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Abstract
This key-issues review is a plea for a new focus on simpler and more realistic models of
glass-forming fluids. It seems to me that we have too often been led astray by sophisticated
mathematical models that beautifully capture some of the most intriguing features of glassy
behavior, but are too unrealistic to provide bases for predictive theories. As illustrations of
what I mean, the first part of this article is devoted to brief summaries of imaginative, sensible,
but disparate and often contradictory ideas for solving glass problems. Almost all of these
ideas remain alive today, with their own enthusiastic advocates. I then describe numerical
simulations, mostly by H Tanaka and coworkers, in which it appears that very simple,
polydisperse systems of hard disks and spheres develop long range, Ising-like,
bond-orientational order as they approach glass transitions. Finally, I summarize my recent
proposal that topologically ordered clusters of particles, in disordered environments, tend to
become aligned with each other as if they were two-state systems, and thus produce the
observed Ising-like behavior. Neither Tanaka’s results nor my proposed interpretation of them
fit comfortably within any of the currently popular glass theories.

Keywords: glasses, glass transition, glassy materials

(Some figures may appear in colour only in the online journal)

1. Introduction

In 2007, when I published a Reference Frame column in
Physics Today about ‘the mysterious glass transition’ [1], I
was just beginning to realize how deeply divided the field of
glass physics had become. Not much has changed since then,
despite the emergence of interesting new information. This
article contains an extension of the opinions I expressed in that
essay, plus a summary of the new information and a proposed
strategy for moving forward.

It is remarkable that, after many decades of intense study,
there is still no generally accepted, fundamental understanding
of glassy states of matter or the processes by which they
are formed. We know that a wide variety of liquids—
molecular, metallic, colloidal, etc—can be cooled into stable
or very long-lived metastable states in which they remain
noncrystalline. As such a system becomes colder, its viscosity

increases dramatically, as if its internal relaxation mechanisms
were controlled by thermally activated processes whose
barrier heights grow with decreasing temperature. When
observed in more detail, it is seen to undergo anomalously
slow, ‘stretched-exponential’ relaxation in its approach to
equilibrium. Ultimately, such a material falls out of
thermodynamic equilibrium and becomes ‘glassy’ below a
temperature Tg, defined by Angell and others [2] in terms of an
arbitrarily chosen, very long, time scale. This material may,
or may not, undergo a sharp dynamic glass transition at an
experimentally inaccessible temperature T0 < Tg, where the
viscosity extrapolates to infinity. Glassy states at temperatures
below Tg generally exhibit various kinds of aging processes;
but they are solidlike in the sense that they seem to be infinitely
viscous and to possess nonzero shear moduli.

In addition to this dynamic signature, glass transitions
exhibit characteristic thermodynamic properties. Kauzmann
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showed in 1948 [3] that the entropy deduced from a
specific heat measurement in a high-temperature glass-forming
material appears to extrapolate down to a value comparable
to the entropy of the corresponding crystalline state at a
thermodynamic transition temperature TK, roughly the same
as the dynamic temperature T0. The specific heat jumps
irreversibly from lower to higher values with increasing
temperature near the transition point. Thus, some appreciable
fraction of the degrees of freedom of a glassy material appears
to be frozen. The glassy state is non-ergodic; it somehow
is unable to explore a statistically significant fraction of
its configuration space on experimental time scales. Upon
reheating, the frozen degrees of freedom are reactivated and
the specific heat rises abruptly.

These basic features of glass transitions have been tested
in a wide range of laboratory observations and numerical
simulations. They have been brought into sharper focus
by measurements of frequency dependent viscoelastic and
dielectric responses, self-intermediate scattering functions,
vibrational spectra, and the like; and they have been observed
in direct images of particle motions in colloidal suspensions
and numerical simulations.

However, there is one overwhelmingly important
difficulty that faces all of these observations, specifically,
the dramatic increase in equilibration times that occurs near
glass transitions. Glassy slowing down is qualitatively more
extreme than its analog in fluid or magnetic critical phenomena;
thus it has been extraordinarily difficult to probe the most
fundamental aspects of equilibrium glass physics by either
experimental or computational techniques. This natural
obstacle to progress is a major reason why the community
of glass scientists has had so much trouble understanding one
of nature’s most important classes of materials phenomena.

Nevertheless, some developments starting in 2010—
especially numerical simulations by Tanaka and coworkers
[4–6], independently corroborated by others [7]—lead me to
be cautiously optimistic that we now can move systematically
toward a theory of glass transitions. For many years, theorists
in this field have felt intuitively that glassy slowing down ought
to be accompanied by the growth of some internal length
scale. (See [8] for a recent review of the search for length
scales in glass-forming liquids.) At the same time, however,
it has been the accepted wisdom that glass-forming states
remain microscopically liquidlike all the way to their glass
transitions. This wisdom has been based on the observation
that density-density correlation functions show no signs of
developing long-range order. Tanaka, in effect, pointed out that
one needs to know what to measure. By looking at correlations
between the orientations of different kinds of local topologies,
he found evidence that a variety of glass-forming systems do
indeed exhibit diverging length scales. Most remarkably, he
found that these length scales all seem to be consistent with
Ising-like universality. I describe his results and my proposed
interpretation of them [9] in the later sections of this article.

Tanaka’s results, if confirmed by further investigation,
point to the need for reevaluating much of the existing
theoretical work in this field. To begin that reevaluation,
I think we should focus first on the simplest, realistic

models of equilibrated, glass-forming liquids, and postpone
discussion of the glassy states themselves pending a better
understanding of how they are formed. By ‘simple’ and
‘realistic’, I mean that these should be models in which
classical particles, moving or diffusing at thermally determined
velocities, interact with each other via short-ranged forces.
Kinetic energies or Brownian diffusion times serve only to
set scales of time and pressure for such systems, and thus are
essentially irrelevant. Tanaka’s most convincing results are for
moderately polydisperse hard disks and spheres, where there
is no stored potential energy, and where ordering is controlled
only by steric constraints. This hard-core limit is simpler and
more realistic than the mean-field limit that often has been used
in this field.

