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Abstract

Since the 1970s, theories of deformation and failure of amorphous,

solidlike materials have started with models in which stress-driven,

molecular rearrangements occur at localized flow defects via shear

transformations. This picture is the basis for the modern theory of

shear transformation zones (STZs), which is the focus of this review.

We begin by describing the structure of the theory in general terms

and by showing several applications, specifically, interpretation of

stress-strain measurements for a bulk metallic glass, analysis of

numerical simulations of shear banding, and the use of the STZ equa-

tions of motion in free-boundary calculations. In the second half of

this review, we focus for simplicity on what we call an athermal model

of amorphous plasticity, and use that model to illustrate how the STZ

theory emerges within a systematic formulation of nonequilibrium

thermodynamics.
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1. OVERVIEW

Deformation and failure of amorphous, solidlike materials is a large topic with a long history.

This class of materials includes structural and metallic glasses, glassy polymers, dense colloi-

dal suspensions, many kinds of granular materials, and a huge range of biological substances.

Despite the challenge presented by their inherent disorder, these materials have received

special attention because of the broad range of applications in which it is essential to predict

their failure modes. The ways in which amorphous solids behave when driven by external

forces have been studied throughout the latter half of the twentieth century by disparate

groups of physicists and materials scientists. The field has advanced significantly in

recent years, largely because of insights gained from numerical simulations (1), and partly

because of the introduction of a few new theoretical concepts; but even the basic form of an

acceptable, first-principles theory has remained a matter of debate.

Among the computation-inspired advances is the shear-transformation-zone (STZ) the-

ory of amorphous plasticity, which we proposed in 1998 (2), and which has gone through a

series of modifications and extensions since then. (See, e.g., References 3–9.) The STZ

theory is the principal topic of this review. We emphasize two main points: first, that the

STZ theory starts with specific assumptions about the nature of molecular rearrangements

to arrive at testable predictions of experimental data, and second, that the theoretical

hypotheses are strengthened by being developed in the context of fundamental principles

of nonequilibrium thermodynamics.

From its inception (2), the STZ theory was intended to be an extension of the flow-

defect theories of Turnbull, Cohen, Spaepen, Argon, and others (10–14) in which localized

clusters of molecules undergo irreversible rearrangements in response to applied shear

stresses. In a very rough sense, the flow defects in amorphous materials play the role of

dislocations in crystals by being the agents of plastic deformation. All of these theories,

including STZ, start by assuming that the material of interest is solidlike—that it has a

shear modulus—and that the flow defects or dislocations allow it to behave in some

respects like a liquid. Thus, the flow-defect theories are qualitatively different from fluid-

based theories such as mode-coupling theory (15–17), which starts from a liquidlike,

many-body description and predicts the onset of solidlike behavior at high densities and

low temperatures.

The most important way in which the STZ theory departs from its predecessors is by

recognizing that the flow defects must possess internal degrees of freedom. The STZs not

only appear and disappear during configurational fluctuations; they also transform from

one orientation to another, and the net rate at which these transformations occur deter-

mines the rate of irreversible shear deformation. As we show later in this review, the

equations of motion for this orientational degree of freedom predict that the system

undergoes an exchange of dynamic stability from jammed to flowing states at a yield stress

or, more accurately, at a minimum flow stress. This dynamic interpretation of yielding is

not exactly the same as the conventional picture of stress-driven barrier crossing; it has as

much to do with entropy generation as it does with deterministic dynamics. The orienta-

tional degree of freedom also gives the system a directional memory; for example, it pro-

duces Bauschinger effects (18).

In recent years, the STZ theory has acquired a thermodynamic complexion with

the introduction of an effective disorder temperature. As with the flow-defect picture,

the effective-temperature idea has historical roots in Cohen and Turnbull’s theories of
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glasses (19). Other investigators, notably Spaepen (11), described the intrinsically disor-

dered state of noncrystalline materials by a free volume vf. Those authors perceptively

recognized that the relevant definition of vf is not as an extensive excess volume measured

from some densely packed state, but as an intensive quantity—the inverse of the derivative

of a configurational entropy (i.e., a dimensionless entropy associated with the mechan-

ically stable molecular positions, without kinetic or vibrational contributions) with respect

to the volume. Thus, they proposed that the density of flow defects might be proportional

to a Boltzmann-like factor, exp(�constant/vf), and not just to vf itself. This thermodynamic

analogy was further developed by Edwards and coworkers (20, 21) for strictly athermal

materials such as powders. Lemaitre (22, 23) has used the free volume in a way that is even

more closely related to the effective-temperature analysis described here.

Whenever the mechanical behavior of the system is determined by interactions between

its elementary ingredients, it becomes important to couch the thermodynamic analysis in

terms of energy rather than volume. Then the analog of the free volume vf is an effective

disorder temperature Teff, defined here to be the derivative of the configurational

energy with respect to the configurational entropy. Teff equilibrates with the ambient tem-

perature T at high T, but may fall out of equilibrium at low Twhen molecular disorder is

generated by mechanical deformation, or when glass-forming liquids are quenched

through a glass transition. In the latter case, Teff is the same as the fictive temperature

(24, 25). In analogy to the free-volume formula, the steady-state STZ density is propor-

tional to exp (�TZ = Teff), where eZ ¼ kBTZ is a characteristic STZ formation energy.

Throughout this review, we consider only materials in which localized molecular

rearrangements occur in the presence of an ambient, high-frequency noise generated by

either thermal or mechanical fluctuations. Thus, we do not consider strictly athermal

situations that may occur in granular or colloidal materials very near the jamming transi-

tion. In particular, the physics we discuss is quite different from that observed in athermal

quasi-static (AQS) numerical simulations (26–30), in which the system is relaxed to its

nearest energy minimum after each of a sequence of small strain steps. Both AQS simula-

tions, and fully dynamic simulations in the AQS limit of vanishingly small temperature and

strain rate, characteristically exhibit system-spanning, cracklike events and size-dependent

spectra of stress fluctuations.

