
Notes on Relativity and Cosmology

for PHY312

Donald Marolf
Physics Department,
Syracuse University

c©January 2003



2



Contents

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Preface 9
A letter of introduction . . . . . . . . . . . . . . . . . . . . . . . 9
How to use these notes . . . . . . . . . . . . . . . . . . . . . . . . 10
Some parting comments . . . . . . . . . . . . . . . . . . . . . . . 11
credits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Syllabus 13
0.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

0.1.1 A Small Warning . . . . . . . . . . . . . . . . . . . . . . . 14
0.1.2 Course Goals . . . . . . . . . . . . . . . . . . . . . . . . . 14
0.1.3 Course Objectives . . . . . . . . . . . . . . . . . . . . . . 14

0.2 Administrative Info . . . . . . . . . . . . . . . . . . . . . . . . . . 15
0.3 Coursework and Grading . . . . . . . . . . . . . . . . . . . . . . . 16

0.3.1 Creating your Project . . . . . . . . . . . . . . . . . . . . 20
0.3.2 Project Checklist . . . . . . . . . . . . . . . . . . . . . . . 20

0.4 Some Suggestions for Further Reading . . . . . . . . . . . . . . . 22

1 Space, Time, and Newtonian Physics 25
1.1 Coordinate Systems . . . . . . . . . . . . . . . . . . . . . . . . . 26
1.2 Reference Frames . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
1.3 Newtonian Assumptions about Space and Time . . . . . . . . . . 31
1.4 Newtonian addition of velocities? . . . . . . . . . . . . . . . . . . 33
1.5 Newton’s Laws . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
1.6 How can you tell if an object is in an inertial frame? . . . . . . . 35
1.7 Newton’s other Laws . . . . . . . . . . . . . . . . . . . . . . . . . 36
1.8 Homework Problems . . . . . . . . . . . . . . . . . . . . . . . . . 38

2 Maxwell, E&M, and the Ether 43
2.1 The Basics of E & M . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.1.1 Maxwell’s Equations and Electromagnetic Waves . . . . . 45
2.2 The elusive ether . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.2.1 The Aberration of Light . . . . . . . . . . . . . . . . . . . 49
2.2.2 Michelson, Morely, and their experiment . . . . . . . . . . 51

3



4 CONTENTS

2.3 Homework Problems . . . . . . . . . . . . . . . . . . . . . . . . . 53

3 Einstein and Inertial Frames 55

3.1 The Postulates of Relativity . . . . . . . . . . . . . . . . . . . . . 55

3.2 Time and Position, take II . . . . . . . . . . . . . . . . . . . . . . 56

3.3 Simultaneity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.4 Relations between events in Spacetime . . . . . . . . . . . . . . . 61

3.5 Time Dilation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.5.1 Rods in the perpendicular direction . . . . . . . . . . . . 66

3.5.2 Light Clocks and Reference Frames . . . . . . . . . . . . . 68

3.5.3 Proper Time . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.5.4 Why should you believe all of this? . . . . . . . . . . . . . 71

3.6 Length Contraction . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.7 The Train Paradox . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.8 Homework Problems . . . . . . . . . . . . . . . . . . . . . . . . . 77

4 Minkowskian Geometry 85

4.1 Minkowskian Geometry . . . . . . . . . . . . . . . . . . . . . . . 87

4.1.1 Invariants: Distance vs. the Interval . . . . . . . . . . . . 87

4.1.2 Curved lines and accelerated objects . . . . . . . . . . . . 90

4.2 The Twin paradox . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.3 More on Minkowskian Geometry . . . . . . . . . . . . . . . . . . 98

4.3.1 Drawing proper time and proper distance . . . . . . . . . 98

4.3.2 Changing Reference Frames . . . . . . . . . . . . . . . . . 99

4.3.3 Hyperbolae, again . . . . . . . . . . . . . . . . . . . . . . 101

4.3.4 Boost Parameters and Hyperbolic Trigonometry . . . . . 102

4.4 2+1 dimensions: Aberration . . . . . . . . . . . . . . . . . . . . . 108

4.4.1 Stellar Aberration in Relativity . . . . . . . . . . . . . . . 108

4.4.2 More on boosts and the 2+1 light cone: the headlight effect112

4.4.3 Multiple boosts in 2+1 dimensions . . . . . . . . . . . . . 115

4.4.4 Other effects . . . . . . . . . . . . . . . . . . . . . . . . . 117

4.5 Homework Problems . . . . . . . . . . . . . . . . . . . . . . . . . 117

5 Accelerating Reference Frames . . . 121

5.1 The Uniformly Accelerating Worldline . . . . . . . . . . . . . . . 121

5.1.1 Defining uniform acceleration . . . . . . . . . . . . . . . . 122

5.1.2 Uniform Acceleration and Boost Parameters . . . . . . . . 124

5.1.3 Finding the Worldline . . . . . . . . . . . . . . . . . . . . 126

5.2 The uniformly accelerated frame . . . . . . . . . . . . . . . . . . 128

5.2.1 Horizons and Simultaneity . . . . . . . . . . . . . . . . . . 128

5.2.2 Friends on a Rope . . . . . . . . . . . . . . . . . . . . . . 131

5.2.3 The Long Rocket . . . . . . . . . . . . . . . . . . . . . . . 133

5.3 Homework Problems . . . . . . . . . . . . . . . . . . . . . . . . . 135



CONTENTS 5

6 Dynamics: Energy and ... 143

6.1 Dynamics, or, “Whatever happened to Forces?” . . . . . . . . . . 143

6.2 Fields, Energy, and Momentum . . . . . . . . . . . . . . . . . . . 145

6.2.1 A word on Energy (E) . . . . . . . . . . . . . . . . . . . . 145

6.2.2 A few words on Momentum (P) . . . . . . . . . . . . . . . 145

6.3 On to relativity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

6.3.1 Lasers in a box . . . . . . . . . . . . . . . . . . . . . . . . 148

6.3.2 Center of Mass . . . . . . . . . . . . . . . . . . . . . . . . 149

6.3.3 Mass vs. Energy . . . . . . . . . . . . . . . . . . . . . . . 149

6.3.4 Mass, Energy, and Inertia . . . . . . . . . . . . . . . . . . 151

6.4 More on Mass, Energy, and Momentum . . . . . . . . . . . . . . 153

6.4.1 Energy and Rest Mass . . . . . . . . . . . . . . . . . . . . 153

6.4.2 Momentum and Mass . . . . . . . . . . . . . . . . . . . . 154

6.4.3 How about an example? . . . . . . . . . . . . . . . . . . . 156

6.5 Energy and Momentum for Light . . . . . . . . . . . . . . . . . . 157

6.5.1 Light speed and massless objects . . . . . . . . . . . . . . 157

6.5.2 Another look at the Doppler effect . . . . . . . . . . . . . 157

6.6 Deriving the expressions . . . . . . . . . . . . . . . . . . . . . . . 159

6.7 Homework Problems . . . . . . . . . . . . . . . . . . . . . . . . . 164

7 Relativity and the Gravitational Field 167

7.1 The Gravitational Field . . . . . . . . . . . . . . . . . . . . . . . 168

7.1.1 Newtonian Gravity vs. relativity . . . . . . . . . . . . . . 168

7.1.2 The importance of the field . . . . . . . . . . . . . . . . . 169

7.2 Some observations . . . . . . . . . . . . . . . . . . . . . . . . . . 170

7.2.1 Free Fall . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

7.2.2 The 2nd ingredient: The effects of gravity on light . . . . 172

7.2.3 Gravity, Light, Time, and all that . . . . . . . . . . . . . 174

7.2.4 Gravity and Accelerating Frames . . . . . . . . . . . . . . 176

7.3 The Equivalence Principle . . . . . . . . . . . . . . . . . . . . . . 176

7.3.1 Gravity and Locality . . . . . . . . . . . . . . . . . . . . . 176

7.3.2 How Local? . . . . . . . . . . . . . . . . . . . . . . . . . . 178

7.4 Going beyond locality . . . . . . . . . . . . . . . . . . . . . . . . 180

7.4.1 A Tiny Tower . . . . . . . . . . . . . . . . . . . . . . . . . 182

7.4.2 The tall tower . . . . . . . . . . . . . . . . . . . . . . . . 184

7.4.3 Gravitational time dilation near the earth . . . . . . . . . 184

7.4.4 The Global Positioning System . . . . . . . . . . . . . . . 186

7.5 The moral of the story . . . . . . . . . . . . . . . . . . . . . . . . 187

7.5.1 Local frames vs. Global frames . . . . . . . . . . . . . . . 187

7.5.2 And what about the speed of light? . . . . . . . . . . . . 189

7.6 Homework Problems . . . . . . . . . . . . . . . . . . . . . . . . . 189



6 CONTENTS

8 General Relativity and Curved Spacetime 193
8.1 A return to geometry . . . . . . . . . . . . . . . . . . . . . . . . . 194

8.1.1 Straight Lines in Curved Space . . . . . . . . . . . . . . . 196
8.1.2 Curved Surfaces are Locally Flat . . . . . . . . . . . . . . 198
8.1.3 From curved space to curved spacetime . . . . . . . . . . 199

8.2 More on Curved Space . . . . . . . . . . . . . . . . . . . . . . . . 200
8.3 Gravity and the Metric . . . . . . . . . . . . . . . . . . . . . . . 205

8.3.1 Building Intuition in flat space . . . . . . . . . . . . . . . 206
8.3.2 On to Angles . . . . . . . . . . . . . . . . . . . . . . . . . 207
8.3.3 Metrics on Curved space . . . . . . . . . . . . . . . . . . . 208
8.3.4 A first example . . . . . . . . . . . . . . . . . . . . . . . . 209
8.3.5 A second example . . . . . . . . . . . . . . . . . . . . . . 211
8.3.6 Some parting comments on metrics . . . . . . . . . . . . . 211

8.4 What is the metric of spacetime? . . . . . . . . . . . . . . . . . . 213
8.4.1 The Einstein equations . . . . . . . . . . . . . . . . . . . . 213
8.4.2 The Newtonian Approximation . . . . . . . . . . . . . . . 215
8.4.3 The Schwarzschild Metric . . . . . . . . . . . . . . . . . . 215

8.5 Experimental Verification of GR . . . . . . . . . . . . . . . . . . 217
8.5.1 The planet Mercury . . . . . . . . . . . . . . . . . . . . . 217
8.5.2 The Bending of Starlight . . . . . . . . . . . . . . . . . . 219
8.5.3 Other experiments: Radar Time Delay . . . . . . . . . . . 220

8.6 Homework Problems . . . . . . . . . . . . . . . . . . . . . . . . . 221

9 Black Holes 227
9.1 Investigating the Schwarzschild Metric . . . . . . . . . . . . . . . 227

9.1.1 Gravitational Time Dilation from the Metric . . . . . . . 228
9.1.2 Corrections to Newton’s Law . . . . . . . . . . . . . . . . 228