My physical intuition about disordered systems with
short-ranged interactions is based on experiences with the
shear-transformation-zone (STZ) theory of nonequilibrium
glassy behavior [10]. This theory accurately accounts for
a wide range of rheological phenomena, including stresses
as functions of strain and strain rate, the appearance of
yield stresses at low temperatures, shear banding instabilities,
oscillatory viscoelasticity, anomalous diffusion, and stretched-
exponential relaxation [10–15]. Several of these developments
are directly relevant to glass-forming systems, because they
illustrate how broad distributions of time scales emerge in
near-equilibrium situations [12, 13]. A recent application of
STZ theory in a nonequilibrium situation is the prediction and
experimental confirmation of an annealing-induced, ductile-
to-brittle transition in bulk metallic glasses [16, 17].

The STZ theories started from direct observations of
bubble rafts, colloidal suspensions, and numerically simulated
molecular systems, in which it was clear that the elementary
events at the cores of both spontaneous and externally driven
fluctuations are local rearrangements of just small numbers
of particles. At very low temperatures, or in otherwise
noise-free situations, these rearrangements may occur in
spatially extended cascades. However, at the high densities
and intermediate temperatures characteristic of glass-forming
systems, they occur at ephemeral flow defects—the STZs—
whose population is a fluctuating dynamical feature of any
deformable amorphous material.

Importantly for present purposes, the creation, annihila-
tion, and internal transformations of STZs are thermally acti-
vated, barrier-crossing events; that is, they are transitions be-
tween inherent structures [18, 19]. Trying to compute their
rates of occurrence by perturbation expansions in powers of
an interaction strength is just as futile as it would be to try to
use many-body perturbation theory to predict nucleation rates
in supercooled fluids. Mean-field approximations that are ex-
act only in the limit of infinitely long ranged particle–particle
interactions must be used with great caution in these circum-
stances, if they are to be used at all. Like the Curie–Weiss or
Bethe–Peierls approximations, they should be based on well
defined, particle-scale physics, and should preserve the length
scales that are relevant to the phenomena being described.

In section 2 of this paper, I describe some of the modern
glass theories and point out what I perceive to be weaknesses
in many of them—including in one of my own. The recent

2



Rep. Prog. Phys. 77 (2014) 042501 Key Issues Review

simulation results are summarized in section 3. Being critical
of earlier theories in section 2, I am obliged to present what I
hope might develop into a better one. Accordingly, in section 4,
I summarize my latest proposal [9] for a glass theory that may
be consistent with both the observations and the criteria of
simplicity and realism. I conclude in section 5 with summary
remarks and a list of questions.

2. A critical review of glass theories

It says a great deal about the state of this field that so many
imaginative, sensible, but disparate and often contradictory
ideas for solving glass problems remain alive today, all with
their own advocates. Each of these ideas contains elements of
the truth. In this key-issues review, I focus primarily on those
ideas that seem closest to my main theme, that is, the search
for fully thermodynamic theories of glass transitions based on
simple but realistic, many-body models. I therefore give only
short shrift to many other important lines of investigation, for
which I apologize at the outset.

Kauzmann, Adam, and Gibbs. The first attempts to make
a theory of the glass transition focused on the question of
how it might be possible for an ordinary material, obeying
classical statistical mechanics, to move toward a frozen state,
increasingly unable to access its true equilibrium structure or
respond to some kinds of external forcings on observable time
scales. A simple description of this class of phenomena was
proposed in 1958 by Adam and Gibbs [20], who wrote the
structural relaxation time τα in the form:

ln τα = ln τ0 +
const.

T sc(T )
, (2.1)

where τ0 is a microscopic time scale, and sc(T ) is the excess
entropy per unit volume, measured relative to the entropy of
the crystalline state. Adam and Gibbs interpreted sc(T ) as
being inversely proportional to the size of a ‘cooperatively
rearranging region’, within which there would be just enough
active degrees of freedom, i.e. enough entropy, to enable
rearrangements. They further assumed that the excess energy
associated with this region scaled with its volume, so that
equation (2.1) could be interpreted as a thermal activation
formula. If, as suggested by Kauzmann, sc(T ) vanishes
linearly at T = TK, then equation (2.1) becomes the Vogel–
Fulcher–Tamann (VFT) relation

ln τα = ln τ0 +
T D

T − T0
(2.2)

where T0 = TK, and D sometimes is known as the inverse
fragility. (This definition of ‘fragility’ is not exactly the same
as the one introduced in [2], which depends on the definition
of Tg.) A number of other forms of these equations have been
proposed and tested over the last fifty years. However, it will
be convenient for present purposes to keep equations (2.1) and
(2.2) as reference points for the following discussion.

Kinetically constrained models. The conceptually simplest
statistical models that exhibit properties similar to those
of equation (2.2) are the kinetically constrained systems
introduced by Fredrickson and Anderson [21] in 1985. Of
these, the most rudimentary example is a two-dimensional,
non-interacting Ising model in an external field that favors
the down spins. The equilibrium thermodynamics of this
model are utterly uninteresting. However, it exhibits nontrivial
glassy dynamics if one adds an artificial kinetic constraint by
requiring that a spin can flip, up or down, only if at least
two of its neighboring spins are up. Within that constraint,
transition rates can be chosen so that the system approaches
a trivial thermal equilibrium. Numerical simulations of this
model reveal a rapidly increasing relaxation time and even an
anomalously slow, stretched-exponential decay of fluctuations
as the temperature approaches zero. More sophisticated
kinetically constrained models have even more interesting
properties; but, in the absence of a direct connection between
the kinetic constraints and underlying many-body dynamics,
they remain unrealistic. Recently, however, they have been
used in a novel way by Chandler and Garrahan [22] to study the
statistical mechanics of trajectories instead of configurations.
It remains to be seen whether this innovative approach will
lead to a realistically predictive theory.

Mode coupling theory. The idea that comes closest to being
realistic is mode-coupling theory (MCT) [23–25], which starts
with a well-posed model of an interacting, fluidlike, many-
body system. MCT is a renormalized, truncated, perturbation
theory. As implied by the remarks in section 1, it is
accurate only so long as the particles are at high enough
temperatures and low enough densities that they are weakly
scattered while moving past each other. The theory fails at a
mode coupling temperature TMC > T0, where the predicted
viscosity diverges. In practice, MCT has been limited by its
use of static, two-body correlation functions for information
about the many-body interactions [26]. More generally, the
analytic structure of any perturbation expansion is qualitatively
different from that of a theory of activated, barrier-crossing
events. Thus, there is unlikely to be an accurate way to extend
MCT to lower temperatures even by including higher-order
correlations. More probably, as happens in other areas of
many-body physics, we will have to live with a ‘no theory’
region between the mode-coupling and glassy regimes.