Despite the obvious discrepancy between AQS and normal behavior, Lerner &

Procaccia (34) have asserted that the system-spanning events observed at or near the AQS

limit cast serious doubt on all plasticity theories that are based on the assumption of localized

events. We always have held that such behavior may be typical of slowly driven, nearly

jammed granular materials; but conventional, amorphous molecular materials exhibit no

such size-dependent behavior. Because the models being simulated have normal, finite-

ranged, molecular interactions, there must be a crossover from AQS to normal behavior as

a function of increasing temperature and strain rate. The system-spanning events must be

suppressed by thermal and mechanical noise, and constitutive relations and fluctuation

spectra must behave properly in the thermodynamic limit of infinite volume. More recently,

Procaccia and colleagues (35) have demonstrated that this is indeed the case; in fact, they find

that the expected crossover to localized events and normal plasticity occurs at exceedingly

low temperatures. This observation demonstrates that it is inappropriate to overgeneralize

the AQS results, as in Reference 34, and reaffirms that the existence of thermal or mechanical

noise places amorphous molecular systems—to a very good first approximation—squarely in

the regime where local events control dynamics, consistent with the STZ theory.
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A description of amorphous plasticity that we believe must be closely related to the STZ

theory is known as soft glassy rheology (SGR) (36, 37). This theory describes a broad range

of glassy behaviors in terms of distributions of localized, noise-activated displacement

processes. As with the STZ theory, SGR exhibits transitions between different kinds of

jammed and flowing states and can account, at least qualitatively, for a variety of phenom-

ena observed in soft materials. However, SGR begins by assuming a fixed, broad distribu-

tion of activation energies and the existence of a noise temperature that controls the

activation rates. The meaning and dynamics of the SGR noise temperature remain unclear

at present; we do not even know whether it might be the same as the STZ effective temper-

ature. In contrast, the STZ theory is based on a specific model of molecular rearrangements

that have been observed directly in numerical simulations and analog experiments. Both

the effective temperature and the dissipative processes that generate it are defined in terms

of those molecular degrees of freedom.

This review consists of two main parts, presented in Sections 2 and 3. In Section 2, we

exhibit one limiting form of the STZ equations of motion and very briefly describe several

applications, specifically, interpretation of stress-strain measurements for a bulk metallic

glass, analysis of numerical simulations of shear banding, and the use of the STZ equations

in free-boundary calculations. In Section 3, we focus for simplicity on what we call an

athermal model of amorphous plasticity, and use that model to illustrate the thermody-

namic basis of the STZ theory. The thermodynamic arguments are taken primarily from

References 31–33; but some features of this analysis have not appeared elsewhere. The

derivations in Section 3 provide a first-principles rationale for the formulas used in Section 2.

2. SUMMARYAND SELECTED APPLICATIONS OF THE STZ THEORY

2.1. Elasto-Plasticity

Our first step in summarizing the STZ theory is to place it within a general set of Eulerian

equations of motion for elasto-plastic deformation in a solidlike material. Consider a d

dimensional system; let i, j. . . be spatial indices; and use summation convention. Then write

the stress tensor sij in the form

sij ¼ �pdij þ sij, p ¼ � 1

d
skk, 1:

where p is the pressure and sij is the traceless, symmetric, deviatoric stress. In analogy to

fluid dynamics, let vi(x, t) denote the material velocity at the physical position x ¼ {xi} and

time t. The acceleration and continuity equations are

r0
dvi
dt

¼ @sij

@xj
¼ � @p

@xi
þ @sij

@xj
;
dr0
dt

¼ �r0
@vi
@xi

: 2:

Here, r0 is the density, and d/dt denotes the material time derivative acting on a scalar

displacement, or velocity field:

d

dt
� @

@t
þ vk

@

@xk
: 3:

For most purposes, we assume that r0 remains approximately constant and thus do not

need the second, continuity equation in Equation 2.
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The problem of disentangling elastic and plastic deformations has long been one of the

more serious challenges in solid mechanics. This problem is not our main topic. (See

Reference 38 for a recent review.) Rather than address it, we assume—as a simple working

approximation—that the total rate-of-deformation tensor Dtot
ij can be written as a linear

superposition of elastic and plastic contributions:

Dtot
ij � 1

2

@vi
@xj

þ @vj
@xi

� �
¼ D

Dt
� p

2K
dij þ

1

2m
sij

� �
þDpl

ij , 4:

where m is the shear modulus, K is the inverse compressibility, and Dpl
ij is the plastic rate of

deformation. The symbol D=Dt denotes the material time derivative acting on a tensor, say

Aij. For present purposes, we can write

DAij

Dt
� @Aij

@t
þ vk

@Aij

@xk
þ Aikokj � oikAkj,

where oij is the spin:

oij ¼
1

2

@vi
@xj

� @vj
@xi

� �
: 6:

Equation 4 implies that we are neglecting nonlinear elasticity and are assuming that the

elastic parts of all displacements are small. However, we are making no such assumption

about the plastic displacements. In this Eulerian formulation, neither displacements nor

strains appear explicitly in the equations of motion, and the velocity field vi(x, t) can

describe arbitrarily large and complex motions of material points.

Consistent with our assumption of constant density r0, we assume that the plastic part

of the rate-of-deformation tensor Dpl
ij , as with sij, is a traceless symmetric tensor, so that

plastic deformation is volume conserving. This assumption is not necessary for any theo-

retical purpose; it simply reduces the mathematical complexity of the analysis and is an

accurate approximation in most physical circumstances. When dilation becomes impor-

tant, it is easy to add a volume nonconserving term to Dpl
ij .