9.2 On Black Holes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
9.2.1 Forming a black hole . . . . . . . . . . . . . . . . . . . . . 230
9.2.2 Matter within the Schwarzschild radius . . . . . . . . . . 231
9.2.3 The Schwarzschild radius and the Horizon . . . . . . . . . 232
9.2.4 Going Beyond the Horizon . . . . . . . . . . . . . . . . . 234
9.2.5 A summary of where we are . . . . . . . . . . . . . . . . . 236

9.3 Beyond the Horizon . . . . . . . . . . . . . . . . . . . . . . . . . 239
9.3.1 The interior diagram . . . . . . . . . . . . . . . . . . . . . 239
9.3.2 The Singularity . . . . . . . . . . . . . . . . . . . . . . . . 244
9.3.3 Beyond the Singularity? . . . . . . . . . . . . . . . . . . . 246
9.3.4 The rest of the diagram and dynamical holes . . . . . . . 246
9.3.5 Visualizing black hole spacetimes . . . . . . . . . . . . . . 249

9.4 Stretching and Squishing . . . . . . . . . . . . . . . . . . . . . . . 252
9.4.1 The setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
9.4.2 The solution . . . . . . . . . . . . . . . . . . . . . . . . . 257
9.4.3 The Differential equation . . . . . . . . . . . . . . . . . . 258
9.4.4 What does it all mean? . . . . . . . . . . . . . . . . . . . 259
9.4.5 Black Holes and the Schwarzschild Metric . . . . . . . . . 260

9.5 Black Hole Astrophysics and Observations . . . . . . . . . . . . . 261



CONTENTS 7

9.5.1 The observational evidence for black holes . . . . . . . . . 261
9.5.2 Finding other black holes . . . . . . . . . . . . . . . . . . 263
9.5.3 A few words on Accretion and Energy . . . . . . . . . . . 265
9.5.4 So, where does all of this energy go, anyway? . . . . . . . 267

9.6 Black Hole Odds and Ends . . . . . . . . . . . . . . . . . . . . . 268
9.6.1 A very few words about Hawking Radiation . . . . . . . . 268
9.6.2 Penrose Diagrams, or “How to put infinity in a box” . . . 269
9.6.3 Penrose Diagrams for Black holes . . . . . . . . . . . . . . 271
9.6.4 Some Cool Stuff . . . . . . . . . . . . . . . . . . . . . . . 276

9.7 Homework Problems . . . . . . . . . . . . . . . . . . . . . . . . . 277

10 Cosmology 283
10.1 The Copernican Principle and Relativity . . . . . . . . . . . . . . 283

10.1.1 Homogeneity and Isotropy . . . . . . . . . . . . . . . . . . 284
10.1.2 That technical point about Newtonian Gravity in Homo-

geneous Space . . . . . . . . . . . . . . . . . . . . . . . . 284
10.1.3 Homogeneous Spaces . . . . . . . . . . . . . . . . . . . . . 285

10.2 Dynamics! (a.k.a. Time Evolution) . . . . . . . . . . . . . . . . . 287
10.2.1 Expanding and Contracting Universes . . . . . . . . . . . 287
10.2.2 A flat spacetime model . . . . . . . . . . . . . . . . . . . 289
10.2.3 On to the Einstein Equations . . . . . . . . . . . . . . . . 291
10.2.4 Negative Pressure, Vacuum Energy, and the Cosmological

Constant . . . . . . . . . . . . . . . . . . . . . . . . . . . 292
10.3 Our Universe: Past, Present, and Future . . . . . . . . . . . . . . 294
10.4 Observations and Measurements . . . . . . . . . . . . . . . . . . 296

10.4.1 Runaway Universe? . . . . . . . . . . . . . . . . . . . . . 296
10.4.2 Once upon a time in a universe long long ago . . . . . . . 298
10.4.3 A cosmological ‘Problem’ . . . . . . . . . . . . . . . . . . 300
10.4.4 Looking for mass in all the wrong places . . . . . . . . . . 302
10.4.5 Putting it all together . . . . . . . . . . . . . . . . . . . . 305

10.5 The Beginning and The End . . . . . . . . . . . . . . . . . . . . 306



8 CONTENTS



Preface

Note: These lecture notes are available free of charge in color PDF from the
course web site: (http://www.phy.syr.edu/courses/PHY312.03Spring/). The
color version is particularly useful for getting the most out of complicated di-
agrams. To view PDF you will need to install Adobe Acrobat reader (if you
don’t have it already). It is free from Adobe at:

http://www.adobe.com/products/acrobat/readstep.html.

A letter of introduction

Dear Students,
This collection of lecture notes is intended as a guide to the material in

PHY312: Relativity and cosmology. You are both lucky and unlucky to be
taking this course. The point is that this course is essentially unique: I know
of no other course anywhere that provides this thorough a treatment of both
special and general relativity at a level accessibly with only elementary calculus.
By your presence here, I take it that you are happy to have this opportunity!

However, because of the unique nature of this course there is simply no
adequate textbook on the market. In the first edition of this course, we used two
books (Relativity by A. Einstein and Inside Relativity by Mook and Vargish)
as supplemental reading. However, most of the course content was conveyed
directly through the lectures.

Then, in Spring 2000 I decided to type my lecture notes and distribute them
to the class in order to provide more relevant reading materials. The aim was to
allow students to spend more time listening and thinking during lectures and to
reduce their need to devote mental energy to merely copying things said in class
or written on the board. According to course evaluations this was a success and
students found the notes quite valuable. By the end of the semester, a more or
less complete (albeit sketchy) set of notes had been compiled.

Based on the recommendations of Spring 2000’s students, I replaced one of
the supplemental texts (Mook and Vargish) with this compilation of notes in
Spring 2001. We continue to keep the Einstein book to allow you to get some
of our story direct from the horse’s mouth. However, these notes constitute the
main ‘text.’

9



10 CONTENTS

While I have worked to edit these notes and make them more complete,
they are still very much ‘notes’ as opposed to a textbook. Perhaps they will
slowly evolve into a true textbook, but such a transformation will take several
more years of teaching PHY312. So, please do not expect all of the usual bells
and whistles (index, detailed outside references, self-contained treatments of all
topics, etc.) Also, mistakes are likely. We caught many of them in 2001 and
I am sure that we will catch more this time around!! The good news though
(well, depending on your taste) is that I’ve felt free to write things things in a
fairly informal style1. Hopefully, this will seem less dry than a real textbook.

While I ask you to be forgiving, I do want to continue to improve these
notes for future students. So, if you have any comments, criticisms, or sug-
gestions (ranging from typos to major structural changes), please do tell me
about them (just phrase your comments kindly)! You can send them to me at
marolf@phy.syr.edu or tell me about them in person. I would like to thank all
past PHY312 students for their valuable feedback.

I hope you enjoy both these notes and the course.
Best Wishes,
Don Marolf

How to use these notes

I just want to make one thing very clear: Past students have told me that the
notes were invaluable and reasonably well written. However, they also told me
that the notes were next to useless without also attending the lectures. So,
don’t get caught in the trap of thinking ‘well, I have the notes, maybe it’s OK if
I skip class today to take care of an important errand....’ Yes, I will be lecturing
(more or less) ‘straight from the notes.’ But you can help me to provide a
dynamic and more useful class by voicing your questions and participating in
class discussions. I’ll look forward to talking with you.

Here is the right way to use these notes. By the way, I actually got this
from the Spring 2001 students. While they did not actually have the notes until
the day of the corresponding lecture (since the notes were not written until
then!), this is what they told me they would have liked to do: First, read the
notes before the lecture. Not everything will make sense at that point, so you
shouldn’t get obsessive about really ‘getting it’ then. However, it is important
to get an overview with two goals in mind:

• Get an idea of what the notes contain so that you don’t have to try to
copy down every word in lecture.

• Identify the hard or subtle bits that will require real concentration in
lecture. When you read the notes, think of questions that you would like
to ask in lecture.

1Among other things, this means I will mark certain important paragraphs with random
numbers of stars (?) in order to draw your attention to them.
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Maybe the following is a good way to look at it:

When reading the notes before class, the important thing is to identify the
questions. Then we can answer those questions in class.

I would also recommend bringing these notes to class, so that you can mark
them, underline things, and generally annotate the notes with what you learn
in class discussions. In particular, you may want to add color to some of the
black and white diagrams in the notes. Finally, you will want to use the notes
as a reference after class, reading through them again to iron out fine points
about which you are confused. Oh, and please do also make use of my office
hours so that I can help you with this process. I am told that the Wednesday
evening office hours are really, really useful.

Some parting comments

Our motto for the course: THINK DEEPLY OF SIMPLE THINGS.

I have shamelessly stolen this motto from one of my old professors (Arnold E.
Ross, Dept. of Mathematics, The Ohio State University2). He used this for his
number theory course, but it applies at least as well to relativity. After all, what
will do is to spend the whole semester thinking about space and time. What
could be simpler and more familiar? We will have to work hard to notice many
important subtleties. We will need to think carefully about ‘obvious’ statements
to see if they are in fact true. After all, (in the words of a past student) your
view of reality is about to be ‘stood on its head and turned inside out.’

Let me provide one final piece of advise. At times, the ‘warped and twisted’
view of reality that emerges from relativity may cause some despair. Some
students feel that they ‘just can’t understand this stuff.’ Often, the greatest
obstacle a student faces in the quest for understanding is their idea of what it
means to ‘understand’ something. What does it mean to you? To some it means
to explain a new thing in terms of what they already know. Good luck with
this in relativity. You will not explain relativity in terms of what you already
‘know’ about reality because, quite frankly, what you think you ‘know’ is wrong.
Sorry, but that’s the way it goes.

Then, what do I mean by understanding relativity? Well, first let me agree
that obviously those things that you think you know about reality cannot be
completely wrong. After all, those ‘facts’ have served you well all of your life!
So, an important step is to grasp how all of the weird stuff of relativity is in
fact consistent with your life experiences to date.

But there is another big step in understanding relativity. Your current
‘knowledge’ of reality is deeply embedded in your intuition. It is a part of the

2Arnold Ross died in the summer of 2002 at the age of 96. He actively taught mathematics
until after his 94th birthday.
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way you deal with almost every thing you encounter. You will have succeeded
in understanding relativity when you have built up a new intuition based on
what Einstein discovered. Yes, this can be done! Intuition is basically a reflex,
albeit a mental as opposed to a physical one. We all know how to train our
reflexes in sports: practice! Yep, this is a little speech to stress the importance
of doing homework, and optional problems too.

Credits

PHY312 has it roots in a course originated by Austin Gleeson at the University
of Texas at Austin. During our time there as graduate students and teaching
assistants, D. Eric Smith and I had the opportunity to assist in the development
of the course and in the design of course materials. I am very grateful to Austin
Gleeson both for this experience and for his support during and since. Although
PHY312 is a very different course, many of the goals were similar and many of
the pedagogical ideas appearing in PHY312 and these notes stem from our work
together. In particular, I am indebted to Eric for our many long discussions in
which we struggled to find the most elementary way to phrase concepts and
arguments while still capturing all of the subtleties inherent in working with
curved spacetimes. It is fair to say that I obtained a deeper grasp of relativity
though these conversations than from any course. I can only hope my own
students have a similar experience, prodded by the homework problems below.
Many of these problems, by the way, came originally from the course in Texas
and are only slowly evolving over time.