Spin glasses. The term ‘spin glass’ refers to a class of
magnetic alloys in which the interactions between pairs of
spins are random and, for the present discussion, can be taken
to be equally likely to be ferromagnetic or antiferromagnetic.
This class of models was first developed, along with a mean-
field solution, by Edwards and Anderson in 1975 [27]. The
simplest spin glass, a cubic Ising model with randomly
chosen nearest-neighbor bonds of strength ±J , was shown
in a definitive Monte Carlo calculation by Ogielski [28] to
have a glass transition at kBT0

∼= 1.18 J and to undergo
stretched-exponential relaxation at higher temperatures. These
models are relevant to the present discussion because they have
provided mathematical examples of how well-posed many-
body systems might undergo phase transitions into glasslike
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states of broken ergodicity. They are especially important
because their behaviors have been used as the starting point
for deriving the random first order transition (RFOT) theory of
glass transitions.

In both of the above respects, however, the spin-
glass models are manifestly unrealistic. They are models
of systems with quenched disorder—the distribution over
values of the spin–spin interactions is predetermined—as
opposed to being models in which disorder is spontaneously
generated, as in glass-forming fluids. More importantly, our
analytic information about the behavior of spin glasses comes
largely from mean-field calculations in which the spin–spin
interactions are assumed to be infinitely long ranged. Here,
instead of invoking a mean-field approximation for computing
averages of local, finite-ranged interactions, as in [27], it is
assumed from the beginning that every spin in the system
interacts with every other spin, with coupling strengths chosen
at random from the predetermined distribution. Thus, neither
length scales nor even dimensionality play any roles in these
theories.

The spin-glass literature was reviewed comprehensively
by Binder and Young in 1986 [29]. Much of the theoretical
part of their review is devoted to studies of the Sherrington–
Kirkpatrick (SK) model [30], in which the strengths of
infinite-range couplings between Ising spins are chosen from
a Gaussian distribution. The SK solutions, found via both a
replica-symmetry-breaking method (Parisi [31]) and the TAP
equations [32], indicate that this model is paramagnetic above
a transition temperature, below which it collapses to a state of
zero entropy.

Apart from the entropy collapse, the SK model does not
look like a realistic glass. However, in 1987, Kirkpatrick,
Thirumalai and Wolynes [33, 34] found a spin-glass model
that has more interestingly glasslike properties. This model
is an infinite-range, p-state, Potts model, where the two-
state Ising spins in the SK model are replaced by p-state
entities, and p must be at least marginally greater than 4.
This model has two phase transitions. At arbitrarily high
temperatures T , it is paramagnetic. When T is decreased
to below what is identified, at least formally, as the mode-
coupling temperature TMC, there appear extensively many
stable thermodynamic states, which contribute what is called
an excess ‘configurational entropy’ to the system. The number
of these states decreases with decreasing T until, at and below
a glass transition temperature T0, only a nonextensive number
of them remain, and the excess entropy vanishes. It is this
scenario that has been used as a plausibility argument in favor
of RFOT.

Random first order transition theory. At present, RFOT
[35, 36] is the most cited of the various glass theories. It
is said by its authors to account quantitatively for essentially
all glassy phenomena in relatively simple, physically intuitive
ways. Thus, it is important to pay serious attention to it.

In going from the spin-glass results to a glass theory,
Wolynes and coworkers assumed that the stable spin-glass
states in the temperature range T0 < T < TMC become
metastable when the interaction range becomes finite, and

that they transform among themselves via thermally activated
fluctuations. These authors then hypothesized that the system
as a whole consists of a ‘mosaic’ of subregions, each
characterized by a different one of these metastable states.
In an interpretation suggested by Bouchaud and Biroli [37],
the sizes of these subregions are determined by their stability
against the thermally activated fluctuations by which they
transform from one state to another. A small subregion will
not have enough internal degrees of freedom (in the sense of
Adam and Gibbs) to make a transition, whereas one that is
too large will break up into smaller ones. Thus, the mosaic
is said to consist of marginally stable subregions with a T

dependent characteristic size, say R(T ). The time scale on
which these regions transform among themselves is assumed
to be the structural relaxation time τα(T ).

To estimate R(T ) and τα(T ), Wolynes and coworkers
assumed that the excess free energy of an ‘entropically favored
droplet’ that might occur in this system can be written in the
form

�F(R) ≈ − T sc(T ) Ad Rd + σ Rb, (2.3)

where sc(T ), the excess entropy per unit volume introduced
in equation (2.1), is assumed to vanish linearly at T = T0.
The quantity Ad Rd is the d-dimensional volume of a region
of linear size R. The second term on the right-hand side of
equation (2.3) is the energy cost of inserting this droplet into
an environment of dissimilar metastable states. If this were
an ordinary surface energy, proportional to a surface area,
we would have b = d − 1. However, throughout the RFOT
literature, a variety of rationales have been used to argue that
b = d/2, which is the value that produces the VFT law. To see
this, note that the resulting �F(R) goes through a maximum
at

R = R∗ ∼ (T − T0)
−2/d , (2.4)

and its value at that maximum is

�F(R∗) ∼ (T − T0)
−1. (2.5)

A droplet, i.e. a region, with R > R∗ is entropically enabled
to grow and, presumably, flow to a different metastable
configuration. Thus, �F(R∗) is the characteristic activation
energy for transitions among the metastable states, and the
corresponding transition rate is the same as is given in
equation (2.2). As will be discussed in section 3, the formula
for the length scale R∗ in equation (2.4) is consistent with Ising
scaling.

My most serious question about the RFOT analysis—
more serious than the questions regarding quenched disorder
or b = d/2—is whether the mosaic picture has any
objective reality for glass-forming materials with short-ranged
interactions. There is a huge, qualitative difference between
an infinite-ranged Potts spin glass and a fluid of ordinary
particles in an ordinary d-dimensional space. Specifically,
there is no reason to believe that the statistical physics that
produces a multiplicity of thermodynamically stable states in
the spin glass is in any way related to the failure of MCT
at TMC. As observed earlier, we understand the latter by
recognizing that all spontaneous transitions between inherent
structures, at low enough temperatures and high enough
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densities, are thermally activated transitions across energy
barriers, and thus are inaccessible via perturbation expansions.
The inherent structures themselves are not thermodynamic
metastable states. In contrast, true thermodynamic equilibrium
is realized as this ergodic system explores the space of
inherent structures at rates of the order of the inverse structural
relaxation time τ−1

α .
So far as we know experimentally, simple glass-forming

materials have at most one metastable state above T0, which
is the one that may be metastable against crystallization.
This state can be explored reversibly by varying the system
parameters slowly compared to τ−1

α . The fact that τα increases
dramatically with decreasing temperature ultimately must be
associated with particle-scale dynamics, which are highly
unlikely to have any connection to the structures of infinite-
range spin glasses, or even, in my opinion, to the mean-
field, density-functional approximations that have been used to
derive equation (2.3). Nevertheless, equations (2.4) and (2.5),
and developments based on them, seem to be consistent with a
large amount of experimental data. We must try to understand
why this happens.