2.2. STZ Equations of Motion

The role of the STZ theory is to provide a constitutive relation between the plastic rate-

of-deformation tensor Dpl
ij and the deviatoric stress tensor sij. For illustrative purposes, we

focus on a common class of situations in which plastic deformation is slow on molecular

time scales, and in which Dpl
ij has the form

t0 Dpl
ij ¼ e�eZ=w fij(s, y). 7:

Here, s denotes the stress tensor; y ¼ kBT and w ¼ kBTeff are, respectively, the ordinary

and effective temperatures in energy units; eZ is a STZ formation energy; and t0 is the

molecular time scale. A low-temperature expression for fij(s, y) is shown below in Equation

38. In principle, Dpl
ij also depends on two internal state variables: a dimensionless STZ

density L and a tensor mij that carries orientational memory. Both of these variables must

satisfy their own equations of motion, and both play central roles in the derivation of the

STZ equations of motion in Section 3.4. In going from such equations to the special form

shown in Equation 7, we have assumed that both L andmij have reached their equilibrium
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values in times short compared to the time scale for plastic deformation. As shown below,

it is the dynamics ofmij that, at low temperatures and for quasi-static deformations, causes

fij(s,y) to vanish when the magnitude of the stress |s | is smaller than a dynamic yield

stress sy. At somewhat higher temperatures, the m dynamics produces a smooth transition

from thermally assisted creep to steadily driven flow at approximately the same yield

stress. By dropping mij on the right-hand side of Equation 7, we exclude consideration of

Bauschinger effects or anelastic stress-strain responses below the yield stress, which are

contained naturally in more general versions of this theory.

Equation 7 reflects the central premise of the STZ theory that, during plastic

deformation, localized, irreversible molecular rearrangements take place sporadically at

well-separated sites. The rearrangements that have been observed directly in numerical

simulations (2, 39, 40) are STZ transitions from one of their orientational states to another.

The STZs themselves are ephemeral, noise-activated, configurational fluctuations that

happen to be susceptible to stress-driven, shear transformations. An STZ, when formed,

rapidly undergoes a shear transition if it is aligned favorably with respect to the stress.

Once this happens, it cannot transform further in the original direction; but it can trans-

form backward if the stress is reversed before significant further deformation occurs (39).

In either case, the STZ ultimately disappears into the background of noisy fluctuations.

This picture of STZ transitions as infrequent events, and the correspondingly long time

scales associated with plastic deformation, is expressed in Equation 7 by small values of the

Boltzmann-like factor exp(�eZ =w).
Equation 7 must be supplemented by an equation of motion for w. As will be seen in

Section 3.3, this equation is fundamentally a statement about entropy flow in a driven

system. It has the form

t0
_w
eZ

¼ k1e
�eZ = w G(s, y) 1� w

wss(q)

� �
þ k2e

�eA = w r(y) 1� w
y

� �
, 8:

where k1 and k2 are dimensionless constants. The first factor on the right-hand side

of Equation 8, i.e., the product exp(�eZ =w)G(s,y), is proportional to the rate at which

entropy is produced by the driving forces. We show in Section 3 that, at low temperatures,

this product is proportional to the work rate Dpl
ij sij, which contains the factor exp(�eZ = w),

according to Equation 7. Thus, the plastic deformation and the effective temperature are

similarly slow quantities. More generally, G(s,y) is a nonnegative noise strength that must be

temperature dependent, because the work rate by itself can be negative if, for example,

thermal fluctuations drive plastic flow in a direction opposite to the stress (9).

The second factor in the term proportional to k1 tells us that w approaches a steady-state
value wss(q). Here, q � t0 jDpl j¼ t0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1=2)D :D

p
is the magnitude of the plastic strain

rate in units of the molecular frequency t�1
0 . Under normal circumstances, q � 1, and

wss(0) � w0 is a measure of the disorder induced by slow straining or stirring. However, at

very large strain rates, q � 1, and wss(q) becomes large.

The term proportional to k2 on the right-hand side of Equation 8 is the rate at which w
relaxes to y in the absence of external driving. This rate contains the factor exp(�eA =w),
which determines the frequency of configurational fluctuations that couple to ordinary

thermal fluctuations, in rough analogy to the way in which STZs couple to the external

stress. In general, we expect the formation energy eA for such fluctuations to be different

from eZ. The factor r(y)/t0 is the attempt frequency for thermally activated events; it is a
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super-Arrhenius that vanishes below the glass transition. When r is zero, aging ceases,

and the effective temperature w cannot evolve in the absence of shear stresses.

2.3. Stress-Strain Relations for a Bulk Metallic Glass

As a first illustration of the STZ theory in operation, consider the deformation mea-

surements carried out by Lu et al. (41) using the bulk metallic glass Vitreloy 1

(Zr41.2Ti13.8Cu12.5Ni10Be22.5). In these experiments, a uniform bar of this material was

subjected to a uniaxial compressive stress, which was measured as a function of strain over

a wide range of constant strain rates, and over a range of temperatures above the glass

transition. The STZ analysis of these data is described in References 5 and 9. Here, we

summarize only general features of the comparison between theory and experiment.

Theoretical stress-strain curves for four different homogeneous strain rates are shown in

Figure 1. This set of curves, and a similar set for different temperatures, are all in good

quantitative agreement with the experimental data. As seen here, the stress first rises

elastically, proportional to the strain, while Dpl
ij remains small on the right-hand side of

Equation 4. As w and the density of STZs increase according to Equation 8, the plastic

flow becomes dominant, and the stress relaxes to its steady-state value. Almost all of the

STZ parameters used in plotting these curves were determined from steady-state data,

including those appearing in the transition-rate formula, shown below in Equation 37,

and the values of the thermal coupling factor r(y) in Equation 8, which were obtained from

the measured Newtonian viscosity. The transient behavior in Figure 1, i.e., the crossover

T
e

n
si

le
 s

tr
e

ss
 (

G
P

a
)

1.5

1.0

0.5

0.0
0.0 0.1 0.2

10–1 s–1

3.2 × 10–2 s–1

5 × 10–3 s–1

2 × 10–4 s–1

Strain

0.3 0.4

Figure 1

Theoretical stress-strain curves for Vitreloy 1, at 643 K, for different strain rates as shown. These
curves are in good agreement with data reported by Lu et al. (41). The one exception is that, for the

topmost curve, there are no data at strains beyond the stress peak, presumably because the sample

failed at that point.
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from elastic to plastic response, is determined primarily by the parameter k1 in Equation 8

or, equivalently, the dimensionless effective specific heat ceff defined below, in the text

following Equation 17. The most important feature of these results is that, with a single

fixed value of ceff of the order of unity, the theory naturally reproduces the positions of the

stress peaks and the rates at which these transients relax toward steady state. In other

words, the STZ theory accurately predicts the nonequilibrium dynamics of these systems,

including the competition between elastic and inelastic mechanisms, over a broad range of

experimental conditions.