Moving on to Syracuse, I would like to thank Eric Schiff, our current depart-
ment chair, for encouraging me to develop this course, as well as Peter Saulson
for his advice (on both pedagogical and experimental issues) and support. Fi-
nally, I would like to thank all of my past students, either at Syracuse or in
Texas, for their valuable questions and comments.

2021 update: I also thank Phillip Levin for bringing further typos to my
attention.



Syllabus

For your convenience, I am including the course syllabus as a chapter of these
notes. This may not flow especially smoothly into then rest of the book, but I
think you’ll like having this all together in a single package.

0.1 Introduction

There once was a lady named bright

who traveled much faster than light.

She left home one day

in a relative way

and returned the previous night.

This physics limerick captures an important fact about Einstein’s theory of
special relativity: according to Einstein, traveling faster than light does not just
allow time travel, it is actually equivalent to time travel in a certain sense. You
may not understand this now (since the course has not yet started) but you will
by the end of the semester. This feature, time dilation, the famous E = mc2,
curved spacetime, black holes, and cosmology are some of the nifty things we’ll
be discussing in this course.

However, it is important to stress that this is not a course in science fic-
tion. Relativity is an intrinsic part of such real-world phenomena as the Global
Positioning System (GPS), nuclear energy, and the Laser Interferometric Gravi-
tational wave Observatory (LIGO). All of the topics mentioned in the preceding
paragraph are important physics concepts and we’re going to discuss them cor-
rectly. Unfortunately, most sci-fi authors get these things wrong, so you’ll have
to try to forget anything that you may have ‘learned’ from sci-fi. (Trust me,
you’ll never watch or read science fiction the same way again after this course!!)

So, what does it take to understand these things properly?? There are two
answers: 1) patience and 2) very careful thinking. The topics studied in this
course are so far from our everyday experience that the intuition you have built
up during your life so far will probably not be helpful to you – in fact, it will be
your biggest hindrance. Many of the things we will study are counterintuitive,

13
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but this does not mean that they are wrong, unobservable, irrelevant to the
‘real world,’ or un-understandable. It is important to remind yourself of this
early and often and to think very carefully about what you mean when you say
(or are tempted to say) that something does or does not ‘make sense.’ The way
to survive in a realm where your intuition does not apply is to learn to think
clearly and accurately – that is, to base your reasoning on careful logic – and
to build carefully from the few experimental facts you do have.

0.1.1 A Small Warning

Unfortunately, I feel the need to start with a small warning. My assumption
is that students take this course because they are interested in the subject and
would like to learn the material. I also assume that students are willing to
apply themselves seriously to this task. Although the material is challenging, it
can be mastered by anyone who can understand a bit of calculus. While it has
sometimes been a struggle, there has never been a case of a student working hard
in this course who was unable both to understand the subject and to perform
well.

On the other hand, this is by no means a blow-off course. Occasionally, students
wander into this course under the mistaken impression that this will be an easy
way to fulfill a science elective for, say, an engineering degree. Perhaps it is the
fact that this course is billed as being accessible to freshmen or the fact that it
is billed as de-emphasizing mathematics (in comparison to most treatments of
relativity) that draws such students. If you came with this mind, my advice is
to either to get out now or to prepare yourself for a serious experience. While
this course is not designed to be a bone-crusher, and while I do believe that
it can be an excellent course even for non-technical people and non-scientists,
Relativity and Cosmology should not be taken lightly.

I have put real work into this course and I will expect you to do the same.

0.1.2 Course Goals

The Goals for this course are:

1) To introduce the basic concepts of special and general relativity and to pro-
vide some skill in their use.

2) To promote skill in clear, precise, and analytical thinking.

3) To provide practice in altering one’s opinions and intuitive picture of a struc-
ture in light of new evidence. In this case, the structure is none other than
the ‘well-known’ framework of space and time.

0.1.3 Course Objectives

The following is a list of some specific skills that you will gain during the coming
semester. At the moment, you may not even know what any of these mean but,
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by the end of the semester you should be able to:

1) Read and interpret a spacetime diagram.

2) Draw your own spacetime diagrams and be able to manipulate them to an-
swer questions about and understand a number of effects in relativity.

3) Understand and be able to use the (local) equivalence principle; understand
the basic properties of curved spacetime.

4) Describe the basics of time dilation, length contraction, cosmological models,
and black holes.

0.2 Administrative Info

Lectures: Tuesdays and Thursdays 11:30-12:50, Physics Building Rm106. Trust
me: you will want to bring a set of colored pens or pencils to class in order
to work effectively with complicated diagrams.

Instructor: Don Marolf (Office: 265-3 Physics, office phone: x3882, home
phone: 422-3902 [Note: This phone number is given incorrectly in the
photocopied Notes from the bookstore. The number given here is cor-
rect!!], e-mail: marolf@physics.syr.edu)

Office Hours: Tuesdays 1:00pm - 2:30pm in Physics 263-5 and Wednesdays
7:00pm - 8:00pm+ in Physics 204. On Wednesday, I will generally stay
until 10pm or so. However, if no students arrive before 8pm then I will
leave and find some other way to spend my evening. If you can only arrive
after 8pm and are concerned that I will depart before you can get there,
feel free to contact me in advance and let me know that you are coming.

Texts: Unfortunately, there is no true textbook for a course like this.

• The closest things available is the set of Notes on Relativity and Cos-
mology that I have prepared. You can pick up a black and white copy
from the bookstore – it’s called the PHY312 course reader. You can
also download the (color) PDF file from the course website at:
http://physics.syr.edu/courses/PHY312.03Spring. It’s a big file though
(300+ pages).

• We will also use Relativity by A. Einstein as a supplementary text.
Each chapter of my notes indicates which chapters of Einstein you
should be reading simultaneously. This will show you a second per-
spective on the subject, and I think you will enjoy seeing what Albert
himself has to say.

In addition, a number of further supplemental texts are recommended
below if you would like to investigate a particular topic more deeply. These
may be especially useful for your course project.
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0.3 Coursework and Grading

Let me begin by reminding you that this is an upper division (≥ 300) course.
This does not mean that the course is inaccessible to Freshmen and Sophomores
but it does mean that students in this course will be treated as and expected to
behave as mature learners: demonstrating initiative, asking questions, beginning
and handing in homework promptly, and generally taking responsibility for their
education. Correspondingly, the framework for this course will not be fixed as
rigidly as it would be for any lower division course that I would teach.

The plan for this course is fairly simple. There will be weekly homework,
two exams, and a project. The project will be worth 20% of the course grade,
the two exams 35% each (making 70% together), and the homework will be
worth 20%. Each assignment will receive a letter grade (A, A-, B+, etc.) and
these grades will be averaged on a linear scale.

Note that the grading policy in this class may be different from that of other
science/math courses you may have taken. While it is always difficult to state
what is a ‘fair’ grading policy, I think it is clear what sorts of grading policies
would not be reasonable for this course: un-fair grading policies would include

i) grading on a strict curve, allowing only 25% of the class to get an “A” no
matter how well they do,

ii) grading on the ‘usual’ A=90-100, B=80-90, etc. scale – the material in this
class is ‘harder’ than that.

You can be sure that neither of these will occur. When your first assignments
are returned, you’ll be able to see more concretely what the grading scale in
this course does look like.

Homework: The homework will be assigned weekly. In general, it will be
assigned on a Thursday and will be due the following Thursday. I will warn
you in advance if solving some homework problems will require material
from the intervening Tuesday’s class. While I encourage you to work
together on the homework, the homework you turn in must represent your
own understanding. Homework that is simply copied will not be accepted.

I will hand out solutions to the homework on the day you turn it in. As
a result, homework will be turned in on time at the beginning of class.
If this is not possible due to some exceptional circumstances, it is your
responsibility to contact me before class (as far in advance as possible) to
discuss the matter.

Doing the homework will be an important part of learning the material in
this course and I strongly recommend that you begin to work on it early
and not leave the homework for the last minute. Especially because the
topics we study are likely to be beyond your current intuition, you will
need to devote some time and effort to working with these new ideas and
building up a new kind of intuition. The homework is the primary means
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through which you do this. I will, however, try to keep the workload
reasonable for this course.

Problem sets will be graded ‘holistically,’ so that you will only receive
one grade for each assignment (as opposed to grading each problem sepa-
rately). However, I will write a number of comments on your papers and,
in addition, I will provide detailed solutions to most homework problems.

By the way, you are more than welcome to work on the homework together,
or to come and work on it at my office hours – especially the one on
Wednesday evening. The reason that I hold that office hour in a different
room is that I would like the room to be available for you to simply come
and sit and work on your homework, either individually or in groups. You
can ask me questions as they arise. You’re also welcome to meet people
there to discuss the homework even if you don’t plan to ask me anything.
Please fell free to consider this as a weekly study and/or chat session for
Relativity, Cosmology, and related matters. We can turn on the teapot
and have a nice place to work and discuss physics. This has been quite
popular in the past, and many students participate. Note: Due to the
unique nature of this course, the physics clinic is unlikely to be a useful
resource for PHY312.

Exams: The first exam will be Thursday March 6, just before Spring Break.
Note: You have now been warned of this date. Do not come to me with
a story about how your mother bought you a ticket to go somewhere for
Spring Break and you need to take the exam early so that you can leave.
The date of the second exam will depend on how things go, but will
probably be Tuesday, April 22. The second exam will not be (explicitly)
cumulative, though of course material from the last part of the course will
build on material from the first part.

You should be aware that, despite the fact that there will be no cumulative
final exam for this course, we will use the time assigned to PHY312 during
finals week for you to display and present your course projects. This period
is 5:00am -7:00pm, Tuesday May 6. The class time available for this course
is far too short not to make use of every possible meeting time.

The Project: A significant part of your work in this class will be a project of
your choice. The general guidelines are that the project should

a) in some way demonstrate your understanding of topics covered in
this course,

b) be written in your own words,

c) be about the same amount of work as a term paper (which I would
consider to be about 10-20 pages in a reasonable type-style like this
one) and
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d) include references to outside sources as appropriate for the project.

Projects will be graded on a combination of creativity, initiative, and the
understanding of course material (and outside reading) that they demon-
strate. The rule of thumb should be that your project should be something
that you are proud of and not something that is quickly thrown together.