Excitation-chain theory. The XC theory [38] was my attempt
to find a particle-scale, dynamic mechanism to explain the
VFT law. It was motivated by numerical simulations [39] in
which stringy motions, i.e. chains of correlated displacements,
seemed to enable transitions between inherent structures. Like
the length R(T ) in RFOT, the characteristic size of the chains
was predicted to diverge at a transition temperature T0; but
my approximation for this behavior did not produce an Ising
scaling exponent like that in equation (2.4). So far as I know,
this theory is no longer alive; but it illustrated the approach
that I had been advocating [1].

Topological constraints and jamming. Both of these theoret-
ical ideas blur the distinction between glass-forming systems
and the glassy states themselves, and therefore lie outside the
scope of this article. However, I think that both need ultimately
to be incorporated into a larger picture of glass physics, because
both involve physically intuitive, diverging length scales.

There is a large literature on topological constraint theories
of molecular glasses, in which the constraints are imposed
by chemical bonds. (See [40], or [41] for a concise review.)
A central concept in these theories is ‘rigidity percolation’,
which is based on the fact that, if the bond lengths are fixed,
rigidity of a d-dimensional many-body system requires that
each molecule be bonded to more than 2d nearest neighbors.
Once that requirement is met, a displacement at one point
propagates across the system as a whole. Apparently, the
best glass formers are those for which this constraint is just
marginally satisfied, so that rigidity percolates across large
but not infinite distances. This idea, when elaborated to
include bond angles as well as bond lengths, has had impressive
practical applications; but it has not yet been pursued by the
broader community of glass theorists from a first-principles,
statistical point of view. It will be important to find out how to
use these topological concepts to develop predictive theories of
correlations and relaxation times in glass-forming molecular
fluids.

Jamming is a concept that emerges most naturally in
theories of granular materials, where temperature is irrelevant,
and the structural properties are determined by contact forces
between the particles. In rough analogy to rigidity percolation,
the chains of contact forces extend infinitely far in jammed
systems, and thus there are naturally diverging length scales
as systems approach jamming transitions. The connections
between jamming transitions and glass transitions have been
explored by Liu, Nagel, and coworkers, who have proposed
interesting scaling relations near what they call ‘point J’ in the
space of variable density, temperature, and applied stress [42].
However, jamming transitions apparently are not exactly the
same as glass transitions. For example, see [43].

Stretched-exponential relaxation. One of the best known
signatures of glassy behavior is the stretched-exponential
relaxation (SER) law, according to which the time-dependent
decay of many different kinds of perturbations looks like
exp [− (t/τ )β)], instead of like the simple exponential, with
β = 1, expected for linear response functions. Here, the time
scale τ is usually identified as τα , and the exponent β may be
substantially less than unity.

This article would be incomplete without mention of
Phillips’ monumental 1996 review of SER [44]. The main
strength of his review is that he looks at an enormous range
of experimental observations. A serious weakness, especially
for present purposes, is that he considers only temperatures
near or somewhat below Tg. His most remarkable result is
that β(Tg) is almost always approximately equal to one of two
‘magic numbers’, 3/5 and 3/7. (See [45] for more recent
developments along these lines.) It seems to me that this work
may be undervalued by statistical theorists. The regularities
that Phillips finds in the data might reflect some systematic
physics, whether or not they are explained by his theory.

Phillips’ theoretical hypothesis is that glassy relaxation
is described by a diffusion-trap model, in which particles
(or some other entities) diffuse in the presence of a random
distribution of absorption centers. The density of particles
remaining untrapped after a time t can be shown to decay
according to the SER law with β = d∗/(d∗ + 2), where d∗

is the dimensionality of the space in which the particles are
moving [46]. The normal case with d∗ = d = 3 produces
β = 3/5; a more sophisticated argument involving long-
range interactions produces d∗ = 3/2 and β = 3/7. Many
questions have been raised about this theory. They start with:
What is diffusing? And, what are the traps? Since Phillips’
analysis pertains only to T � Tg, he can invoke quenched-
in heterogeneities to serve as traps. However, he explicitly
declines to use the trap model for T > Tg, where the glass-
forming fluid presumably is homogeneous, and where we know
from experiments and simulations that β goes smoothly to
unity over a range of values of T . He also does not try to
use the model to compute the wavenumber dependence of β

as observed via self-intermediate scattering functions, which
could be a sharp probe of his underlying physical assumptions.

The diffusion-trap model is not unique in its ability to
describe SER. In [13], I proposed a model of SER that is almost
exactly the opposite of the trap model, and which I believe
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is more realistic. Instead of assuming that the particles in a
glass-forming fluid are free to diffuse until captured by a trap,
I assumed that they remain frozen into inherent structures until
they are locally rearranged by STZ-like thermal fluctuations.
Using information about STZs obtained from measurements
of oscillatory viscoelasticity [12], and using a continuous-time
random walk analysis, I computed SER curves as functions of
both temperature and wavenumber. Perhaps Phillips’ magic
numbers could emerge from such a calculation.

Other theoretical concepts. The preceding list of theoretical
ideas in glass physics is far from complete. For example,
I have not even mentioned the concept of frustration—the
inconsistency between short-range and long-range order that
hinders crystallization—although that concept is implicit in
much of the work in this field. It sometimes has been
modeled explicitly as in the work of Kivelson et al [47]. Nor
have I yet mentioned the increasingly popular term ‘dynamic
heterogeneity’ [48]; but it appears below in the discussions of
correlation lengths in section 3 and relaxation rates in section 4,
and I have used it explicitly in discussing SER in [13].