In Figure 2, we show a comparison between theory and experiment for steady-state

stresses at different temperatures, as functions of the strain rate multiplied by the

Newtonian viscosity. These steady-state stresses are the same as those seen in Figure 1 in

the limit of large strain. When the strain rate is scaled in this way, all of the data in the

viscous limit of small stresses and strain rates automatically fall on a single curve with

constant slope. The important feature of this figure is that the curves cross over from linear

viscosity to what is called superplasticity at increasing strain rate and/or increasing tem-

perature. The full curves almost, but not quite, collapse onto each other; the crossover

occurs at somewhat higher stress for higher temperatures in both the theoretical curves and

the data. All of the temperatures shown in Figure 2 are above the glass temperature; thus,

the linear viscosity at small stresses can be understood as thermally assisted plastic flow.

The nonlinear response at larger stresses occurs at approximately the low-temperature

yield stress, indicating that the yielding mechanism described below, following

Equation 35, becomes operative in this regime. Thus, the quantitative agreement between

theory and experiment in Figure 2 is a fairly stringent test of a central feature of the STZ

theory.

lo
g

1
0
 [

te
n

si
le

 s
tr

e
ss

 (
M

P
a

)]

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0
5 6 7 8 9 10 11 12

573

573 K643 K683 K

593
603
613
623
643
663
683

K

log10 (scaled strain rate)

Figure 2

Tensile stress for Vitreloy 1 as a function of the scaled strain rate 2 �N _g, where �N is the Newtonian
viscosity. The data points, with temperatures as indicated, are taken from Lu et al. (41). The three solid

gray curves, from bottom to top, are theoretical predictions for temperatures T ¼ 573 K, 643 K, and
683 K, respectively.

360 Falk � Langer

A
nn

u.
 R

ev
. C

on
de

ns
. M

at
te

r 
Ph

ys
. 2

01
1.

2:
35

3-
37

3.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

by
 J

am
es

 L
an

ge
r 

on
 1

2/
09

/1
1.

 F
or

 p
er

so
na

l u
se

 o
nl

y.



2.4. Shear Banding

One of the most important applications of STZ theory has been in explaining the mech-

anism of strain localization that leads to the formation of shear bands and shear fracture.

This failure mechanism is the primary reason why metallic glasses exhibit limited ductility

and are not widely used as structural materials. In steels undergoing high rates of defor-

mation, shear localization apparently is caused by a feedback of some kind between a

softening mechanism and the heat released during deformation. In our opinion, this

mechanism has yet to be understood. In metallic glasses, however, localization is common

even at relatively low loading rates; it has long been suspected, and recently demonstrated

convincingly (42), that the instability leading to localization must be quite different from

that in polycrystalline materials. The thermal conductivity of metallic glasses is too high

for adiabatic heating to account for an instability on the small length scales observed

experimentally.

In the STZ theory as summarized in Equation 7, softening occurs due to variations

in the effective temperature, which must diffuse only very slowly at rates proportional

to the local shear rate. In fact, the existence of shear bands in simulations (43–47)

provides an ideal virtual laboratory for testing some of the assumptions of the STZ

theory. Because the shear rate varies by orders of magnitude from inside to outside the

shear band, the effective temperature also must vary significantly. Under simple shear-

loading conditions, this variation provides an opportunity to measure the deformability

as a function of structure under laboratory-scale applied stresses. Shi et al. (48) have

simulated a two-dimensional, low-temperature, binary Lennard-Jones system to test the

Boltzmann-like relation between effective temperature and shear rate in Equation 7. To

do this, they used the quasi-thermodynamic assumption (8) that the effective tempera-

ture is proportional to the average potential energy per atom. Manning et al. (49) have

solved the STZ equations shown in Section 2.2 above, and have found good agreement

with the molecular dynamics results as well as some unexpected interpretations of

them.

The comparisons between simulation (48) and theory (49) are shown in Figure 3.

The system is a two-dimensional strip subject to simple shear tractions imposed along

the upper and lower edges. The theory used a simplified athermal STZ transition

rate R(s), defined below in Equation 19, that rises linearly at stresses appreciably larger

than sy. Figures 3a and b show, respectively, the simulated and theoretical shear rates,

averaged over the length of the strip, as functions of position along the transverse

direction denoted by Y. As indicated, the different curves are snapshots at different total

strains ranging up to 800%. Figures 3c and d show the potential energy and effective

temperature as functions of position at roughly the same sequence of total strains. In

accord with the quasi-thermodynamic assumption, these sets of functions track each

other accurately.

The quantitative agreement between the simulations and theoretical results shown in

Figure 3, along with a stability analysis in Reference 49, reveals that shear banding in

these materials is a nonlinear, transient instability. The system is initially in a state of

uniform shear indicated by the dashed horizontal lines at the bottoms of Figures 3a

and b. The dashed curve at the bottom of Figure 3c is the initial potential energy,

whose irregularity was determined by the rate at which the sample was quenched from

a high temperature. The irregular, initial effective temperature in Figure 3d was chosen
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Figure 3

(a) Simulated strain rates, averaged over increments of 100% total strain, as functions of position at

various strains. The dark gray dotted line is the imposed average strain rate. (b) Shear-transformation-
zone (STZ) predictions corresponding to the simulation data in panel a. (c) Simulated potential energy

per atom (in arbitrary units) as a function of position at the same total strains shown in

panel a. (d) STZ predictions for the effective temperature in units of the STZ formation energy eZ, as
a function of position. The dark gray long-dashed lines in panels c and d show the initial values for the

potential energy and effective temperature.
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to have approximately the same spatial noise spectrum as the simulated potential

energy. The band appears only when this spatial irregularity has a large enough

amplitude, and then only when the strain rate and the initial average effective temper-

ature satisfy conditions discussed in Reference 49. Its position depends on the initial

noise distribution, but the numerical and theoretical bands behave almost identically.

