend on its own mass either.

(b) Newton’s law of gravitation states that the magnitude of the force on each body is given
by

Fg = G
m1m2

r2
,

and so in agreement with Newton’s third law, the magnitudes of the forces on each body
are always the same. However, the accelerations will not be the same. For body one,
the magnitude of the acceleration is

a1 = G
m2

r2
,

while for body two we have

a2 = G
m1

r2
.

If the first body is much more massive, then we have

m1 � m2 ⇒
G

r2
m1 �

G

r2
m2 ⇒ a2 � a1.

So the lighter body will experience a much larger acceleration, as we might intuitively
expect.

(c) Even though the forces and accelerations will be changing, Newton’s law of gravitation
still gives the force, and thus acceleration, in terms of the distance between the two
objects. If the distance between them is changing with time, it is still true that for the
first body,

a1 (t) = G
m2

r2 (t)
,

while for the second body

a2 (t) = G
m1

r2 (t)
.
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In general, this presents a differential equation we need to solve. But, if we don’t wait
long enough for the distance to start changing a lot, then the acceleration over the course
of time doesn’t change too much either. For example, if I let go of a ball on the Earth,
as it moves down and hits the ground, its distance from the center of the Earth (which
is the important distance for spherical bodies) barely changes at all, and so over the
course of motion, the accelerations don’t change too much.

Because of this, the conclusion I made at the instant I let them go is still true - the
acceleration of the larger body is much, much smaller. Because this acceleration is what
causes the body to change its velocity, then certainly, this body will not move very much
at all, since its acceleration is so tiny. The lighter body, on the other hand, has a huge
acceleration, comparatively, and so it will move a lot. Of course, this idea is familiar to
us - when I let go of a ball, despite the fact that the two bodies attract each other, the
ball certainly accelerates a lot more than the Earth! I don’t see the Earth rush up to
meet the ball.

(d) To be specific, I’ll set up a coordinate system where the positive y direction points away
from the surface of the Earth. Then Newton’s law of gravitation tells me that the force
on the ball is given by

F = −GMm

r2
ŷ,

where r is the distance between the center of the Earth and the center of the ball. In
terms of the radius of the Earth, and the height of the ball above the ground, I can write
this as

F = −G Mm

(R + h)2 ŷ.

The acceleration is given by Newton’s second law, and I find

a = −G M

(R + h)2 ŷ.

(e) When h = 0, we find

a = −GM
R2
ŷ.

This is a vector which is oriented towards the ground. Now, if we use numerical values
for G, M , and R, we find that the magnitude of the acceleration is

GM

R2
≈ 9.8

m

s2
,

the usual (constant) acceleration due to gravity! So this number isn’t just some magic
numerical value that comes from nowhere - we can understand how it arises from a more
fundamental law as just an approximation over small distances.
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(f) If we use the approximation formula we are given, we can rewrite the acceleration from
part d as

a = −G M

(R + h)2 ŷ ≈ −GM
[

1

R2
− 2

h

h3

]
ŷ = −GM

R2

[
1− 2

h

R

]
ŷ

The overall prefactor is the usual result, whereas the term in parentheses is an overall
multiplicative factor that is very close to one (notice that the units work out!). And
by close to one, I mean REALLY close to one. The radius of the Earth is about 6.4
thousand kilometers, whereas I often consider dropping a ball over distances of about
one meter. So in this situation, we would have

1− 2
h

R
= 1− 2

6.4× 106
≈ 0.9999997.

Thus, the first order correction is around 99.99997 percent of the value we usually use.
Needless to say, it seems like we are usually making a pretty good approximation.

(g) The approximation formula given in the previous part is a result of Taylor’s theorem,
which says that (most) functions can be approximated by a formula which involves their
derivatives,

f (x) =
∞∑
n=0

f (n) (x0)

n!
(x− x0)n .

A discussion of this subject is included in my notes on Taylor series, which are posted
online. If a is some constant parameter, and we take b to be some variable which is close
to zero, then Taylor’s theorem tells us

f (b) =
1

(a+ b)2 ≈ f (b = 0) +
df

db
(b = 0) .

Computing the first derivative, we find

df

db
=

d

db
(a+ b)−2 = − 2

(a+ b)3 ,

which yields

f (b) =
1

(a+ b)2 ≈
1

a2
− 2

b

a3

(h) If we denote the height above the ground as y, then we find a differential equation for
the acceleration,

ÿ = −GM
R2

[
1− 2

y

R

]
This is a second order differential equation which can be solved using methods which I
am happy to explain during office hours to those who are curious.
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Problem 6

For convenience, I’ve included the setup of problem four again. Now, the gravitational equiv-
alence principle tells us that while we actually have a gravitational field in our laboratory,
we can always pretend that the laboratory is actually some rocket out in empty space which
is accelerating. So I now pretend that I’m in such a rocket, and that the cannon is sitting
on the floor of the rocket, while the target hangs from the ceiling. Both of them will be
accelerated along with the rocket.

However, imagine that at time t = 0, I set up an inertial reference frame where the rocket
is instantaneously at rest. In other words, I imagine that at time zero, the rocket is beginning
to accelerate, and at this precise moment, I let go of the target, and fire the bullet. While it
is true that the floor of the rocket, and hence the cannon, will accelerate upwards, the target
and bullet are now out in empty space, not touching anything or feeling any forces. So the
target will simply sit still, while the bullet moves along a straight line, directly at the target.
Clearly, the bullet will hit the target.

Now, despite the fact that I told you not to do any math, in addition to arriving at this
conclusion, I could also say something quantitative. Notice that in my reference frame, the
bullet travels at constant speed straight at the target. So the time it will take before hitting
the target is simply

thit =
distance

speed
=

√
d2 + h2

v
,

which is exactly the same conclusion as before.
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