3. Evidence from numerical simulations

The new information mentioned in section 1 is evidence
from numerical simulations reported primarily by Tanaka and
coworkers [4–6], and also by Mosayebi et al [7], that may
point to an Ising-like universality in glass-forming materials. I
emphasize the uncertainty because the simulations have not
yet been confirmed independently, and the results remain
controversial. Even if the simulations are exactly correct, they
may prove to be relevant only to a small subset of glass-forming
systems. Nevertheless, these numerical results are plausible
enough to motivate a search for a theoretical explanation.

Topological ordering. In [4–6], Tanaka et al report
simulations of a variety of two- and three-dimensional
systems, with both hard-core and, in one case, Lennard–Jones
interactions. For simplicity, I focus first on their Brownian
simulations of moderately polydisperse, hard-core, colloidal
suspensions, where temperature is irrelevant, and where the
approach to the glass transition is controlled only by the volume
fraction (density) φ. They looked for spatial correlations, not
between particle positions per se, but between the positions of
particles in topologically similar environments. Specifically,
for two-dimensional hard-disks, they measured time-averaged,
hexatic order parameters ψ̄6 as functions of position, and
computed two-point correlations 〈ψ̄6(r) ψ̄∗

6 (0)〉 as functions
of the separation r . From the latter quantity, they deduced
a correlation length ξ(φ), and found by a finite-size scaling
analysis that it was proportional to t−ν , where t ≡ (φc −φ)/φ,
and the critical volume fraction φc depends on the degree
of polydispersity � (the percentage width of a Gaussian
distribution over particle radii). Similar results were obtained
for polydisperse hard spheres in three dimensions, where the
relevant topological order parameter was found to be the degree
of hexagonal-close-packed (as opposed to icosahedral) order.
(See also [49].) In both cases, they found that ν ∼= 2/d,

which is indistinguishable from the Ising hyperscaling relation
ν = 2/d−α, because the specific heat exponent α is negligibly
small for these purposes.

Tanaka and coworkers [4–6] also have measured structural
relaxation times τα for each of the various systems that they
studied. For both d = 2 and 3, their results are consistent with
the VFT relation,

ln (τα) ∼ ξd/2 ∼ t−1, (3.1)

where ξ is their measured correlation length. As emphasized
by Tanaka in [6], the dramatic slowing down near
glass transitions described by equation (3.1) has prevented
simulations from coming sufficiently close to critical points
to confirm the apparent limiting behaviors. The growth of
correlations has been confirmed out to only one decade at
best. However, the consistency of these results over the range
of different models and system parameters, and the apparent
Ising-like universality, makes it hard to resist taking this data
seriously, at least pending further study.

Dynamic correlations. As part of their series of investigations,
Kawasaki and Tanaka [5] measured what is known as the
‘dynamic correlation length’ ξD, which plays an important
role in the following discussion. This length scale has
emerged in analyses of dynamic heterogeneities, i.e. the spatial
inhomogeneities that are observed in the dynamic behaviors
of glass-forming systems [48]. It is defined most simply
as follows. Choose two points separated by a distance r .
Compute the probability that neither of the particles near
those two points has moved out of its local environment (its
‘cage’) after a time of the order of the structural relaxation
time τα . That probability decays as a function of increasing
r , apparently like exp(−r/ξD). Thus, ξD is a rigidity length,
roughly analogous to the length discussed in topological
constraint theories. It often is claimed in the literature (see
below) that this dynamic length scale need not have a structural
origin. I find that assertion hard to believe.

In [5], Kawasaki and Tanaka report a parallel study
of polydisperse and bidisperse hard-core colloids in two
dimensions. They find that their bidisperse systems, unlike
the polydisperse ones, do not exhibit long-range hexatic
correlations. However, their measured values of ξD do seem to
diverge with the Ising-like exponent, and to be consistent with
the VFT formula in equation (3.1).

Non-affine displacements. An independent analysis by
Mosayebi et al [7], for a three dimensional, bidisperse,
Lennard–Jones system, adds weight to the evidence for Ising-
like behavior. Here, Ising-like correlations (with ν ∼= 2/3)
were observed in the non-affine parts of the displacements
induced by small, applied strains. These authors also
approximately confirmed the VFT formula for τα for their
model. Their results, in combination with those presented in
[5], imply that the structural ordering mechanisms in bidisperse
systems are qualitatively different from those in moderately
polydisperse systems.
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Equations of state. Yet more evidence bearing on the phase
transitions that occur in polydisperse hard-disk systems is
contained in [5], where the authors report measurements of
the equations of state, i.e. the pressures p as functions of φ,
for a sequence of increasing percentage polydispersities �.
As expected, the monodisperse system at � = 0% exhibits
a transition between liquid and hexatic phases at φ ∼= 0.69
[53, 54]. With increasing �, the transition points on the p(φ)

curves move to larger ps and φs, and become less and less
distinct. They are invisible in the pressure data above � = 9%,
which is the value of the polydispersity for which Tanaka
et al [4] report an Ising-like bond-orientational correlation
length that extrapolates to infinity at φ = φc

∼= 0.787, and
a corresponding divergence of τα . At larger values of �, they
see evidence in the form of diverging relaxation times for glass
transitions at larger values of p and φ. The important point
for present purposes is that the sequence of pressure curves
described in [5] indicates a smooth crossover from a liquid-
hexatic transition at � = 0% to Ising-like critical points for
� � 9%—a qualitative change of universality class.

Point-to-set calculations. There is another body of numerical
data that appears to be inconsistent with the diverging
correlation lengths reported in [4, 7]. I refer here to
‘point-to-set’ calculations, which started as attempts to find
direct evidence for the RFOT mosaic structure based on a
mathematical construction proposed by Bouchaud and Biroli
[37]. The idea is to compare a freely equilibrated configuration
with a corresponding configuration that is equilibrated after
the positions of some set of the particles have been fixed.
Supposedly, the difference between the configurations should
disappear as the distance between the observation point and the
positions of the fixed set of particles becomes larger than any
length scale in the system. The hope is that this procedure
yields ‘order-agnostic’ many-body information beyond that
given by positional pair correlations, and that this information
can be used to deduce the length scale associated with the
mosaic pattern as interpreted in [37].

Recent examples of such point-to-set calculations include
those of Berthier and Kob [50], and of Charbonneau and Tarjus
[51], both of which use binary mixtures of spherical particles.
Both produce only weakly growing static length scales that
are smaller than the dynamic lengths ξD that were measured
for the same systems. These authors conclude that the static
and dynamic behaviors of these glass-forming systems must
somehow be decoupled from each other. If this is true, then
the diverging static correlations found in [4] for polydisperse
systems can be, at best, properties of only a very special, non-
characteristic class of models; and the results reported in [7]
must somehow be wrong.