They rise rapidly and, for a while, take up almost the entire strain rate, which drops

to a very small value outside the bands. Both the potential energy and the effective

temperature saturate inside the bands at limiting values corresponding to wss(0) ¼ w0 in

Equation 8. At very late stages, when the total strain has reached multiples of 100%,

the band slowly spreads out and collapses, because the small strain rates in the outer

regions of the system slowly drive w to its steady-state value w0, and the entire system

flows plastically.

In general, the steady-state effective temperature wss (q) rises rapidly when the dimen-

sionless strain rate q approaches unity. According to the analysis in Reference 50, this

property of wss causes strongly driven shear bands to collapse, producing very narrow,

fracture-like failure zones. Daub and coworkers (51, 52) have used the STZ theory to

describe the dynamics of the granular material in an earthquake fault, and have shown

that this fracture mechanism can account for the sudden stress drops sometimes observed

in large seismic events.

2.5. Free-Boundary Problems

Perhaps the most ambitious goal of the STZ theory is to use it in the full, elasto-plastic

equations of motion shown in Section 2.1, and to predict time-dependent deformations

of finite systems subject to external tractions. A first, numerically unsophisticated step in

this direction was made in Reference 53. More recently, Bouchbinder and coworkers

(54–56) have used STZ plasticity in studies of cavitation instabilities. The computational

problem is challenging, partly because including both rapid elastic and slow plastic

responses in a single numerical procedure is difficult, and especially because this is

necessarily a free-boundary problem in which the geometry is changing as a function

of time.

Figure 4 shows recent results by Rycroft & Gibou (57), in which a necking instability

is followed all the way to fracture. The system is a two-dimensional strip subject to

tractions exerted by inflexible, vertically sliding grips on the left- and right-hand sides,

which move away from each other at a fixed speed. The strip initially has a smooth notch

near the center of its upper edge. The red and blue regions indicate higher and lower

effective temperatures, respectively. In the top picture, a pair of effectively hotter, i.e.,

internally disordered, shear bands emerges from the notch along the directions of maxi-

mum shear stress. These bands, such as the one shown in Figure 3, then broaden into

slipping regions. Ultimately, the strip separates into two parts, each with a pattern of

residual disorder in the places where the local plastic flow was largest. Other results, not

shown here, indicate that elastic energy initially is stored uniformly throughout the strip.

Then, as the necking instability grows, this energy flows to the neck and is dissipated

there.

A detailed description of the numerical procedure used to generate these pictures can be

found in (57). The simulation was based on an athermal STZ theory of the kind described

in Section 3, with a very simple rate factor R(s) similar to that used in the shear-banding
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analysis described above. The equations of motion were the two-dimensional versions of

those shown in Section 2.1, except that a small viscous term proportional to ▽2vi was

added to the right-hand side of Equation 2 to damp out elastic oscillations. The boundary

was tracked using a level-set method. The upper and lower edges were free surfaces; there

was no surface tension.

The main limitation of this numerical scheme is that, so far, it has been useful only for

describing ductile behavior of the kind seen in these pictures. Had the model been brittle,

or perhaps had it been numerically possible to explore substantially larger pulling speeds

with the same model parameters, one or more cracks might have started at the notch and

propagated downward through the system. If this technical limitation can be overcome, we

should have a powerful tool for studying dynamic fracture.

3. THERMODYNAMIC DERIVATION OF
THE SHEAR-TRANSFORMATION-ZONE EQUATIONS

3.1. Athermal Shear-Transformation-Zone Model

For simplicity, in this part of the review, we focus primarily on what we call the

athermal limit of plasticity theory. By athermal we do not mean strictly zero tempera-

ture. On the contrary, as stated in Section 1, we assume that there is always some

thermal or mechanical noise that sets the time scale t0 for rapid, small-scale motions.

However, we assume that this noise is not strong enough to cause large-scale molecular

rearrangements in the absence of external forcing. In particular, r(y) ¼ 0 in Equation 8.

As a result, models of this kind have well-defined yield stresses, but not linear viscosi-

ties, and they do not exhibit thermally induced strain recovery. They do describe, for

example, irreversible deformation of glasses below or near the glass temperature, or the

flow of densely packed granular materials subject to stresses large enough that they

0–1 +10.5– 0.5

0.3
0.2
0.1

0

y

x

– 0.1
– 0.2
– 0.3

0.3
0.2
0.1

0
– 0.1
– 0.2
– 0.3

0–1 +10.5– 0.5

Figure 4

Four snapshots of a necking instability computed by Rycroft & Gibou (57) by solving the elasto-plastic equations of motion with

shear-transformation-zone (STZ) plasticity. The red regions are effectively hotter; i.e., they have higher effective disorder tem-
peratures, and therefore have undergone more irreversible plastic deformation than the bluer regions.
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become unjammed. At the end of this section, we discuss briefly how the athermal

theory has been supplemented to produce the more general equations of motion shown

in Section 2.

Our thermodynamic analysis is based on the assumption that the configurational

degrees of freedom within a solidlike material are driven out of equilibrium with the heat

bath when the system is persistently deformed by external forcing, and that they are

naturally described by an effective temperature under those circumstances (32). We use

the term configurational degrees of freedom to denote the mechanically stable molecular

positions that change slowly during irreversible deformation, as opposed to the much

faster molecular vibrations about the stable configurations. Mathematically, the configu-

rational degrees of freedom specify the inherent structures (58–60). Formation of STZs or

STZ transitions between their internal orientational states are events in which the system

moves from one inherent structure to another.

3.2. First and Second Laws of Thermodynamics for a Plastic Solid

The preceding discussion implies that an amorphous, solidlike material consists of two

weakly coupled subsystems: the slow configurational degrees of freedom on the one hand,

and the fast kinetic-vibrational degrees of freedom on the other. The fast degrees of

freedom are strongly coupled to a heat bath so that they and the heat bath constitute a

thermal reservoir at temperature y ¼ kBT.