Each project must be approved by me, so you need to discuss your project
with me before you begin. You are welcome to continue to consult with
me while you work on your project. Each of you need to ‘contract’ with
me for a project by March 25 (shortly after Spring Break). At this point,
you and I will have more or less agreed on what your project will be. As
a result, you should come and talk to me even earlier in order to bounce a
few ideas around before making a final decision. It is a good idea to start
thinking about your project early!!! You will be asked to give a (very)
short presentation about your project at the end of the semester. The
projects are due at the start of the scheduled final exam period,
5pm on Tuesday, May 6.

Some suggestions for projects are:

i) A standard report/term paper on a topic related to relativity, gravity,
or cosmology.

ii) For web people: building a set of relativity/cosmology web pages
either as an electronic ‘term paper’ or for educational purposes.

iii) For any programmers out there: writing a small computer game
(something like asteroids???) that treats relativity correctly. (Be
careful here: several people have tried this in the past, but have
bitten of more than they could really handle.) Another suggestion
would be just writing a piece of code the demonstrates some impor-
tant aspect of gravity, relativity, or cosmology.

iv) For educators: preparing a set of instructional materials in relativity,
cosmology, or related subjects for students at a level of your choosing.

v) For the writing/journalism crowd: a short story, poem, or ‘magazine
article’ dealing with some of the topics discussed in this course. Note:
Poetry need not be especially good as literature – the limerick on the
front page of this syllabus would be of sufficient quality. Poetry may
be set to music (i.e., lyrics for a song, possibly ‘revised’ lyrics to an
existing song).

vi) For any artists: A work of visual, audio, or performing art could in
principle be an excellent project. One year someone wrote a nice
play. However, it must in some way involve your understanding of
the course material. If you are interested in this kind of project, be
extra sure to discuss it with me carefully.
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vii) Anything else you can think of that follows the basic guidelines given
above. I’m quite flexible. If you think of an interesting project, I’ll
be happy to discuss it with you and see if we can make it work!!!

The project is an opportunity for you to get what you want out of this
course and to extend the course in a direction that you would like it to go. I
will therefore expect that your project will demonstrate either substantial
creativity on your part or some further reading beyond what we will cover
in class. This reading can be from books (such as those suggested in
section 0.4) or magazines such as Scientific American, Physics World, or
Physics Today. For example, you might wish to study one of the following
topics in more detail:

1) black holes (their structure, collisions, or hawking radiation)

2) the big bang

3) higher dimensional theories of physics (Kaluza-Klein theories or ‘braneworlds’)

4) the history of relativity

5) experimental tests of relativity, or experiments in cosmology. These
can be recent experiments or a historical treatment of the early ex-
periments.

6) current and/or future NASA/ESA missions to study relativity and/or
cosmology (HUBBLE, CHANDRA, other x-ray satellites, COBE,
MAP, PLANCK, LISA, balloon experiments such as last year’s Boomerang,
and others)

7) the mathematical structure of general relativity

8) gravitational waves

9) gravitational lensing

10) Sagittarius A∗ (the black hole at the center of our galaxy)

11) X-ray telescopes and their observations of black holes

12) LIGO

13) Current ideas about ‘more fundamental’ theories of gravity (loop
gravity, string theory, noncommutative geometry).

14) Closed Timelike Curves (aka ‘time machines’)

15) Wormholes

16) The Global Positioning System

Feel free to talk with me about where and how to locate references on these
and other subjects. Some examples of past course projects can be found on
the PHY312 web page (see http://physics.syr.edu/courses/PHY312.03Spring).
I encourage you to build from what other students have done in the past.
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However, your challenge will be to go beyond their work and create some-
thing new.

Warning: not all of these projects received high grades. If you look
through them, it will probably be clear to you which projects are the
best. Feel free to discuss them with me if you would like.

Additional Note: Let me repeat that the project must be your own work.
In particular, wholesale copying of entire sentences from your sources is
not allowed.

0.3.1 Creating your Project

Following the steps below will help you to create a successful course project.

1. (late Feb. or early March) Begin to think about what you would like to do.
Read through the suggestions above and leaf through some of the suggestions
for further reading below. Come and talk to me in order to bounce around
a few ideas.

2. (by March 25) Settle on a rough plan and have me approve it. This will be
our ‘contract.’

3. Read outside sources and begin creative work, consulting with me as ap-
propriate. Prepare a rough draft, perhaps showing it to me. Consult the
checklist below during this process.

4. Prepare the final version and have it ready to turn in by 5pm on Tuesday
May 6. Again, consult the checklist below to make sure that your project is
complete.

5. Be ready to give a brief (5 minute or less) summary of your project at 5:00pm
on Tuesday, May 6.

0.3.2 Project Checklist

The checklist below will help you to be sure that your project is complete.
Remember though, the important thing is that you discuss your project with
me and that we agree on what items will be included. The checklist below is
not a replacement for my commentary, it is merely a tool to help you interpret
my comments an expectations.

Your project should:

1. Include an introduction which a) provides a general overview and b) shows
how your project is related to relativity and/or cosmology: Make sure that
you describe the connection of your project to these themes. You should do
this even if you feel that the connection is completely obvious, though the
description can be brief. You and I should agree on the connection in our
contract.
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2. Be well-defined and focused: Your project should have clearly stated goals
and a declared target audience. Is your project an attempt to explain some-
thing to the general public, or is it a deep study of some issue? We should
agree on this in our contract.

3. Be thorough: Your project should take the time to explore material in some
depth. It must reach beyond what we have done in class through the use of
your own creativity and/or through the study of additional sources. Again,
we should discuss this in our contract. See 8 below if your main project is a
poster.

4. Illustrate your understanding of course material: The project must be tied
to some of the material discussed in lecture. Your project should show that
you understand this material well.

5. Be original: Clearly the project should represent your own work, but in fact
I mean more than this. Many of the past course projects are available on
the PHY312 web page for your exploration. Your goal should be to add to
the set of such projects by doing something new. This may mean doing a
different sort of project than has been done before or it may mean improving
or extending a previous project.

6. Be well referenced: As a rule of thumb, a project should draw from at least
5 outside references. Also: Be sure to cite a reference for each separate fact
you use from it.

7. Include proper citations: Individual facts, tables, arguments, etc. should be
referenced with the source where you found them. Any graphics which are
not of your own making should also be individually referenced. You may use
either footnotes or endnotes. It is not sufficient to simply put a bibliography
at the end.

8. Include something to display on Tuesday, May 6 and something to turn in:
I would like you to have something to show the other students which is not
just a typed paper. If your main project is a paper, this might be a small
poster (the size of a large piece of paper) listing the highlights and including
a graphic or two. You should also have something to turn in which shows
the depth of your research. For example, if your main project is a poster,
you will be able to fit very little on the poster itself. In this case, please
also submit a list of “things I wanted to include that would not fit on my
poster.” Each item on this list should have a short description, at least a
couple of sentences long. I will also want your original project, including
relevant computer files for web pages, computer programs, etc.

9. Be complete: In particular, if you design a web site or write a computer
program, be sure that it is actually working before the due date!
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0.4 Some Suggestions for Further Reading

Einstein’s book Relativity covers only the very basics of relativity and cosmol-
ogy. We will do quite a bit more in this course, and the lecture will be your
main source of information for this extra material. This means that, together
with the notes that I have prepared, your notes from class will be a primary
source of study material. We will work with a number of complicated ‘space-
time diagrams’ and, while this will require no artistic ability whatsoever, I do
recommend that you purchase a set of colored pens or pencils and bring them
to class.

Unfortunately, it is difficult to find a single book which includes the right
balance of material and is written on the right level for this course. I have
chosen Einstein’s Relativity and the notes that I have prepared as the main
texts. A list of suggestions for further reading can be found below. Each of
those books does more than we will cover in this course for some topics but
less for others. These books will mainly be helpful if you would like to learn
more about some particular aspect of relativity or cosmology, to satisfy your
personal curiosity and/or for your course project. The following books are on
reserve in the Physics Library (on the second floor of the Physics building). If
you like them, you may want to order your own copies through the bookstore,
Barnes and Nobles, or amazon.com. In my experience, all of these places charge
the same price except that mail order places will charge you a few dollars for
shipping. However, mail order services may be a few days faster in getting the
book and tend to be more efficient than the SU bookstore.

1. Cosmology: The Science of the Universe by Edward Harrison (New York,
Cambridge University Press, 1981). This book is written from a less mathe-
matical and more observational perspective than the lectures in PHY312. It
gives an excellent treatment of many aspects of cosmology from galaxies and
quasars to the cosmic microwave background.

2. The cosmic frontiers of general relativity (Boston, Little, Brown, 1971) by
W. Kauffman. Kauffman gives a very nice discussion of many topics in or
affected by GR such as Black Holes (this part is very thorough but still quite
readable!), gravitational lenses, gravitational waves, active galactic nuclei,
stars, and neutron-stars.

3. Flat and Curved Space-times by George Ellis and Ruth Williams (New York,
Oxford University Press, 1988). This is an excellent general book on special
and general relativity for those who would like to see more mathematics than
we will do in this course. In particular, it has a very nice treatment of black
holes.

4. Principles of Cosmology and Gravitation by Michael V. Berry (New York,
Cambridge U. Press, 1976). Berry’s book provides a somewhat more tech-
nical treatment of General Relativity than we will experience in this course.
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While it is less mathematical than that of Ellis and Williams, Berry does as-
sume a certain familiarity with many concepts of physics. In his own words,
the aim of the book is “to present a theoretical framework powerful enough
to enable important cosmological formulae to be derived and numerical cal-
culations to be performed.” A down side of this book is that it is a bit old.

5. Discovering Relativity for yourself, with some help from Sam Lilley by Sam
Lilley (New York, Cambridge University Press, 1981). This is an excellent
book on the basics of special and general relativity, but it does not cover any
advanced topics. It may be a good resource for working homework problems
in this course.

6. A traveler’s Guide to Spacetime: An Introduction to the Special Theory of
Relativity by Thomas A. Moore (New York, McGraw-Hill Inc., 1995). This
lovely book gives a good, modern, introduction to special relativity and may
be helpful for someone who would like to read another discussion of this
material. Unfortunately, it does not address accelerated reference frames or
General Relativity.

7. Special Relativity by Anthony French (New York, Norton, 1968). This is
an excellent traditional book on special relativity that will be of interest for
those with more physics background. It has some very nice discussions of
the experiments related to special relativity but readers should be prepared
for a fair amount of algebra.

8. Time, Space, and Things by B.K. Ridley (New York, Cambridge University
Press, 1984). This is a nice book about special relativity and particle physics
which may be useful if you want a very non-technical presentation.

9. The Ethereal Aether by L.S. Swenson (Austin, University of Texas Press,
1972). This is a beautiful book about the history of the study of light, and
especially of the experiments on the nature, velocity, etc. of light. It is not a
relativity book per se, but it discusses a lot of the history of relativity as it
discusses the relevant experiments. This includes not only the pre-Einstein
history, but also the story of what happened during the time between when
Einstein published his work and when it became fully accepted.

10. Geometry, Relativity, and the Fourth Dimensions by R. v.B. Rucker, (Dover,
New York, 1977). This is a nice book that concentrates on the geometrical
aspects of curved space and of four-dimensional spacetime, both flat and
curved. It is easier to digest than many of the books above.