Charbonneau and Tarjus [51] pay special attention to
an inequality derived via a lengthy point-to-set analysis by
Montanari and Semerjian [52], which states that

τα � τ0 exp (const. × ξd), (3.2)

where ξ is supposedly the same static length that is
determined by the point-to-set method. However, as argued
in the introductory paragraphs of [52], the MS inequality in

equation (3.2) is a general relation between τα and whatever
ξ is the longest correlation length in the system. To see this,
think of the system as consisting of independently fluctuating
regions of size ξ , and note that the slowest possible relaxation
mechanism in any such region would be a thermally activated
process whose largest possible activation energy (for particles
with finite-ranged interactions) would scale like ξd . With this
interpretation, equation (3.2) tells us that a diverging time scale
requires a diverging length scale of some kind.

The MS inequality seems hard to reconcile with the point-
to-set results reported in [51], where τα grows too rapidly to
look consistent with the measured values of ξ , at least within
the range of validity of the simulations. Charbonneau and
Tarjus tentatively attribute this inconsistency to unobservable
complexities in the approach to the glass transition. I suspect,
however, that there is a simpler explanation.

The numerical evidence presented in [50, 51], combined
with the MS inequality and the fact that the measured ξD is
consistent with equation (3.1), leads me to suspect that the
position-based point-to-set calculations are not revealing much
more than the well known absence of long-ranged density-
density pair correlations. For the sake of argument, consider
Tanaka’s system of polydisperse hard disks, and suppose that
the particle positions used in a point-to-set analysis are replaced
as local state variables by the hexatic order parameters ψ6(r).
We could fix the values of some subset of them, and then ask
how their values at other points depend on the fixed set. The
resulting length scale would almost certainly be the same as
the diverging correlation length found by Tanaka et al, because
the point-to-set result would be dominated by the hexatic pair
correlations; and the MS inequality would easily be satisfied.

Then note that, because τα diverges for the binary mixtures
studied in [50, 51], the MS inequality implies that there must be
some diverging structural correlation length in those systems,
perhaps the same as the one seen in [7], and perhaps equal to
ξD; and thus there must be some analogs of ψ6(r) that we have
yet to discover. If this line of reasoning is correct, it obviates
any need for the point-to-set analysis or, for that matter, any
need for the RFOT mosaic hypothesis.

4. Ising-like description of glass-forming fluids

I turn now to a theoretical interpretation of the observations of
Tanaka et al [4, 5]. This theory is presented fully in [9]; what
follows is a summary that focuses on the physical ideas rather
than technical details. For clarity, I describe the theory in terms
specific to Tanaka’s two dimensional, polydisperse, hard-disk
model, so that I can relate the ideas to the direct image of
that model shown here in figure 1. I emphasize, however, that
the mathematics and the concepts are equally valid in three
dimensions and for other topological orderings. As presently
constructed, the theory is intrinsically universal.

4.1. Two-state clusters

Figure 2(a) in [4], reproduced here as figure 1, is a snapshot
of an instantaneous configuration of a system of hard disks
with polydispersity � = 9%, at volume (i.e. area) fraction
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Figure 1. Figure 2(a) reproduced with permission from Tanaka
et al [4]. Copyright 2010 Nature. This is an instantaneous
configuration of a system of hard disks with polydispersity � = 9%,
at volume fraction φ = 0.73. The degree of local hexatic order ψ6

for each particle is indicated by the color scale, red (darker) for large
ψ6 and green (lighter) for small ψ6. Nearest-neighbor ‘bonds’ are
shown by thin white lines.

φ = 0.73. The upper, right-hand part of the figure is a
magnification of the square outlined by the white lines at the
bottom. The color scale indicates the degree of local hexatic
order ψ6 for each particle. The short white lines are nearest-
neighbor ‘bonds’ deduced from a Voronoi construction.

The most obvious feature of this picture is the pattern of
hexatically ordered (red) regions in the midst of less hexatic
(green) particles and (black) voids. The red regions are not
growing crystallites. In contrast, they are internally correlated
areas, whose sizes are of the order of the correlation length
ξ , that are appearing and disappearing during the normal
fluctuations of a thermodynamically equilibrated state. Close
inspection of the figure reveals that separated red regions are
not aligned with each other. The maximum misalignment for
hexagons is only ±30◦; thus, this feature of the figure is not
immediately obvious. It is important, however, because it tells
us that the orientational correlations do not extend beyond the
individual red regions.

In the absence of interaction energies, the only relevant,
extensive, thermodynamic variable for this system is its volume
V . (For convenience, I use the term ‘volume’ to mean
either three-dimensional volume or, as in the present case,

two-dimensional area.) In ordinary, energetically controlled
systems, our intuition tells us that stable states occur at minima
of the energy or, more precisely, of the free energy. As
the temperature decreases, low energy configurations become
increasingly probable. The analogy here, where only steric
constraints are operative, is that the stable configurations
are most probably those with the smallest volumes. Thus,
relatively compact hexatic order is favored for hard disks,
which is partly what we are seeing in figure 1. Moreover,
as the pressure and density increase, these more compact
configurations become inceasingly prevalent.

To make the preceding discussion more specific, note that
figure 1 can be interpreted as an array of two distinct kinds
of small clusters: those that have hexatic topologies and those
that do not. An hexatic cluster consists, minimally, of a central
particle and six, almost regularly spaced, nearest neighbors.
The other clusters are less regular and may, or may not, contain
voids. The hexatic clusters are more compact than the non-
hexatic ones; thus, we expect the hexatic regions to grow with
increasing p and φ. But this is only a part of the story; it does
not explain the orientational correlations between the hexatic
clusters.

The correlation theory presented in [9] is based on two
central arguments. First, the hexatic clusters necessarily
have spatial orientations, and the volume that they and their
nearest neighbors occupy is smaller if neighboring clusters are
aligned with each other than if they are misaligned. In other
words, the volume is minimized when the hexatic clusters
fit together in an orientationally aligned array. Second, and
most crucially, the hexatic clusters are two-state systems.
The first of these arguments seems trivially obvious, because
misalignment destroys the hexatic order in the space between
the clusters. The second argument is central to the Ising
analogy, and needs careful consideration.