It is useful to start with a microcanonical formulation in which the energy UC of the

configurational subsystem is a function of its entropy SC, its volume V, an elastic shear

strain E, and a set of internal variables {L} that in Section 3.4 becomes the number density

of STZs and a measure of their average orientation. Throughout this discussion, we choose

entropies to be dimensionless quantities—logarithms of numbers of states—and express

the temperatures y and w in units of energy. For simplicity, consider only pure shear

deformation in, say, the x,y plane, so that the deviatoric stress tensor has components

sxx ¼ �syy ¼ s, the elastic strain tensor is Exx ¼ �Eyy ¼ E, and the rate of plastic deformation

tensor is Dpl
xx ¼ �Dpl

yy ¼ Dpl. Let the thermal reservoir have energy UR and entropy SR.

This reservoir has none of its own internal degrees of freedom, and does not support a

shear stress. According to the definition of temperature, the effective temperature of the

configurational subsystem is

w ¼ @UC

@SC

� �
E,fLg

, 9:

which is not necessarily the same as y ¼ @UR / @SR.

The total energy of this system is

Utot ¼ UC(SC, E, fLg)þUR(SR). 10:

The first law of thermodynamics,

2V sDtot ¼ _U
tot
, 11:

says simply that energy is conserved when work is done on the system at the rate 2V s Dtot.

Assume, as in Equation 4, that the total rate of deformation Dtot is the sum of elastic and

plastic parts; i.e.,Dtot ¼ _EþDpl. IfV s ¼ (@UC = @E)SC,fLg, i.e., if the stress is wholly elastic in
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origin, then the elastic terms cancel out on either side of Equation 11. We therefore omit E, as
well as the constant volume V, as explicit arguments of UC and SC. The first law becomes

2V sDpl ¼ w _SC þ
X
a

@UC

@La

� �
SC

_La þ y _SR: 12:

The fundamental statistical statement of the second law of thermodynamics is that the total

entropy of an isolated system is a nondecreasing function of time:

_Stot ¼ _SC þ _SR � 0: 13:

As argued in Reference 31, this statement is thermodynamically self-consistent only if the set

{L} consists of a small number of state variables, each of which is an extensive quantity (or the

volume average of such a quantity). Using Equation 12 to evaluate w _SC in Equation 13, we find

W(s, Lf g)þ (w� y) _SR � 0; W(s, Lf g) � 2V sDpl �
X
a

@UC

@La

� �
SC

_La: 14:

This inequality must be satisfied for arbitrary, independent variations of the La and SR;

thus, each of its component terms must separately be nonnegative. We immediately enforce

(w� y) _SR � 0 by writing

_UR ¼ y _SR ¼ A(w, y) (w� y) � �Q, 15:

where A(w, y) is a nonnegative thermal conductivity, and Q is the rate at which heat is

flowing from the thermal reservoir into the configurational degrees of freedom.

The inequality W(s,fLg) � 0 is a form of a Clausius-Duhem inequality that requires a

nonnegative rate of heat production; that is, the rate atwhichwork is donemust exceed the rate

at which energy is stored internally. We use this inequality in Section 3.4 to deduce features of

the STZ equations of motion. We have derived this inequality from fundamental principles,

using an unambiguous statistical definition of the entropy (31), rather than postulating it

as an axiomatic form of the second law. The latter strategy is the one that is common in the

literature. See, for example, themonographs byLubliner (61),Maugin (62), andNemat-Nasser

(63), or the classic series of studies by Coleman&Noll (64) andColeman&Gurtin (65).

3.3. Equation of Motion for the Effective Temperature

Our first-law equation, Equation 12, now has the form

w _SC ¼ W(s,fLg)þQ: 16:

We can use Equation 16 to derive an equation of motion for w by making several observa-

tions. First, although the STZs account for all of the coupling beween the applied stress and

the plastic deformation, they are very rare fluctuations and constitute only a negligibly

small fraction of the total energy or entropy of the configurational subsystem. Thus,

Equation 16 is a simple statement of energy conservation that can be reduced to

V ceff _w � 2V sDpl þQ, 17:

where V ceff ¼ w (@SC / @w) is the effective heat capacity.
Second, the only relevant rate factor in this athermal system is the work rate 2V s Dpl

itself. So long as there are no thermal fluctuations capable of inducing reverse plastic flow,
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Dpl must have the same sign as s, and this rate is nonnegative. Moreover, in the absence of

such fluctuations,Qmust be proportional to 2V s Dpl; the configurational system does not

move at all without external forcing.

Third, we know that w must reach some steady-state value during steady shear flow. As

in Equation 8, define the dimensionless strain rate q � t0 jDpl j, and denote the steady-state

effective temperature by wss(q). (See Reference 66 for a detailed discussion of the q depen-

dence of wss.) In the limit q�1 for an athermal amorphous system, w0 ¼ wss(0) is roughly
(perhaps exactly) equal to the glass transition temperature; i.e., w0 � kBTg. In other words,

athermal systems reach fluctuating steady states of disorder under slow shear. The slower

the shear, the longer the system takes in real time to reach steady state; but the ultimate

value of wss must be independent of q simply for dimensional reasons—there are sup-

posedly no competing time scales when q ! 0. By definition, the right-hand side

of Equation 17 vanishes when w ¼ wss (q). Therefore, for w not too far from wss (q), we

approximate Equation 17 by

ceff _w � 2s Dpl 1� w
wss(q)

� �
: 18:

Here, we see explicitly that the characteristic time scale for w is the same as the time scale

for plastic deformation, and both are slow because Dpl is proportional to the small density

of STZs.

3.4. Shear-Transformation-Zone Equations of Motion

We turn now to constructing an athermal STZ model based on effective-temperature

thermodynamics.