11. Theory and experiment in gravitational physics by Clifford M. Will, (Cam-
bridge University Press, New York, 1993) QC178.W47 1993. This is the
definitive work on experimental tests of General Relativity. A less technical
version of the same work is: Was Einstein Right? putting General Relativity
to the test by Clifford M. Will (Basic Books, New York, 1993).
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Course Calendar

The following is a tentative calendar for PHY 312, Spring 2001.

Week 1: (1/14) Background material on pre-relativistic physics (coordinate sys-
tems, reference frames, the Newtonian assumptions about time and space, in-
ertial frames, begin Newton’s laws).

Week 2: (1/21) Newtonian mechanics: inertial frames and Newton’s laws. Elec-
tricity, magnetism and waves. The constancy of the speed of light. The ether
and the Michelson-Morely experiment.

Week 3: (1/28) The postulates of relativity. What do the postulates of relativity
imply? Spacetime diagrams, simultaneity, light cones, and time dilation.

Week 4: (2/4) More work with spacetime diagrams: length contraction and
more subtle problems – the train ‘paradox,’ the interval, proper time and proper
distance, a bit on Minkwoskian geometry, the twin ‘paradox.’

Week 5: (2/11) More on Minkowskian geometry. Begin acceleration. The head-
light effect.

Week 6: (2/18) Acceleration in special relativity.

Week 7: (2/25) Dynamics (forces, energy, momentum, and E = mc2).

Week 8: (3/4) Gravity, light, time, and the local equivalence principle. Exam
1.

Week 9: (3/11) SPRING BREAK

Week 10: (3/18) Nonlocal calculations in GR. Time dilation and GPS.

Week 11: (3/25) Curved spaces and curved spacetime.

Week 12: (4/1) The Metric: the mathematical description of a curved surface.

Week 13: (4/8) The Einstein equations and the Schwarzschild solution. The
classic tests of GR: Mercury’s orbit, the bending of light, and radar time delays.
Begin black holes.

Week 14: (4/15) More on Black Holes: inside, outside, etc.

Week 15: (4/22) Second exam. A little cosmology.

Week 16: (4/29) More cosmology. If time permits, we may discuss compact
universes, closed timelike curves, the periodic Milne Universe. Kaluza-Klein,
higher dimensions, other extensions of Einstein’s theories.

Brief Project Presentations: 5pm Tuesday, May 6.



Chapter 1

Space, Time, and
Newtonian Physics

Read Einstein, Ch. 1 -6

The fundamental principle of relativity is the constancy of a quantity called c,
which is the speed of light in a vacuum1:

c = 2 .998 × 10 8m/s, or roughly 3 × 10 8m/s.

This is fast enough to go around the earth along the equator 7 times each second.

This speed is the same as measured by “everybody.” We’ll talk much more
about just who “everybody” is. But, yes, this principle does mean that, if your
friend is flying by at 99% of the speed of light, then when you turn on a flashlight
both of the following are true:

• The beam advances away from you at 3× 108m/s.

• Your friend finds that the light beam catches up to her, at 3× 108m/s.

Now, this certainly sounds a bit strange. However, saying that something
“sounds a bit strange” will not be enough for us in PHY312. We’ll want to
investigate this more deeply and find out exactly where this runs into conflict
with our established beliefs.

To do this, we’ll have to spend a little bit of time (just a week or so) talking
about ‘Newtonian’ physics; that is, the way people understood physics before
Einstein came along. I know that Newtonian physics is old hat to some of
you, but some people here have never studied any physics. In addition, we
will emphasize different features than you focussed on if you saw this before in

1Light traveling through air, water, etc. does not travel at speed c, nor is the speed of light
through air, water, etc. constant in the same way that c is.

25
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PHY101 or PHY211. I suggest that you take the opportunity to reflect on this
at a deeper level than you may have done before.

‘Newtonian’ physics is the stuff embodied in the work of Isaac Newton2. Now,
there were a lot of developments in the 200 years between Newton and Einstein,
but an important conceptual framework remained unchanged. It is this frame-
work that we will refer to as Newtonian Physics and, in this sense, the term
can be applied to all physics up until the development of Relativity by Einstein.
Reviewing this framework will also give us an opportunity to discuss how people
came to believe in such a strange thing as the constancy of the speed of light
and why you should believe it too. (Note: so far I have given you no reason to
believe such an obviously ridiculous statement.)

? Many people feel that Newtonian Physics is just a precise formulation of their
intuitive understanding of physics based on their life experiences. Granted, as
those of you who have taken PHY101 or 211 know, there are many subtleties.
But still, the basic rules of Newtonian physics ought to ‘make sense’ in the sense
of meshing with your intuition.

Oh, you should actively ponder the question“What does it mean for some-
thing to ‘make sense’?” throughout this course....

1.1 Coordinate Systems

We’re going to be concerned with things like speed (e.g., speed of light), distance,
and time. As a result, coordinate systems will be very important.

How many of you have worked with coordinate systems?

Let me remind you that a coordinate system is a way of labeling points; say, on
a line. You need:

A zero

A positive direction

A scale of distance
+x

x=0 x=+1mx=-1m

We’re going to stick with one-dimensional motion most of the time. Of course,
space is 3-dimensional, but 1 dimension is easier to draw and captures some of
the most important properties.

In this course, we’re interested in space and time:

2For our purposes, the most important part of this work was actually done by Galileo.
However, we will also make use of the refinements added by Newton and the phrase ‘Galilean
Physics as refined by Newton’ is just to long to use.
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t=
0

t=
+

1s
t=

-1
s

+t

Put these together to get a ‘spacetime diagram’
+t

+xt=
0

t=
+

1s
t=

-1
s

x=-1m x=0 x=+1m

? Note: For this class (as opposed to PHY211), t increases upward and x in-
creases to the right. This is the standard convention in relativity and we adopt
it so that this course is compatible with all books (and so that I can keep things
straight, since it is the convention I am used to!!).

Also note:

• The x-axis is the line t = 0.

• The t-axis is the line x = 0.
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? Think of them this way!!! It will make your life easier later.

1.2 Reference Frames

A particular case of interest is when we choose the line x = 0 to be the position
of some object: e.g. let x = 0 be the position of a piece of chalk.

In this case, the coord system is called a ‘Reference Frame’; i.e., the reference
frame of the chalk is the (collection of) coordinate systems where the chalk lies
at x = 0 (All measurements are ‘relative to’ the chalk.)

? ? ? Note that I have said nothing about the motion of the chalk. We can talk
about the chalk’s reference frame whether it is “at rest,” moving at constant
velocity, or wiggling back and forth in a chaotic way. In both cases we draw the
x = 0 line as a straight line in the object’s own frame of reference.

Also: The reference frame of a clock has t = 0 whenever the clock reads zero.
(If we talk about the reference frame of an object like a piece of chalk, which is
not a clock, we will be sloppy about when t = 0.)

? Note: A physicist’s clock is really a sort of stopwatch. It reads t = 0 at some
time and afterwards the reading increases all the time so that it moves toward
+∞. Before t = 0 it reads some negative time, and the distant past is −∞. A
physicist’s clock does not cycle from 1 to 12.

Unfortunately, we’re going to need a bit more terminology. Here are a couple
of key definitions:

• Your Worldline: The line representing you on the spacetime diagram.
In your reference frame, this is the line x = 0.

• Event: A point of spacetime; i.e., something with a definite position and
time. Something drawn as a dot on a spacetime diagram. Examples: a
firecracker going off, a door slamming, you leaving a house; see below.
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x=-1m x=0 x=+1m

The worldline of 
a car door

The door
slams

(an event)

That definition was a simple thing, now let’s think deeply about it. Given an
event (say, the opening of a door), how do we know where to draw it on a
spacetime diagram (say, in your reference frame)? Suppose it happens in our
1-D world.

• How can we find out what time it really happens?: One way is to give
someone a clock and somehow arrange for them be present at the event.
They can tell you at what time it happened.

• How can we find out where (at what position) it really happens?: We could
hold out a meter stick (or imagine holding one out). Our friend at the
event in question can then read off how far away she is.

Note that what we have done here is to really define what we mean by the
position and time of an event. This type of definition, where we define something
by telling how to measure it (or by stating what a thing does) is called an
operational definition. They are very common in physics. (Food for thought:
Are there other kinds of precise definitions? How do they compare?)

Now, the speed of light thing is really weird. So, we want to be very careful in
our thinking. You see, something is going to go terribly wrong, and we want to
be able to see exactly where it is.

Let’s take a moment to think deeply about this and to act like mathematicians.
When mathematicians define a quantity they always stop and ask two questions:
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1. Does this quantity actually exist? (Can we perform the above operations
and find the position and time of an event?)

2. Is this quantity unique or, equivalently, is the quantity “well-defined?”
(Might there be some ambiguity in our definition? Is there a possibility
that two people applying the above definitions could come up with two
different positions or two different times?)

Well, it seems pretty clear that we can in fact perform these measurements, so
the quantities exist. This is one reason why physicists like operational definitions
so much.

Now, how well-defined are our definitions are for position and time? [Stop
reading for a moment and think about this.]

? One thing you might worry about is that clocks and measuring rods are
not completely accurate. Maybe there was some error that caused it to give
the wrong reading. We will not concern ourselves with this problem. We will
assume that there is some real notion of the time experienced by a clock and
some real notion of the length of a rod. Furthermore, we will assume that we
have at hand ‘ideal’ clocks and measuring rods which measure these accurately
without mistakes. Our real clocks and rods are to be viewed as approximations
to ideal clocks and rods.

OK, what else might we worry about? Well, let’s take the question of measuring
the time. Can we give our friend just any old ideal clock? No..... it is very
important that her clock be synchronized with our clock so that the two clocks
agree3.

And what about the measurement of position? Well, let’s take an example.
Suppose that our friend waits five minutes after the event and then reads the
position off of the meter stick. Is that OK? What if, for example, she is moving
relative to us so that the distance between us is changing? Ah, we see that it
is very important for her to read the meter stick at the time of the event. It is
also important that the meter stick be properly ‘zeroed’ at that same time.

So, perhaps a better definition would be:

time: If our friend has a clock synchronized with ours and is present at an
event, then the time of that event in our reference frame is the reading of
her clock at that event.

position: Suppose that we have a measuring rod and that, at the time that
some event occurs, we are located at zero. Then if our friend is present
at that event, the value she reads from the measuring rod at the time the
event occurs is the location4 of the event in our reference frame.

3Alternatively, if we knew that her clock was, say, exactly five minutes ahead of ours then
we could work with that and correct for it. But the point is that we have to know the
relationship of her clock to ours.

4Together with a + or - sign which tells us if the event is to the right or to the left. Note
that if we considered more than one dimension of space we would need more complicated
directional information (vectors, for the experts!).
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Now, are these well-defined? After some thought, you will probably say ‘I think
so.’ But, how can we be sure that they are well-defined? There are no certain
statements without rigorous mathematical proof. So, since we have agreed to
think deeply about simple things (and to check all of the subtleties!!!), let us
try to prove these statements.

