Erratafor Instructor’s Solutions Manual for
Gravity, An Introduction to Einstein’s General
Relativity Versions 1.0 (first printing) and 1.1

Updated 11/20/2006

(Thanks to Ted Jacobson, John Friedman, Don Page, and Mema $/ho pro-
vided most of these.)

Problem 2.2:
Replace Solution with the following:

Gauss’ triangle was located near the surface of the Earth.rdlevant radius in
the expression (2.1) is the distance of the triangle frontdmer of attraction. Eq
(2.1) gives the approximate size of the effect of the Earten@R,, = 6378 km is
the radius of the Earth. However for Sun the relevant raditlse distance of the
triangle from the center of the Sun, which approximatelystze of the Earth’s
orbitre ~ 1.4 x 168 km. Then, from (2.1) the ratio of the effect of the Sun to that
for the Earth can be written

| GM c? ’
(ratio) syntoEarth™ ( C2®) (GM@) (%) '

For the EarthGM,/c® = .443 cm and for the SuGM,/c®> = 1.48 km. For the
ratio we get

(rati())SuntoEarthN 10_19 (') .
The effect of the Sun is therefore much smaller than the edffethe Earth.

Problem 2.9:
In the 5th printing and later the solution has to be revisednrobvious way to
reflect the minor changes in the data in the problem.

Problem 4.4:
In the last equation it should be3.4 instead of+3.4.

Problem 4.14:



The solution given is whel andV are colinear. The general case is not too
difficult and will appear in the next version of this manual.

Problem 5.17:
In the fourth printing and onward the problem is replacechwite following
clearer statement and with the corresponding changes atioin the solution:

[C] (Relativistic Beaming) A body emits photons of frequency, at equal rates in
all directions in its rest frame. A detector at rest in thasie a large distance away
(compared to the size of the body) receives photons at a eaterit solid angle
(dN/dtdQ), [photons(secsr)] that is independent of direction. In an inertial
frame(t’,X,y,Z) in which an observer is at rest the body is moving with spéed
along thex' —axis.

1. Derive (5.75) relating a photon’s direction of propagatin the rest frame
to the direction of propagation in the observer’s frame.

2. Find the rate at with photons are received per unit solgleadfN /dt’dQ’ a
large distance away in the observer’s frame as a functiomglea’ from
the X' —axis. [Hint: Remember that the time interval between thepéon
of two photons by a stationary observer is not the same asntleaiiterval
between their emission if the source is moving.]

3. Find the luminosity per unit solid angtit’/dQ’ [erg/(secsr)] a large dis-
tance away as a function of the anglen the observer’s frame.

4. Discuss the beaming of number and energy in the obseilvanse as the
velocity of the source approaches the velocity of light.

Solution

1. Suppose a photon is emitted in the rest frame making are angith the
x-axis. The components of its four momentprn this frame are:

p = (p, pcosa, psina,0) , p= how .



In the observer’s frame the componentpdaire:

P’ = y(p+Vpcosa), 1)
p* = y(pcosau+Vp), 2)
pV = psina. (3)

The anglen’ made by the photon with theé axis is then

cosa’—p—X/— cosa +V
p'  1+Vcosa '

The inverse of this obtained by replaci¥igoy —V is also useful:
coso=—F—. (4)

. The number of photons emitted in in a tiniteand solid anglelQ in the rest
frame must be the same as the number emitted in a corresgpindenval
dt, and solid angledQ’ in the frame in which the source is moving. We
use the notatiomlt, for the time interval between photons etission to
reservedt’ for the time interval between photons when they iaeeived.
2nisina’da’dt’(dN/dtzdQ’) is the number of photons emitted at angte
into an annulus of angular widttia’ in time dt.. This must be the same
as the number emitted in the corresponding annulus in thefreere —
2nisinadadt (dN/dtdQ) in the corresponding timdt. The time intervalsit
anddt/ are connected by time dilation -d¢; = ydt The connection between
angles (4) allows us to compute:

d(cosa) 1
d(cosa’)  y2(1—Vcosa’)2

dN B dN 1 (5)
dtédQ’_ dtdQ [V(l—VCOSCX’)]Z

The result is:

Now we connect the time interval for emissidt}, with the time interval
for receptiondt’ — both in the same frame where the source is moving.
Suppose one photon is emitted at an armfléo the motion and travels
a distanced to reception. When the second photon is emitted a fiftje
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later the source has travelled a distaMadi, in the direction of motion.
A little geometry shows that the distance this photon tsv&lshorter by
(Vdt;) cosa’ whend is large. Thus

dt’ = dt{(1—V cosa’) (6)

Combining this result with (5) we find finally:

dN  / dN 1 )
d’dQ’ — \ dtdQ [y(l_\,cosa,)}f%

. The energy of the photons emitted at armlés, from the inverse of (5.73)
or from (1):

hw, =E'y(1-Vcosa')
Solving forE’ and using the result of part (b) the luminosity per unit solid
angle is

a o dN ., (dL/dQ)
ao (@) = B @) ey (@) = [V(1-Vcosu)]*

. The ratio of luninosity in the forward to backward directiis

(dL’ /dQ’)(0) <1+V)4

=12y (8)

(dL’/dQ’)(m)

which asV — 1 becomes very large, meaning most of the radiation is
beamed forward.