It is easiest and physically most transparent to assume that the STZs are oriented only in

the 	 directions relative to the stress. In fact, we lose no generality by doing this; the

tensorial generalizations of the equations are obvious at the end of the analysis. Let the

number of 	 STZs be N	, and let the total number of molecular sites be N. The master

equation for the N	 is

t0 _N	 ¼ R(	s) N
 � R(
s) N	 þ G(s)
Neq

2
�N	

� �
, 19:

whereR(	s) / t0 is the rate factor for STZ transitions between their orientations, andG(s) / t0 is
the corresponding factor for noise-driven creation and annihilation of STZs. The equilib-

rium number Neq and the rate factor G(s) are determined shortly by thermodynamic argu-

ments. The internal state variables La introduced in Section 3.2 are

L ¼ Nþ þN�
N

; m ¼ Nþ �N�
Nþ þN�

. 20:

Here, L is the fractional density of STZs, and m is their orientational bias which, as

mentioned following Equation 7, becomes the traceless, symmetric tensor mij in more

general versions of the theory. According to Equation 19, the equations of motion for L
and m are

t0 _L ¼ G ( Leq � L); Leq ¼ Neq

N
; 21:
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and

t0 _m ¼ 2 C(s)½T (s)�m� � Gm� t0 _L
L

m, 22:

where

C(s) ¼ 1

2
½R(s)þ R(�s)�; T (s) ¼ R(s)� R(�s)

R(s)þ R(�s)
: 23:

The rate of plastic deformation is

t0 Dpl ¼ v0
V

½R(s)N� � R(�s)Nþ� ¼ E0 L C(s)½T (s)�m�, 24:

where v0 is a molecular-scale volume that sets the size of the plastic strain increment

induced by an STZ transition. We expect E0 �N v0 / V to be a number of the order of unity.

Our model of rare, noninteracting STZs implies that we can write the entropy in the

form

SC(UC,L,m) ¼ NS0(L)þN L c(m)þ S1(U1), 25:

where S1 and U1 are, respectively, the entropy and energy of all the non-STZ degrees of

freedom; c(m) is the internal entropy associated with STZs of average orientation m; and,

for L � 1,

S0(L) ffi � L lnLþ L: 26:

With this assumption, the configurational energy becomes

UC(SC,L,m) ¼ NL eZ þU1(S1)

¼ NL eZ þU1(SC �NS0(L)�NLc(m)):
27:

We now evaluate the partial derivatives of UC in Equation 14, obtaining

t0
N

W(s,L,m) ¼ � @FZ
@L

t0 _L � G w L m
@c
@m

þ 2L C(s)½T (s)�m� s v0 þ w
@c
@m

2
4

3
5 � 0,

28:

where

FZ(L,m) ¼ eZ L� w S0(L)� w L c(m)�m
@c
@m

� �
: 29:

As before, the three terms in this inequality must separately be nonnegative; but the

argument, especially for the third term, is nontrivial. The term proportional to _L is

nonnegative if

t0 _L / � @FZ
@L

, 30:

or, more generally, if L has a dynamical fixed point at a minimum of the free-energy-like

function FZ. This minimum occurs at

L ¼ Leq ¼ n(m) e�eZ=w; n(m) ¼ exp c(m)�m
@c
@m

� �
, 31:
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which is consistent with the definition of Leq in Equation 21. The internal entropy c(m) is

necessarily a positive, symmetric function with a maximum atm ¼ 0; therefore, the second

term in Equation 28 is automatically nonnegative given a properly chosen c(m).

The last term in Equation 28 is the most interesting because, unlike the _L term, this

inequality does not lead to a free-energy minimization law. Nor does it imply normal flow

in a free-energy landscape as advocated in References 61 and 63. It is the only one of the

three terms in Equation 28 that depends explicitly on the stress s, which can, in principle,

be assigned any value independent of L or m. This term can be made to be nonnegative for

all values of s, and for �1 < m < 1, by choosing

@c
@m

¼ � v0
w
x(m), 32:

where x(m) is the functional inverse of T (s); that is, T x(m)ð Þ ¼ m. This choice means that

both s-dependent factors in this product are monotonic functions that vanish at the same

m-dependent value of s. We can use this second-law constraint in either of two ways. In

Reference 33, it was assumed that the STZs were strictly two-state systems with no internal

degrees of freedom and therefore had an Ising-like entropy. In that case, the rate factor R(s)

had to be proportional to exp(v0 s / w). A more realistic interpretation is that the STZs are

complex, many-body systems with many internal degrees of freedom. The better strategy,

then, is to choose a physically motivated form of R(s) and to let that determine c(m) via the

choice of Equation 32.

The latter strategy works especially well in the athermal limit that we are considering

here. The most important feature of that limit, physically, is that the rearrangement transi-

tions always go in the direction of the stress; the noise is not strong enough to drive

them in the opposite direction. This means that R(�j s j) � R(þj s j), and T (s) � sign (s).

Equation 32 then implies that, for �1 < m < 1, @c / @m � 0 and, in Equation 31,

n(m) � n(0) ¼ exp½c(0)� 33:

is the number of molecules in an STZ. Interestingly, the athermal choice of R(s), via the

second law of thermodynamics, recognizes that ergodicity is broken on time scales relevant

to STZ transitions. Equation 33 implies that any given molecular site has n(0) different
ways of being part of an STZ of size n(0), independent of the average STZ orientation m.

This can be true only if the STZ is not switching back and forth between its orientations

during the time over which we are averaging to compute m.

Now return to Equation 28. With our athermal assumption, only the last term in the

expression for W remains nonzero. The term proportional to _L vanishes for slow deforma-

tions, and the second term vanishes because @c / @m� 0. Up to a factor with the dimensions

of energy, the quantity W is the nonnegative rate at which configurational entropy is being

generated. It was first argued by Pechenik and coworkers (3, 6) that the noise strength G
should be proportional to this rate of entropy generation per STZ, with the proportionality

factor, say, v0 s0, necessarily having the dimensions of energy. Therefore,

G L v0 s0 ¼ t0
N

W � 2 L C(s)½T (s)�m�v0s; G � 2 C(s) T (s)�m½ � s
s0
: 34:

The resulting relation between the STZ production rate, G(s)Neq / t0 in Equation 19, and the

work rate 2 s Dplwas guessed in Reference 2 and has been confirmed by Heggen et al. (67) in

the context of conventional flow-defect theories. This identification of the rate at which
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configurational disorder is created with the strength of mechanically generated noise has

proven to be a very useful concept, as is seen below in evaluating the yield stress in Equation 36.