1.3 Newtonian Assumptions about Space and
Time

Of course, there is also no such thing as a proof from nothing. This is the usual
vicious cycle. Certainty requires a rigorous proof, but proofs proceed only from
axioms (a.k.a. postulates or assumptions). So, where do we begin?

We could simply assume that the above definitions are well-defined, taking
these as our axioms. However, it is useful to take even more basic statements
as the fundamental assumptions and then prove that position and time in the
above sense are well-defined. We take the fundamental Newtonian Assumptions
about space and time to be:

T) All (ideal) clocks measure the same time interval between any two events
through which they pass.

S) Given any two events at the same time, all (ideal) measuring rods measure
the same distance between those events.

What do we mean by the phrase ‘at the same time’ used in (S)? This, after all
requires another definition, and we must also check that this concept is well-
defined. The point is that the same clock will not be present at two different
events which occur at the same time. So, we must allow ourselves to define
two events as occurring at the same time if any two synchronized clocks pass
through these events and, when they do so, the two clocks read the same value.
To show that this is well-defined, we must prove that the definition of whether
event A occurs ‘at the same time’ as event B does not depend on exactly which
clocks (or which of our friends) pass through events.

Corollary to T: The time of an event (in some reference frame) is well-
defined. Proof: A reference frame is defined by some one clock α. The time
of event A in that reference frame is defined as the reading at A on any clock
β which passes through A and which has been synchronized with α. Let us
assume that these clocks were synchronized by bringing β together with α at
event B and setting β to agree with α there. We now want to suppose that we
have some other clock (γ) which was synchronized with α at some other event
C. We also want to suppose that γ is present at A. The question is, do β and
γ read the same time at event A?
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α

β

γB

A

C

Yes, they will. The point is that clock α might actually pass through α as well
as shown below.

��

��

��

α

β

γB

C

A

Now, by assumption T we know that α and β will agree at event A. Similarly,
α and γ will agree at event A. Thus, β and γ must also agree at event A.

Finally, a proof!!! We are beginning to make progress! Since the time of any
event is well defined, the difference between the times of any two events is well
defined. Thus, the statement that two events are ‘at the same time in a given
reference frame’ is well-defined!!

Er,..... But, might two events be at the same time in one reference frame but
not in other frames?? Well, here we go again...

Second Corollary to T: Any two reference frames measure the same time interval
between a given pair of events.

Proof: Recall that a reference frame is defined by a set of synchronized
clocks. From the first corollary, the time of an event defined with respect to a
synchronized set of clocks is well-defined no matter how many clocks are in that
synchronized set. Thus, we are free to add more clocks to a synchronized set as
we like. This will not change the times measured by that synchronized set in
any way, but will help us to construct our proof.

So, consider any two events E1 and E2. Let us pick two clocks βX and γX
from set X that pass through these two events. Let us now pick two clocks
βY and γY from set Y that follow the same worldlines as βX and γX . If such
clocks are not already in set Y then we can add them in. Now, βX and βY were
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synchronized with some original clock αX from set X at some events B and C.
Let us also consider some clock αY from set Y having the same worldline as
αX . We have the following spacetime diagram:

� �� � � �
� �
� �� �

� �� �

α

β

γ x

γ Y

β

α
X

Y

X
Y

E
E

B

C

2
1

Note that, by assumption T, clocks αX and αY measure the same time
interval between B and C. Thus, sets X and Y measure the same time interval
between B and C. Similarly, sets X and Y measure the same time intervals
between B and E1 and between C and E2. Let TX(A,B) be the time difference
between any two events A and B as determined by set X, and similarly for
TY (A,B). Now since we have both TX(E1, E2) = TX(E1, B) + TX(B,C) +
TX(C,E2) and TY (E1, E2) = TY (E1, B) + TY (B,C) + TY (C,E2), and since we
have just said that all of the entries on the right hand side are the same for both
X and Y , it follows that TX(E1, E2) = TY (E1, E2). QED

In contrast, note that (S) basically states directly that position is well-defined.

1.4 Newtonian addition of velocities?

Let’s go back and look at this speed of light business. Remember the 99 %c
example? Why was it confusing?

Let VBA be the velocity of B as measured by A (i.e., “in A’s frame of reference”).
Similary VCB is the velocity of C as measured by B and VCA is the velocity
of C as measured by A. What relationship would you guess between VBA, VCB
and VCA?

Most likely, your guess was:

VCA = VCB + VBA, (1.1)

and this was the reason that the 99%c example didn’t make sense to you. But
do you know that this is the correct relationship? Why should you believe in
equation (1.1)?

The answer (still leaving the speed of light example clear as coal tar) is because
(1.1) follows from assumptions S and T!!! Proof: Let A,B,C be clocks. For
simplicity, suppose that all velocities are constant and that all three clocks pass
through some one event and that they are synchronized there. The more general
case where this does not occur will be one of your homework problems, so watch
carefully!! Without Loss of Generality (WLOG) we can take this event to occur
at t = 0.

The diagram below is drawn in the reference frame of A:
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WLOG, take t=0 here

time t
V     tCA

V     tCBV     tBA

B
C

A

At time t, the separation between A and C is VCAt, but we see from the diagram
that it is is also VCBt+ VBAt. Canceling the t’s, we have

VCA = VCB + VBA. (1.2)

QED

? ? ? Now, our instructions about how to draw the diagram (from the facts that
our ideas about time and position are well-defined) came from assumptions
T and S, so the Newtonian formula for the addition of velocities is a logical
consequence of T and S. If this formula does not hold, then at least one of T
and S must be false! Of course, I have still not given you any real evidence
to doubt (1.1) – I have only heavily foreshadowed that this will come. It is a
good idea to start thinking now, based on the observations we have just made,
about how completely any such evidence will make us restructure our notions
of reality.

• Q: Where have we used T?

• A: In considering events at the same time (i.e., at time t on the diagram
above).

• Q: Where have we used S?

• A: In implicitly assuming that dBC is same as measured by anyone (A,B,
or C).

1.5 Newton’s Laws: Are all reference frames
equal?

The above analysis was true for all reference frames. It made no difference how
the clock that defines the reference frame was moving.
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However, one of the discoveries of Newtonian Physics was that not all reference
frames are in fact equivalent. There is a special set of reference frames that
are called Inertial Frames. This concept will be extremely important for us
throughout the course.

Here’s the idea:
Before Einstein, physicists believed that the behavior of almost everything

(baseballs, ice skaters, rockets, planets, gyroscopes, bridges, arms, legs, cells,
...) was governed by three rules called ‘Newton’s Laws of Motion.’ The basic
point was to relate the motion of objects to the ‘forces’ that act on that object.
These laws picked out certain reference frames as special.

The first law has to do with what happens when there are no forces. Consider
someone in the middle of a perfectly smooth, slippery ice rink. An isolated
object in the middle of a slippery ice rink experiences zero force in the horizontal
direction. Now, what will happen to such a person? What if they are moving?

Newton’s first law of motion:
There exists a class of reference frames (called inertial frames) in which an
object moves in a straight line at constant speed (at time t) if and only if zero
(net) force acts on that object at time t.

?? Note: When physicists speak about velocity this includes both the speed
and the direction of motion. So, we can restate this as: There exists a class of
reference frames (called inertial frames) in which the velocity of any object is
constant (at time t) if and only if zero net force acts on that object at time t.

? ? ? This is really an operational definition for an inertial frame. Any frame in
which the above is true is called inertial.

? The qualifier ‘net’ (in ‘net force’ above) means that there might be two or
more forces acting on the object, but that they all counteract each other and
cancel out. An object experiencing zero net force behaves identically to one
experiencing no forces at all.

We can restate Newton’s first law as:

Object A moves at constant velocity in an inertial frame ⇔ Object A
experiences zero net force.

Here the symbol (⇔) means ‘is equivalent to the statement that.’ Trust me, it
is good to encapsulate this awkward statement in a single symbol.

1.6 How can you tell if an object is in an inertial
frame?

Recall Newton’s first Law: There exists a class of reference frames (called inertial
frames). If object A’s frame is inertial, then object A will measure object B to
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have constant velocity (at time t) if and only if zero force acts on object B at
time t.

To tell if you are in an inertial frame, think about watching a distant (very
distant) rock floating in empty space. It seems like a safe bet that such a rock
has zero force acting on it.

Examples: Which of these reference frames are inertial? An accelerating car?
The earth? The moon? The sun? Note that some of these are ‘more inertial’
than others. ?? Probably the most inertial object we can think of is a rock
drifting somewhere far away in empty space.

It will be useful to have a few more results about inertial frames. To begin, note
that an object never moves in its own frame of reference. Therefore, it moves
in a straight line at constant (zero) speed in an inertial frame of reference (its
own). Thus it follows from Newton’s first law that, if an object’s own frame of
reference is inertial, zero net force acts on that object.

Is the converse true? To find out, consider some inertial reference frame. Any
object A experiencing zero net force has constant velocity vA in that frame. Let
us ask if the reference frame of A is also inertial.

To answer this question, consider another object C experiencing zero net force
(say, our favorite pet rock). In our inertial frame, the velocity vC of C is
constant. Note that (by (1.1)) the velocity of C in the reference frame of A is
just vC − vA, which is constant. Thus, C moves with constant velocity in the
reference frame of A!!!! Since this is true for any object C experiencing zero
force, A’s reference frame is in fact inertial.

We now have:

Object A is in an inertial frame ⇔ Object A experiences zero force ⇔ Object
A moves at constant velocity in any other inertial frame.

? ? ? Note that therefore any two inertial frames differ by a constant velocity.

1.7 Newton’s other Laws

We will now complete our review of Newtonian physics by briefly discussing
Newton’s other laws, all of which will be useful later in the course. We’ll start
with the second and third laws. The second law deals with what happens to an
object that does experience a new force. For this law, we will need the following.

Definition of acceleration, a, (of some object in some reference frame): a =
dv/dt, the rate of change of velocity with respect to time. Note that this includes
any change in velocity, such as a change in direction. ? In particular, an object
that moves in a circle at a constant speed is in fact accelerating in the language
of physics.
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Newton’s Second Law: In any inertial frame,
(net force on an object) = (mass of object)(acceleration of object)

F = ma.

The phrase “in any inertial frame” above means that the acceleration must be
measured relative to an inertial frame of reference. By the way, part of your
homework will be to show that calculating the acceleration of one object in any
two inertial frames always yields identical results. Thus, we may speak about
acceleration ‘relative to the class of inertial frames.’

? ? ? Note: We assume that force and mass are independent of the reference
frame.

On the other hand, Newton’s third law addresses the relationship between two
forces.

Newton’s Third Law: Given two objects (A and B), we have
(force from A on B at some time t) = - (force from B on A at some time t)

?? This means that the forces have the same size but act in opposite directions.