For a solution to the version of this problem in printings feplace(dN/dtdQ).
with f,, dN/dt’dQ’ by f/(a’), anddL’/dQ’ by L'(a’).

Further comments: An easy way to remember this result ighigadombination:

5 dN
dtdQ

is the same in both frames — an invariant.



AsV ~1,1/(1-V) ~ 2y? and the forward/backward ratio (8) become&56/2.
Sincey ~ 10 for some matter in active galactic nuclei jets the forwiaadkward
difference in luminosity can be very large.

Solution:

Solution to Problem 6.9:
In (2) change “5.2” to “5.3” and in (3) change “4.5” to “4.6".

Solution to Problem 6.10in the 5th printing the problem was revised so that
the radioactive species had axponential decay time of 6.5 billion years like
238 implying obvious changes in the solution. In at the end ofgtablem the
exponential decay time is erronously labeled the halfdifeough the calculations
are o.k.

Solution to Problem 6.12n the 5th printing this problem was modified slightly.
Replace the solution with the following:

There is one great circle through any two points on a sphetré lbefinestwo
curves of extremal distance connecting the two points. Tbeter segment of the
great circle is the path of shortest distance between theobids. But the longer
segment around the other way is also an extremal curve. Howi\provides
neither the longest or shortest distance when comparedothtr nearby paths.
To see that there isshorter nearby path imagine the two points are on the equator
and slide the long segment up a bit toward the north pole fitgite below). It
gets shorter. To see that there idoager nearby path, imagine a path which
wiggles a little up above the long segment and below it mangyntines (right
figure below). That will be a longer path. There is no longeghgonnecting the
two points. Imagine for example taking paths that start at@mdpoint and circle
the globe 10 times, 1000 times, 10,000 times, etc beforeestimy to the other
endpoint. Those are a sequence of increasingly longer,aidghere is no limit
to how long they can be.
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Solution to Problem 6.14:
Replace with following which has more comments than theexagblution:

To order 1/c? accuracy the proper time along any of these curves is givéd.Bg)

SO
1 [P V2
AM=P-—= [ dt|——o
T cz/o 2

in an inertial frame in which the center of the Earth is appraately at rest.

1. For a circular orbit of period®, ® = —GM /R whereR is related toP by
Kepler's lawP? = (412 /GM)R3. FurtherV?/R= GM/R?. The net result

for the above integral is
3 GM
AM=P(1--—
t ( 2 RCZ)

which can be entirely expressed in term$andM using Kepler’s law.

2. For a stationary observér=0

GM
AT = P(l—@>

which is a longer proper time than a). Therefore, the cirooithit, although
an extremal curve, is not a curvelohgest proper time.
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3. There is zero elapsed proper time. A circular orbit is natrae of shortest
proper time either.

There are many other extremal world lines connecting the gwiats. For in-
stance, there is the world line followed when a ball is thrawadially outwards
with the right velocity so that it falls back in tim. More generally the ellipti-
cal orbits with the same peridelthat pass through the radi&swill be alternate
extremal curves.

Comment: By calculating the second variation of the proper time theutar
orbit can be shown to have the longest proper time with régpewarby world
lines connectingh andB but part (b) shows that the proper time is not the longest
when compared tany world line connecting the two points. The elliptical orbits
mentioned above with the same period and semi-major axag ¢R will be
nearby the circular orbit. They are therefore extremal dtiries connectingA
andB with shorter proper time. Conversely for any one of these elliptical wbi
the circular one is a nearby world line witbnger proper time. There is always
nearby world line othorter proper time made up of small lightlike segments. The
elliptical orbits are therefore examples of saddle poiexsremal but neither the
longest or shortest when compared with nearby world liné® g@roblem can be
extended along these lines.

Solution to Problem 7.5:
Change 1(2x) to 2/x.

Solution to Problem 8.1:
Strictly speaking the cas& = 0 should be considered separately. It is a vertical
straight line.

Solution to Problem 9.11:
In the denominator the factol2rmax— 6M) should bef?(6M — rmay).

Solution to Problem 9.1Replace (7.48) with (9.46).

Solution to Problem 9.12:
Delete version two. Its incorrect. In version one replace élquation and text



after “Solving (5) and (6)” with:

oM 1 1/2
VZ(Fl—RZ/bZ) '

This is coincidently the same as the formulaV¥oin Newtonian theory.