On the average, a system of polydisperse hard disks is
rotationally symmetric; but any single hexatic cluster, sitting
at a given position in a disordered environment, does not see
rotational symmetry. In order to participate in an ordering
transition, however, this cluster must have some orientational
flexibility. It must be able to realign itself in the presence of
other oriented clusters, which means that it must have at least
two orientations in which it is almost equally comfortable.
In a dense, disordered environment, the probability of there
being more than two such favorable orientations is negligibly
small; thus, the statistically relevant hexatic clusters are two-
state systems. The two-state idea goes back at least as far as
the 1972 paper by Anderson et al [55]. Note the essential role
played by disorder in this argument.

To describe this picture mathematically, let N+ and N− be
extensive, internal variables denoting the numbers of hexatic
clusters oriented in + and − directions with respect to some
direction in space; and let N0 denote the number of non-
hexatic clusters, which, in [9], are simply called ‘voids’. As
in the STZ theory, the actual orientations denoted by ± need
not be specified initially. The various orientations of the
ordered regions seen in figure 1 are local, spontaneously broken
symmetries; and ± can be understood as referring to those local
orientations.
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In terms of these internal variables, the volume of the
system, up to an additive, �-dependent constant, is

V ∼= N∗ v∗ + N0 v0 − J

2 (N∗ + N0)
(N2

+ + N2
−), (4.1)

where N∗ = N+ + N− is the total number of hexatic clusters,
N±/(N∗+N0) is the density of± clusters, v∗ is the volume of an
hexatic cluster (of either orientation), and the term proportional
to J is the conventional mean-field approximation for the near-
neighbor interaction between these clusters. By construction,
J must be a non-negative constant. The quantity v0 is the
volume of a void. To see the analogy between equation (4.1)
and an Ising system, define

m = N+ − N−
N∗ , η = N∗

N∗ + N0
. (4.2)

The ‘magnetization’ m is the bond-orientational order
parameter. η measures how close the system is to its maximum
density; it vanishes in the dilute limit, N0 → ∞, and goes to
unity at high density where the voids are squeezed out of the
system. With this change of variables, equation (4.1) becomes

V(m, η)

N∗ = v∗ +

(
1

η
− 1

)
v0 − 1

4
J η (1 + m2). (4.3)

Note that the term proportional to J contains a factor
η, implying that ordering becomes weaker with increased
numbers of voids.

The easiest way to use equation (4.3) in a glass theory is
to look for states of maximum entropy subject to the condition
of fixed volume V(m, η). To do this, look for minima of the
‘free volume’

F(m, η) = V(m, η) − X S(m, η), (4.4)

where X is a Lagrange multiplier, and S(m, η) is the dimen-
sionless entropy (the logarithm of some measure of the number
of states). In the absence of potential energy, the ordinary free
energy is simply − kBT S; thus, differentiating equation (4.4)
with respect to V , we find that 1/X = ∂S/∂V = p/kBT .

Next, in the spirit of the Ising analogy, assume that the
m-dependence of the entropy S(m, η) can be computed, as
usual, by counting the ways in which N+ ‘up’ states can be
distributed among N∗ = N+ + N− sites. Then, minimize the
resulting F(m, η) with respect to m. The result looks like—
and, indeed, is—a Curie–Weiss mean-field formula:

m = tanh

(
p J η m

2 kBT

)
. (4.5)

The most important implication of equation (4.5) is that this
model has a mean-field critical point at ηc = 2 kBT/p J , such
that the Ising symmetry under m → − m is spontaneously
broken for η > ηc, and where m undergoes critical fluctuations.
It is easy to check that the fluctuations in η remain non-critical.

In [9], I assumed an explicit form for the η-dependence
of S(m, η) and computed minima of F(m, η) in the space
of variables m and η. By doing this, and invoking
a renormalization-group analysis, I confirmed that this

procedure recovers the equations of state, p(φ), reported by
Kawasaki and Tanaka [5] and described here in section 3. This
analysis served as a quantitative self-consistency check on the
theory. It also confirmed that J is a decreasing function of
increasing �, in accord with the idea that the ordering strength
decreases with increasing polydispersity.

To complete the calculation of the correlation length
ξ , at least in principle, we should let m be a function of
position, and generalize F(m, η) to include a square-gradient
term proportional to J (∇m)2. We then should use the
functional exp (−F/X) as a statistical weight in a function
space, and perform a renormalization-group calculation to
obtain equations of state and correlation functions. (For
example, see [56].) But we know, just from the Ising symmetry
of this theory, that the correlations computed in this way will
be those described here in section 3.

4.2. Relaxation rates

If the diverging glassy length scale ξ is an equilibrium property,
as opposed to an intrinsically dynamic one, then we still need
to understand how it determines a diverging time scale. The
following discussion, like the preceding one, is taken from [9].

Note first that, although the equilibrium glass transition
appears to occur at an Ising-like critical point with an Ising-
like divergence of spatial correlations, the dynamic critical
behavior of the glass is qualitatively different from that of
an Ising magnet. The scaling analysis by Hohenberg and
Halperin [57] tells us that the relaxation time for fluctuations
of a non-conserved Ising magnetization diverges relatively
weakly, like a power of ξ ; whereas the VFT law tells us
that τα ∼ exp(ξd/2). The difference is that relaxation
events in a glass-forming fluid near its transition point are
highly nonlinear collective phenomena, not amenable to the
perturbation-theoretic methods or the assumptions about the
nature of noise sources implicit in [57] or in mode coupling
theory [23, 24].

As before, assume that structural rearrangements in glass-
forming materials occur at STZs or at other similarly soft,
local fluctuations. If the characteristic formation volume of
an STZ is vZ (roughly a single-particle volume), then the
equilibrium STZ population is proportional to a Boltzmann
factor exp (− vZ/X), where X = kBT/p. To estimate
a spontaneous STZ formation rate, and thus a relaxation
rate, multiply this Boltzmann factor by an attempt frequency,
ρ(X)/τ0, where τ0 is a microscopic time determined by the
kinetic energies of the particles or the thermal fluctuations
of the fluid in which they are suspended. The dimensionless
attempt frequency ρ(X) describes glassy slowing down as X

decreases, i.e. as p increases. It is proportional to τ0/τα; its
evaluation is the goal of any glass theory.