Now, this is not yet the end of the story. There are also laws that tell us what
the forces actually are. For example, Newton’s Law of Universal Gravitation
says:

Given any two objects A and B, there is a gravitational force between them
(pulling each toward the other) of magnitude

FAB = G
mAmB

d2
AB

with G = 6.673× 10−11Nm2/kg2.

Important Observation: These laws hold in any inertial frame. As a result, there
is no special inertial frame that is any different from the others. As a result,
it makes no sense to talk about one inertial frame being more ‘at rest’ than
any other. You could never find such a frame, so you could never construct
an operational definition of ‘most at rest.’ Why then, would anyone bother to
assume that a special ‘most at rest frame’ exists?

Note: As you will see in the reading, Newton discussed something called ‘Ab-
solute space.’ However, he didn’t need to and no one really believed in it. We
will therefore skip this concept completely and deal with all inertial frames on
an equal footing.

The above observation leads to the following idea, which turns out to be much
more fundamental than Newton’s laws.



38 CHAPTER 1. SPACE, TIME, AND NEWTONIAN PHYSICS

Principle of Relativity: The Laws of Physics are the same in all inertial frames.

This understanding was an important development. It ended questions like ‘why
don’t we fall off the earth as it moves around the sun at 67,000 mph?’

Since the acceleration of the earth around the sun is only .006m/s2, the
motion is close to inertial. This fact was realized by Galileo, quite awhile before
Newton did his work (actually, Newton consciously built on Galileo’s observa-
tions. As a result, applications of this idea to Newtonian physics are called
‘Galilean Relativity’).

Now, the Newtonian Physics that we have briefly reviewed worked like a charm!
It lead to the industrial revolution, airplanes, cars, trains, etc. It also let to the
prediction and discovery of Uranus and Pluto, and other astronomical bodies.
This last bit is a particularly interesting story to which we will return, and I
would recommend that anyone who is interested look up a more detailed treat-
ment. However, the success of Newtonian physics is a story for other courses,
and we have different fish to fry.

1.8 Homework Problems

1-1. Suppose that your car is parked in front of a house. You get in, start
the engine, and drive away. You step on the gas until the speedometer
increases to 30mph, then you hold that reading constant.

Draw two spacetime diagrams, each showing both the house and the car.
Draw one in your own frame of reference, and draw the other in the house’s
frame of reference. Be sure to label both diagrams with an appropriate
scale.

1-2. Derive the Newtonian addition of velocities formula

vCA = vCB + vBA

for the case shown below where the 3 objects (A, B, and C) do not pass
through the same event. Note that, without loss of generality, we may
take the worldlines of A and B to intersect at t = 0.
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A B
C

t=0

(If you like, you may assume that the velocities are all constant.) Carefully
state when and how you use the Newtonian postulates about time and
space.

1-3. To what extent do the following objects have inertial frames of reference?
Explain how you determined the answer. Note: Do not tell me that an
object is inertial “with respect to” or “relative to” some other object. Such
phrases have no meaning as ‘being inertial’ is not a relative property. If
this is not clear to you, please ask me about it!

a) a rock somewhere in deep space.

b) a rocket (with its engine on) somewhere in deep space.

c) the moon.

1-4. Which of the following reference frames are ‘as inertial’ as that of the SU
campus? How can you tell?

a) A person standing on the ground.

b) A person riding up and down in an elevator.

c) A person in a car going around a curve.

d) A person driving a car at constant speed on a long, straight road.

1-5. Show that Newton’s second law is consistent with what we know about
inertial frames.

That is, suppose that there are two inertial frames (A and B) and that you
are interested in the motion of some object (C). Let vCA be the velocity
of C in frame A, and vCB be the velocity of C in frame B, and similarly
for the accelerations aCA and aCB .

Now, suppose that Newton’s second law holds in frame A (so that F =
maCA, where F is the force on C and m is the mass of C). Use your
knowledge of inertial frames to show that Newton’s second law also holds
in frame B; meaning that F = maCB . Recall that we assume force and
mass to be independent of the reference frame.
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1-6. Describe at least one way in which some law of Newtonian physics uses
each of the Newtonian assumptions T and S about the nature of time and
space.

1-7. In section 1.6 we used Newton’s first law and the Newtonian rules for space
and time to conclude that the following three statements are equivalent:

i) An object is in an inertial frame of reference.

ii) The net force on that object is zero.

iii) The object moves in a straight line at constant speed in any inertial
frame. (Note that this means that the worldline of our object is drawn
as a straight line on any spacetime diagram that corresponds to an
inertial frame.)

Give the argument for this, filling in any holes that you may have missed
in lecture or in reading the text. Please do this in your own words. (Hint:
The easiest way to prove that all three are equivalent is to prove that
1 implies 2, that 2 implies 3, and that 3 implies 1. That will make a
complete cycle and show that any one of the above statements implies the
other two).

1-8. It is always good to get more practice working with different reference
frames and spacetime diagrams. This problem will provide you with some
of that practice before we get to (Einstein) relativity itself.

Suppose that you are in a room in a rocket in deep space. When they
are on, the rocket engines cause the rocket to be pushed ‘upwards,’ in the
direction of the ‘ceiling.’ Draw spacetime diagrams showing the worldlines
of the ceiling of the room, the floor of the room, and your head, and your
feet in the following situations, using the reference frames specified.

Be sure to start your diagrams a short time before t = 0. You need only
worry about where things are located in the direction marked x below (in
other words, you only need to worry about the ‘vertical’ positions of the
ceiling, floor, etc.). By the way, following our conventions you should draw
this position coordinate along the horizontal axis, since time should run
up the vertical axis.
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Floor Ceiling

x
Note: Your answer should consist of a single diagram for each part below.

a) The rocket engines are off. You are holding on to the ceiling (as shown
below) and then let go at t = 0. Draw the diagram using an inertial
frame that is at rest (not moving) relative to you before you let go.

b) As in (a), but this time you push yourself away from the ceiling as you
let go.

c) This time, the rocket engines are on (the whole time, including the time
before t = 0). You are holding on to the ceiling and let go at t = 0.
Draw the diagram using an inertial frame that is at rest relative to you
at the instant5 just before you let go.

d) As in (c), but use the reference frame of the rocket.

e) As in (c), again using an inertial frame, but now suppose that you push
yourself away from the ceiling as you let go.

f) In which of the above is your frame of reference inertial during the
entire time shown on your diagram?

5If something is at rest relative to you at some instant, it has the same velocity as you do
at that instant, but its acceleration may differ.
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Chapter 2

Maxwell, Electromagnetism, and
the Ether

Read Einstein, Ch. 7

As we said at the end of the last chapter, Newtonian physics (essentially, the
physics of the 1700’s) worked just fine. And so, all was well and good until a
scientist named Maxwell came along...

The hot topics in physics in the 1800’s were electricity and magnetism. Everyone
wanted to understand batteries, magnets, lightning, circuits, sparks, motors,
and so forth (eventually to make power plants).

2.1 The Basics of E & M

Let me boil all of this down to some simple basics. People had discovered that
there were two particular kinds of forces (Electric and Magnetic) that acted
only on special objects. (This was as opposed to say, gravity, which acted on all
objects.) The special objects were said to be charged and each kind of charge
(Electric or Magnetic) came in two ‘flavors’:

electric: + and -

magnetic: N and S (north and south)

Like charges repel and opposite charges attract.

There were many interesting discoveries during this period, such as the fact that
‘magnetic charge’ is really just electric charge in motion1.

1This turns out to explain why you never find just a N magnetic charge or just a S magnetic
charge. They always occur together; any magnet will have both a N and a S magnetic pole.
Again, this is another story (really one from PHY212), but ask me if you’re interested.

43
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As they grew to understand more and more, physicists found it useful to describe
these phenomena not in terms of the forces themselves, but in terms of things
called “fields”. Here’s the basic idea:

Instead of just saying that X and Y ‘repel’ or that there is a force between
them, we break this down into steps:

• We say that X ‘fills the space around it with an electric field E’

• Then, it is this electric field E that produces a force on Y .

(Electric force on Y ) = (charge of Y )(Electric field at location of Y )

Fon Y = qY E

Note that changing the sign (±) of the charge changes the sign of the force.
The result is that a positive charge experiences a force in the direction of the
field, while the force on a negative charge is opposite to the direction of the
field.

Red (positive charge) moves
left with the field.  Blue (negative
charge) moves right against
the field.

blue = negative charge

red = positive charge

The arrows indicate the field.

Similarly, a magnetic charge fills the space around it with a magnetic field B
that then exerts a force on other magnetic charges.

?? Now, you may think that fields have only made things more com-
plicated, but in fact they are a very important concept as they al-
lowed people to describe phenomena which are not directly related
to charges and forces.

For example, the major discovery behind the creation of electric generators was
Faraday’s Law. This Law says that a magnetic field that changes in time pro-
duces an electric field. In a generator, rotating a magnet causes the magnetic
field to be continually changing, generating an electric field. The electric field
then pulls electrons and makes an electric current.

By the way: Consider a magnet in your (inertial) frame of reference. You, of
course, find zero electric field. But, if a friend (also in an inertial frame) moves
by at a constant speed, they see a magnetic field which ‘moves’ and therefore
changes with time. Thus, Maxwell says that they must see an electric field as
well! We see that a field which is purely magnetic in one inertial frame can have
an electric part in another. But recall: all inertial frames are supposed to yield
equally valid descriptions of the physics.



2.1. THE BASICS OF E & M 45

? Conversely, Maxwell discovered that an electric field which changes in time
produces a magnetic field. Maxwell codified both this observation and Faraday’s
law in a set of equations known as, well, Maxwell’s equations. Thus, a field that
is purely electric in one reference frame will have a magnetic part in another
frame of reference.

As a result, it is best not to think of electricity and magnetism as separate phe-
nomena. Instead, we should think of them as forming a single “electromagnetic”
field which is independent of the reference frame. It is the process of breaking
this field into electric and magnetic parts which depends on the reference frame.
There is a strong analogy2 with the following example: The spatial relationship
between the physics building and the Hall of Languages is fixed and independent
of any coordinate system. However, if I am standing at the Physics building
and want to tell someone how to walk to HOL, depending on which direction I
am facing I may tell that person to “walk straight ahead across the quad,” or I
might tell them to “walk mostly in the direction I am facing but bear a little to
the right.” The relationship is fixed, but the description differs. For the moment
this is just a taste of an idea, but we will be talking much more about this in
the weeks to come. In the case of electromagnetism, note that this is consistent
with the discovery that magnetic charge is really moving electric charge.