The equation of motion for m, Equation 22, with _L � 0, becomes

t0 _m � 2 C(s)½T (s)�m� 1� sm

s0

� �
: 35:

Both Equations 21 for _L and 35 for _m describe relaxation to steady state that is fast

compared to that of the effective temperature described by Equation 18. The factor Dpl on

the right-hand side of Equation 18 contains the small factor L, but no such factor appears

in Equation 21 or 35. Thus, we confirm that the STZ variables L and m are dynamically

slaved to relatively slow changes in s and w, which is the assumption that we used in

deriving Equations 7 and 8.

Equation 35 is the usual STZ theory result. There is an exchange of stability at the stress

s ¼ s0. On the one hand, for js j< s0, the dynamically stable, steady-state solution of

Equation 35 is the jammed state with m � 	1, and the rate of deformation Dpl is zero.

On the other hand, for js j> s0, the stable solution is m ¼ s0 / s, and

t0 Dpl � E0 n(0) e�eZ = w C(s) sign(s)� s0
s

h i
. 36:

Thus, s0 ¼ sy is the dynamic yield stress.

To complete the derivation, we need to choose the rate factor R(s). One possibility that

has worked well in several applications is a thermally activated rate of the form

R(s) ¼ R0(s) exp �D(s)
y

� �
; D(s) ¼ D0 e� s = �m, 37:

where R0(s) is a symmetric function of the stress. The exponential form of the barrier

height D(s) is the simplest possible expression that vanishes for large positive stress,

diverges at large negative stress, and introduces only a single new parameter �m. For the

metallic glass calculations in Reference 9, R0(s) ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ (s = s1)

2
q

, with s1 � sy. Equation 37

is consistent with the athermal approximation if y � D0.

Two generalizations of the athermal equations derived above are needed to recover the

fully thermal STZ theory shown in Equations 7 and 8. So long as we are dealing with an

isotropic material, the only directional information in the system is contained in the

deviatoric stress. We can then assume that the plastic rate-of-deformation tensor is propor-

tional to sij= js j, where jsj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1=2) sijsij

p
. Thus, using Equation 36, we find

fij(s) � E0 n(0)
sij
jsj C jsjð Þ 1� s0

jsj

� �
: 38:

Equation 18, the athermal version of Equation 8, becomes

ceff _w � sij D
pl
ij 1� w

wss(q)

� �
, 39:

with q ¼ t0 jDpl j. Further generalizing these results to fully thermal situations is straight-

forward but considerably more complicated. The essential step is to recognize that the

mechanical noise strength G introduced in Equation 19 must become the sum of incoherent

mechanical plus thermal noise strengths, i.e., G ! G þ r(y), where r(y) is the same

thermal term that we introduced in Equation 8 to account for relaxation in the absence of
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mechanical driving forces. The explicit form of G can be computed using the same second-

law argument that led to Equation 34. Details can be found in Reference 9.

4. CONCLUDING REMARKS

So far as we know, the STZ theory is the only existing mathematical description of solidlike

amorphous plasticity that starts with realistic molecular models and uses the principles of

nonequilibrium thermodynamics to guide the prediction of observed phenomena. To date,

those phenomena have included the transition between linear viscosity and superplasticity

as a function of temperature and strain rate for bulk metallic glasses, the transient as well

as steady-state parts of the stress-strain curves for real and numerically simulated glass-

forming materials, the nature of transient shear-banding instabilities in glassy materials,

and even a quantitative understanding of the granular shearing instability that produces

sharp stress drops during major earthquakes.

The formulation of nonequilibrium thermodynamics that emerged during the develop-

ment of the STZ theory (31–33) recently has been extended to a study of memory effects in

thermally cycled glass formers, i.e., the Kovacs effect (68). This thermodynamic point of

view even has provided an accurate account of a remarkably wide range of experimental

data for dislocation-mediated plasticity in polycrystalline solids (69). The similarities and

differences between dislocations and STZs are interesting in themselves. Dislocations are

well-defined entities, directly observable by electron microscopy and subject to fairly well

understood, deterministic equations of motion. It is only when large numbers of interacting

dislocations are driven by external forces into chaotic motion that thermodynamic con-

cepts become relevant to them.

In contrast, the STZs have never enjoyed the visibility of dislocations. The elementary

rearrangements presumably associated with flow defects have been known for decades; but,

for systems in the process of deformation, it never has been possible to identify the defects

themselves before the events occurred. The thermodynamic theory developed here implies

that, with perhaps a few special exceptions, such prior identifications are impossible for most

practical purposes. In the present theory, the sequence of STZ creation, shear transition, and

annihilation is a noise-activated process, more nearly akin to nucleation of a critical droplet

in a supercooled vapor than, for example, to the creation of a dislocation at a Frank-Read

source. We should no more expect to be able to look at a deforming amorphous material and

predict where the next STZ event will occur than we should expect to be able to predict

where the next droplet will form in the vapor. Nor should weworry that the stochastic nature

of STZ plasticity unnecessarily limits the predictive power of the theory.

The one important case where a deterministic, dynamical theory of amorphous defor-

mation should make sense is in the AQS limit. At zero temperature, using numerical

simulation, we might be able to strain an amorphous system gradually and predict where

the next rearrangement will occur by looking at nearby saddle points in the energy land-

scape. Once the system has crossed a saddle point, however, we cannot predict where the

next such event will occur unless we stop straining the system and let it relax into its nearest

energy minimum before resuming the deformation. This is the AQS numerical procedure,

which often produces system-spanning, avalanche-like events and size-dependent noise

spectra. There are many real systems that do behave like this, for example, granular mate-

rials, foams, or colloidal suspensions sheared so slowly that the mechanical noise generated

by one event has died out before the next event occurs. These are not what we would call
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normal plastic materials; they cannot be described by local constitutive laws as are the ones

discussed here. However, it may be interesting to locate the boundary between normal and

AQS systems and thus to understand the limitations of the STZ theory.

In our opinion, however, it will be more interesting to use the theoretical tools devel-

oped here to explore normal plasticity in broader contexts—in particular, to study a variety

of dense, complex fluids and biological materials. We need to understand the relations

between the STZ and SGR theories and perhaps learn how to combine the strengths of the

two approaches. We have some new tools for understanding nonequilibrium phenomena;

we are optimistic that these tools will lead us to new discoveries.
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