Kawasaki and Tanaka [5] show by direct imaging that
relaxation events occur primarily in disordered regions,
consistent with the observation of Widmer–Cooper and
Harrowell [58] that particles undergo rearrangements in
regions of high ‘propensity’. In the present picture, this
observation means simply that the STZ formation volume vZ is
smaller in the more loosely connected disordered regions than
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in the ordered ones, so that the STZs appear most frequently
in the former. However, the attempt frequency ρ(X) must
involve collective motions of large numbers of particles, rather
than being determined by the local environments of just a few
of them.

The correlated regions of size ξ shown in figure 1 are
slowly fluctuating into and out of existence at a rate that
I identify as being proportional to ρ(X)/τ0. The STZ
transitions provide the mechanisms by which these fluctuations
occur; conversely, it is these collective fluctuations that self-
consistently create and annihilate the STZs. To estimate this
rate, note that a correlated volume Vcorr of linear size ξ contains
a number of particles proportional to ξd . In a thermally
fluctuating system, each of these particles makes small,
independent, forward and backward displacements through
distances of the order of the interparticle spacing. Therefore,
Vcorr undergoes Gaussian fluctuations of a characteristic
magnitude δ Vcorr proportional to the square root of its size;
that is, δ Vcorr ∼ ξd/2. To estimate a time scale for
these fluctuations, note that they are slow, activated events.
Therefore, the statistical analysis in [15, 59] tells us that their
frequency is proportional to ρ(X), where

− ln ρ(X) ∼ δVcorr

X
∼ ξd/2

Xc
∼ 1

tw
, (4.6)

where Xc is the critical value of X and w = d ν/2 = 1−α/2 ∼=
1 for both d = 2 and 3. Thus, we recover the VFT formula.

We can push the argument leading to equation (4.6) a bit
further by noting that it implies

ln

(
τα

τ0

)
≈ D φ

φc − φ
; D = pc ξd

0 /kBT , (4.7)

where ξ0 is a length proportional to the particle spacing, and
pc is the critical pressure. We know from [5] that pc increases
with �. Thus, the inverse fragility parameter D is predicted to
increase with �—the glass becomes stronger—in agreement
with the simulations.

5. Concluding remarks

My main theme in this paper is that, to make progress in
understanding the glassy state of matter, we should pay closer
attention to simple, realistic models of thermally equilibrated,
glass-forming materials. Tanaka and his coworkers have
shown us some nontrivial examples in which favored local
topologies in disordered fluids collectively produce long-range
correlations that apparently extrapolate to Ising-like critical
points. I have suggested a general mechanism by which a
disordered environment might cause these local topologies to
align with each other as if they were, effectively, two-state
entities, consistent with Ising universality.

So far, these pieces of the puzzle seem to be fitting
together. The analysis leading to equation (4.7) recovers
the central RFOT results summarized by equations (2.4) and
(2.5). Unlike RFOT, the Ising analysis starts by finding
an observable equilibrium correlation length ξ , rather than
by deducing a length scale R from a hypothetical dynamic

mechanism. Moreover, Tanaka’s picture of fluctuating regions
of bond-orientational order, seen in figure 1, looks qualitatively
different from the fluctuating mosaic structure postulated by
RFOT [36] and interpreted by Bouchaud and Biroli [37].

All of the Ising ideas need to be carefully questioned,
especially where the basic assumptions differ from those of
other theories. I close by listing some of the questions that I
consider to be most urgent.

How generally valid is Tanaka’s picture of correlations?
How general is his idea of bond-orientational order? If
bidisperse systems [7] exhibit Ising-like correlations but no
bond-orientational order [6], what kind of structural ordering
might be occurring? What other possibilities are there?

Are the point-to-set calculations truly order agnostic?
Does their failure to reveal long-range structural correlations in
bidisperse systems really mean that no such correlations exist,
despite the evidence for long-range dynamic correlations?
Conversely, are the point-to-set methods powerful enough to
detect long-range topological order in moderately polydisperse
systems, where it is almost certain that such correlations do
exist?

Might the dynamic length ξD be a truly order-agnostic
indication of structural correlations? When ξD appears
to diverge at a glass transition, must there always be
a correspondingly divergent structural correlation that can
be understood directly in terms of physical many-body
interactions? Or might dynamic correlations somehow be
decoupled from structural (i.e. static, equal-time) correlations?

What about molecular glasses with finite-ranged
interaction potentials? Or network glasses with true chemical
bonds? It might seem easy to translate the volume-based
statistical analysis described here into a more conventional
energy-based theory. Is it really easy? How might rigidity
percolation appear in such a theory?

How precisely valid are Tanaka’s results, if only for the
polydisperse hard-core systems near their critical points? We
know that, for weak or vanishing polydispersity, the two-
dimensional hard-disk system undergoes a liquid-to-hexatic
transition at which the correlation length diverges more
abruptly than it does for an Ising system. (This is a ‘Kosterlitz–
Thouless–Halperin–Nelson–Young’ two-dimensional melting
transition [60–64]. See [9] for a discussion of the crossover
between it and the glass transition.) Might something like
this happen at larger polydispersities, in a way that would
not be detectable by Tanaka’s finite-size scaling analyses?
What happens at even larger polydispersities, where the
systems become so strongly disordered that the coupling
between oriented clusters, if such clusters exist at all, becomes
vanishingly weak? Are these glasses? Or something else?

How literally can we take Tanaka’s fits to the VFT
formula near his critical points? Or my derivation of
it in equation (4.6)? The VFT formula has not always
been a reliable approximation for τα in comparisons with
experimental or numerical data. For example, in recent
applications of STZ theory to nonequilibrium situations [14,
15], my coworkers and I have found it better to determine ρ(X)

from the data than to try to predict it from the VFT formula.
On the other hand, there are serious theoretical uncertainties
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in trying to deduce values of τα from measurements, say, of
viscosity or diffusion [13].

Until now, I have followed my own advice and have
avoided talking about the glassy states that are formed below
the glass temperature or above the analogous volume fraction;
but, eventually, we will need to pay attention to them.
These are nonequilibrium states whose properties must depend
on their histories of formation. According to the Ising
theory, they must include quenched-in heterogeneities such
as boundaries between regions of different partial orderings,
or clusters of voids. More generally, their states of internal
disorder are determined by quench rates, aging times, and the
like. A growing understanding of the glass-forming states
should guide us in predicting the properties of the glasses
themselves. This is already happening, for example, in the
recent predictions of the fracture toughness of annealed bulk
metallic glasses [16].

In short, we need to understand the extent to which the
hard-core, Ising-like system discussed here can—or cannot—
serve as a paradigm for understanding the much larger world
of realistic glassy materials.
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