You can also derive the same relation Yoby starting, not from (2), but from the

relation that at the turning point = u“’/uf in the orthonormal basis associated
with the stationary observer.

Problem and Solution to 9.1Replacel = 4.6 with //M = 4.6. (Correct units.)

Problem and Solution to 9.2The reference to “latitude” can confuse. Replace
with the following”

[E] Suppose a neutron star were luminous so that featuresswuiface could
be viewed with a telescope. The gravitational bending ditlimeans that, not
only could the hemisphere facing us be seen, but also a ptre édr hemisphere.
Explain why andestimate the angle measured from the line of sight on the far
side above which the surface could be seen. This would/Bef there were no
bending, but less than that because of the bending. A typmatron star has a
mass o~ M, and a radius of 10 km.

Solution:



Line of
sight

The above figure shows the geometry relevant to the problehe t&lescope
and observer are off to the far left along the line of sight.e Bolid line is the
trajectory of the light ray that leaves the surface almasgéat to it, but reaches
the observer because of light bending. The observer careatgds on the part
of the surface surface bounding the unshaded part of theefigund cannot see
features on the the part of the surface bounding the shadéd Pphe angler
defined in the problem, and dividing the seen from unsees darshown together
with its connection to the deflection angdeyer. For a neutron staMg /R ~
(1.5km)/(10km) = .15. This is small enough that a reasonable estimate for the
angleA can be obtained from (9.83) for the deflection angle and tloengéry of
the above figure. Note that by symmetry light rays from thelks@\ visible on
the far side will be ones moving at constant azimuthal angte wespect to the
line of sight. Evidently 2 + d@ef = TTSOA = (TT— Oyef) /2 = /2 - 2M /R~
1.3 radiansx 73°.

For a further problem try and figure out what such an image aimdk like.
Solution to Problem 11.4elete a factor of 2 from the final result.
Solution to Problem 12.4:

On p. 158 in two the two equations specifyidiydv the left hand sides should be
di/dr notdi/dv. The text beginning “This information...” and the figure dam



replaced by the following improved versions

This information on slopes is enough to give the followiiig ) spacetime dia-

gram. Three radial light rays and some light cones are s&dtghalitatively. The

size of the cones is abitrary. One light ray i3 at M, another escaping to infinity
is atr > M, and one confined inside the horizon ig at M.

tA

s

Solution to Problem 12.8mproved text and corrected figure:

An observer who falls into the black hole can in principleaige information
from any point in the shaded region between crossing thebwatr = 2M and
destruction at = 0. This is the region of points which can be connected to the
world line of the observer between= 2M andr = 0 by null or timelike world
lines. (Not necessarily radial ones.) This includes infation about events out-
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sider = 2M but not all of the region outside= 2M.

Solution to Problem 12.13mproved figure:

t

Replace the solution to (a) with the following, its a bit clea

The figure above shows an Eddington-Finkelstein diagrarh sahematic world
lines of the observer's head and feet. At a givdwer feet are at a smaller radius
than her head because she is falling in feet first. Radialeayted originating at
her feet are shown. (These are segments of light rays #ltestin Figure 12.2.)

There is no instant when she is not receiving a light ray franfeet. She sees
them always. When her head crosses the horizon she seeshet the same
radius, because the horizon is generated by light rays.

When her head hits the singularity she still sees light fremféet that was emitted
earlier but is falling into the singularity as well. But, shever sees her feet hit the
singularity because her head and feet meet the singulardyeecelike separated
points. When close to the singularity light rays from hert fiedl into the singu-
larity before they intersect her world line, as the figurevgfio (Some students
interpret this question to ask if she sees her ¥g®n they hit the singularity. But
there is no invariant meaning to “when”. For some it is ma@adr in a Kruskal
diagram.)
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Solution to Problem 12.14In the second line of the expression fothe sign
following € should be afr.

Solution to Problem 12.19mproved figure:

r < 2M

1

/ escaping
(/ light ray

horizon

Solution to Problem 13.5Change 3x 10°yr to 4 x 10°yr, 3 x 101%cm to 4x
10-16cm and 4x 10'2g to 5x 10%%g. This makes the solution consistent with the
statement of the problem.

Solution to Problem 13. Replace with the following simpler solution:

Let Mg denote the present mass of a black hole going to explode és tht
present time. From (13.19) we can find its mass by puttingt = 1s with the
result

Mo = 1.7 x 10 %%cm= 2.3 x 10°g.

If the black hole evaporates completely the energy emitie¢de next second will

be Moc? = 4.2 x 10%%rg. Therefore, the total energy per unit area received at
Earth in that 1s will beMoc?/(41r?) wherer is the distance to the evaporating
black hole. In the same 1s the energy per unit area recived &atar with the
solar luminosityL., a distance 10 pc away will b - (1seq)/(41(10pg?).
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These will be equal when

r B Moc2
10pc/ L. -1s

Thusr is 0.007 of 10 pc or 2 x 10'’cm or 15 x 10*AU. The black hole would be
within the region called the “Oort cloud” containing the dislirom the formation
of the solar system that supplies some of the comets.

Solution to Problem 18.6n the final sentence replate- tg with f = .

Problem 18.25In the 5th printing the problem was modified slightly as fai&
The solution here is for that, but is also a better solutiothtoversion that ap-
peared in earlier printings:

Problem:[C] Is there a value of, that would allow the universe to bounce at a
small radius, but still reach a temperatire- 1010 K such that nucleosynthesis
could occur? Assum@, = 8 x 102 andQ,,, = .3.

Solution: For the temperature at the bounce to be greatertha@'°K, the value
of & at the bouncey, must be less than 1010 [cf. (18.26)]. For simplicity let
us suppose that the bounce occurs when the temperaturecityed@°K corre-
sponding to a redshiftof approximately 3< 10° and arag ~ 3 x 1019,

A necessary condition for a bounce [cf. Fig 18.9] and (18.i83)

1 . 1 Qm &
EQC = Ueff(8p) = — 5 leab"‘ EN + ag}
UsingQ:=1—Q,— Qn— Q, from (18.76) this can be solved f@x, in terms of
the other cosmological parameters @gdThe result is

9)

1 1 1
Qy= [1+Qm<——1)+Qr (.,—2—1)}. (20)
1-8 % 8
For the given values d®,, andQn, andap, ~ 3 x 10~ 19 this evaluates to
Q,~ 10 (), (11)

the radiation term in (10) being the dominent one. (This &auwildly inconsis-
tent with current observations as we will see in Chapter L9|di’s first see if it
even corresponds to a bounce.)
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While the condition (9) is necessary for a bounce, it is nfficgant. That is be-
cause, as Figure 18.9 makes clear, (9) is satisfied both bgatogical models
whered, is @ minimum ofa{f) (bounces) and where it is a maximum of the ex-
pansion. For a bounce solutia, lies above the value of the maximumudds ().
Let's check whether this is satisfied for (11).

At the time of the putative bounce wha@n~ 10'°K the matter can be neglected.
The maximum ol (&) occurs at

Bmax = (g—) ~ 1012 (12)

for (11). This is vastly bigger thaa, = 3 x 10710, The maximum ole(&) is
above the value ddy, not below it as would be required for a bounce.

We conclude that there i value ofQ, that is that would lead to a bounce at a
temperature higher than 1.

Solution to Problem 15.10Replace with the following (simpler, more closely
related to the discussion in the text):

There are a number of different ways of solving this probl¥¥e.give two.

1) We can follow the demonstration given in Section 15.3 thatsurface = Ris
a stationary null surface. Tangent vectbis the surface have the general form

t9 = (t,0,t%,t%) . (13)

The surface is null if, at each point, a null tangent vec¢toan be found along
with two orthogonal (t& and each other) spacelike tangent vectors. (See Section
7.9.) The conditior? - ¢ for a tangent vector reads

(0= (1— f) ()2 4+r2(£%)2 +-r2sir?0(1%)2 .
R2

Onr = R we see that® = (1,0,0,0) is a null tangent vector, (indeed its the
unique one up to a multiplicative constant). Furtiier0,1,0) and(0,0,0,1) are
two spacelike tangent vectors orthogonal to each other@afd t

14



The null surface at = R has the one-way property discussed in Section 7.9. Once
through it you cannot come back.

2) Its possible to worry about the above solution becausé toerdinate is sin-
gular atr = Rin much the same way that the Schwarzschitdordinate is sin-
gular in the Schwarzschild metric. We can both demonsthaseaind understand
the nature of the = R three-surface by transforming to coordinates analogous
to Eddington-Finkelstein coordinates. Following (12.3 transform front to a
new coordinatel defined by

t=u+F(r) (14)
where 1
dF r2\ R R+r
a_<1—@) , F(r)_ilog<m) . (15)
Then the metric takes the form:
2
ds? = — (1— %) du? — 2dudr + r?(de? + sin’6d¢?) . (16)

In this non-singular form of the line element, its clear that Ris a null surface.
Furthermore, because of the choice of signs in (14), its agoing null surface
— fixed u meang has to get larger asgets larger. It therefore has the property
that once crossed its impossible to return. (See the digecussSection 7.9.)

Comment: The given metric is one form of the metric of deSitter spacéctvh
is the maximally symmetric solution of Einstein’s equatisith a cosmological
constant. Another form, covering a different patch, is gilsg (18.1) and (18.39).
The surface = Ris called the “deSitter horizon”.

Solution to Problem 15.13elete the sentenc€‘vanishes at .... null.” Its mean-
ingless.

15