Not only do we find a conceptual unity between electricity and magnetism, but
we also find a dynamical loop. If we make the electric field change with time
in the right way, it produces a magnetic field which changes with time. This
magnetic field then produces an electric field which changes with time, which
produces a magnetic field which changes with time..... and so on. Moreover, it
turns out that a changing field (electric or magnetic) produces a field (magnetic
or electric) not just where it started, but also in the neighboring regions of space.
This means that the disturbance spreads out as time passes! This phenomenon
is called an electromagnetic wave. Electromagnetic waves are described in more
detail below in section 2.1.1, and all of their properties follow from Maxwell’s
equations. For the moment, we merely state an important property of electro-
magnetic waves: they travel with a precise (finite) speed. See section 2.1.1 for
the derivation.

2.1.1 Maxwell’s Equations and Electromagnetic Waves

The purpose of this section is to show you how Maxwell’s equations lead to
electromagnetic waves (and just what this means). This section is more math-
ematical than anything else we have done so far, and I will probably not go
through the details in class. If you’re not a math person, you should not be
scared off by the calculations below. The important point here is just to get
the general picture of how Maxwell’s equations determine that electromagnetic
waves travel at a constant speed.

2This analogy may be clear as mud at the moment, but will be clearer later in the course
as we think about a number of similar effects.
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Below, I will not use the ‘complete’ set of Maxwell’s equations – instead, I’ll
use a slightly simplified form which is not completely general, but which is
appropriate to the simplest electro-magnetic wave. Basically, I have removed
all of the complications having to do with vectors. You can learn about such
features in PHY212 or, even better, in the upper division electromagnetism
course.

Recall that one of Maxwell’s equations (Faraday’s Law) says that a magnetic
field (B) that changes is time produces an electric field (E). I’d like to discuss
some of the mathematical form of this equation. To do so, we have to turn
the ideas of the electric and magnetic fields into some kind of mathematical
objects. Let’s suppose that we are interested in a wave that travels in, say, the
x direction. Then we will be interested in the values of the electric and magnetic
fields at different locations (different values of x) and a different times t. As a
result, we will want to describe the electric field as a function of two variables
E(x, t) and similarly for the magnetic field B(x, t). (As mentioned above, we
are ignoring the fact that electric and magnetic fields are vector quantities; that
is, that they are like arrows that point in some direction. For the vector experts,
I have just picked out the relevant components for discussion here.)

Now, Faraday’s law refers to magnetic fields that change with time. How fast
a magnetic field changes with time is described by the derivative of the mag-
netic field with respect to time. For those of you who have not worked with
‘multivariable calculus,’ taking a derivative of a function of two variables like
B(x, t) is no harder than taking a derivative of a function of one variable like
y(t). To take a derivative of B(x, t) with respect to t, all you have to do is to
momentarily forget that x is a variable and treat it like a constant. For example,
suppose B(x, t) = x2t + xt2. Then the derivative with respect to t would be
just x2 + 2xt. When B is a function of two variables, the derivative of B with
respect to t is written ∂B

∂t .

It turns out that Faraday’s law does not relate ∂B
∂t directly to the electric field.

Instead, it relates this quantity to the derivative of the electric field with respect
to x. That is, it relates the time rate of change of the magnetic field to the way
in which the electric field varies from one position to another. In symbols,

∂B

∂t
=
∂E

∂x
.. (2.1)

It turns out that another of Maxwell’s equations has a similar form, which
relates the time rate of change of the electric field to the way that the magnetic
field changes across space. Figuring this out was Maxwell’s main contribution
to science. This other equation has pretty much the same form as the one above,
but it contains two ‘constants of nature’ – numbers that had been measured in
various experiments. They are called ε0 and µ0 (‘epsilon zero and mu zero’).
The first one, ε0 is related to the amount of electric field produced by a charge
of a given strength when that charge is in a vacuum. Similarly, µ0 is related to
the amount of magnetic field produced by a certain amount of electric current
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(moving charges) when that current is in a vacuum3. The key point here is that
both of the numbers are things that had been measured in the laboratory long
before Maxwell or anybody else had ever thought of ‘electromagnetic waves.’

Their values were ε0 = 8.854× 10−12 C2

Nm2 and µ0 = 4π × 10−7Ns2

C2 .

Anyway, this other Equation of Maxwell’s looks like:

∂E

∂t
= ε0µ0

∂B

∂x
. (2.2)

Now, to understand how the waves come out of all this, it is useful to take the
derivative (on both sides) of equation (2.1) with respect to time. This yields
some second derivatives:

∂2B

∂t2
=

∂2E

∂x∂t
(2.3)

Note that on the right hand side we have taken one derivative with respect to
t and one derivative with respect to x.

Similarly, we can take a derivative of equation (2.2) on both sides with respect
to x and get:

∂2B

∂x2
= (ε0µ0)

∂2E

∂x∂t
. (2.4)

Here, I have used the interesting fact that it does not matter whether we first
differentiate with respect to x or with respect to t: ∂

∂t
∂
∂xE = ∂

∂x
∂
∂tE.

Note that the right hand sides of equations (2.3) and (2.4) differ only by a factor
of ε0µ0. So, I could divide equation (2.4) by this factor and then subtract it
from (2.3) to get

∂2B

∂t2
− 1

ε0µ0

∂2B

∂x2
= 0 (2.5)

This is the standard form for a so-called ‘wave equation.’ To understand why,
let’s see what happens if we assume that the magnetic field takes the form

B = B0 sin(x− vt) (2.6)

for some speed v. Note that equation (2.6) has the shape of a sine wave at any
time t. However, this sine wave moves as time passes. For example, at t = 0
the wave vanishes at x = 0. On the other hand, at time t = π/2v, at x = 0 we

3Charges and currents placed in water, iron, plastic, and other materials are associated
with somewhat different values of electric and magnetic fields, described by parameters ε and
µ that depend on the materials. This is due to what are called ‘polarization effects’ within the
material, where the presence of the charge (say, in water) distorts the equilibrium between
the positive and negative charges that are already present in the water molecules. This is
a fascinating topic (leading to levitating frogs and such) but is too much of a digression to
discuss in detail here. See PHY212 or the advanced E & M course. The subscript 0 on ε0 and
µ0 indicates that they are the vacuum values or, as physicists of the time put it, the values
for ‘free space.’
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have B = −B0. A ‘trough’ that used to be at x = −π/2 has moved to x = 0.
We can see that this wave travels to the right at constant speed v.

Taking a few derivatives shows that for B of this form we have

∂2B

∂t2
− 1

ε0µ0

∂2B

∂x2
= (v2 − 1

ε0µ0
)B0 sin(x− vt). (2.7)

This will vanish (and therefore solve equation (2.6)) if (and only if) v = ±1/
√
ε0µ0.

Thus, we see that Maxwell’s equations do lead to waves, and that those waves
travel at a certain speed4 given by 1/

√
ε0µ0. Maxwell realized this, and was

curious how fast this speed actually is. Plugging in the numbers that had been
found by measuring electric and magnetic fields in the laboratory, he found (as
you can check yourself using the numbers above!) 1/

√
ε0µ0 = 2.99...× 108m/s.

Now, the kicker is that, not too long before Maxwell, people had measured the
speed at which light travels, and found that (in a vacuum) this speed was also
2.99...× 108m/s!! Coincidence???

Maxwell didn’t think so5. Instead, he jumped to the quite reasonable conclusion
that light actually was a a kind of electromagnetic wave, and that it consists
of a magnetic field of the kind we have just been describing (together with the
accompanying electric field). We can therefore replace the speed v above with
the famous symbol c that we reserve for the speed of light in a vacuum.

Oh, for completeness, I should mention that equations (2.1) and (2.2) show
that our magnetic field must be accompanied by an electric field of the form
E = E0 sin(x− vt) where E0 = −B0c.

2.2 The elusive ether

Recall the Principle of Relativity: The Laws of Physics are the same in all
inertial frames.

So, the laws of electromagnetism (Maxwell’s equations) ought to hold in any
inertial reference frame, right? But then light would move at speed c in all
reference frames, violating the law of addition of velocities... And this would
imply that T and S are wrong!

How did physicists react to this observation? They said “Obviously, Maxwell’s
equations can only hold in a certain frame of reference.” Consider, for example,
Maxwell’s equations in water. There, they also predict a certain speed for
the waves as determined by ε and µ in water (which are different from the
ε0 and µ0 of the vacuum). However, here there is an obvious candidate for a

4The (±) sign means that the wave would travel with equal speed to the right or to the
left.

5Especially since he also found that when ε and µ were measured say, in water, 1/
√
εµ also

gave the speed of light in water. The same holds for any material
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particular reference frame with respect to which this speed should be measured:
the reference frame of the water itself. Moreover, experiments with moving
water did in fact show that 1/

√
εµ gave the speed of light through water only

when the water was at rest6. The same thing, by the way, happens with regular
surface waves on water (e.g., ocean waves, ripples on a pond, etc.). There is
a wave equation not unlike (2.5) which controls the speed of the waves with
respect to the water.

So, clearly, c should be just the speed of light ‘as measured in the reference
frame of the vacuum.’ Note that there is some tension here with the idea we
discussed before that all inertial frames are fundamentally equivalent. If this
is so, one would not expect empty space itself to pick out one as special. To
reconcile this in their minds, physicists decided that ‘empty space’ should not
really be completely empty. After all, if it were completely empty, how could it
support electromagnetic waves? So, they imagined that all of space was filled
with a fluid-like substance called the “Luminiferous Ether.” Furthermore, they
supposed that electromagnetic waves were nothing other than wiggles of this
fluid itself.

So, the thing to do was to next was to go out and look for the ether. In
particular, they wanted to determine what was the ether’s frame of reference.
Was the earth moving through the ether? Was there an ‘ether wind’ blowing
by the earth or by the sun? Did the earth or sun drag some of the ether with
it as it moved through space?

The experiment that really got people’s attention was done by Albert Michelson
and Edward Morley in 1887. They were motivated by issues about the nature of
light and the velocity of light, but especially by a particular phenomenon called
the “aberration” of light. This was an important discovery in itself, so let us
take a moment to understand it.

2.2.1 The Aberration of Light

Here is the idea: Consider a star very far from the earth. Suppose we look at
this star through a telescope. Suppose that the star is “straight ahead” but
the earth is moving sideways. Then, we will not in fact see the star as straight
ahead. Note that, because of the finite speed of light, if we point a long thin
telescope straight at the star, the light will not make it all the way down the
telescope but will instead hit the side because of the motion of the earth. A bit
of light entering the telescope and moving straight down, will be smacked into
by the rapidly approaching right wall of the telescope, even if it entered on the
far left side of the opening (see diagram below). The effect is the same as if
the telescope was at rest and the light had been coming in at a slight angle so
that the light moved a bit to the right. The only light that actually makes it
to the bottom is light that is moving at an angle so that it runs away from the
oncoming right wall as it moves down the telescope tube.

6However, physicists like Fizeau did find some odd things when they performed these
experiments. We will talk about them shortly.
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If we want light from the straight star in front of us to make it all the way
down, we have to tilt the telescope. In other words, what we do see though the
telescope is not the region of space straight in front of the telescope opening,
but a bit of space slightly to the right.

Light Ray hits side instead of reaching bottom

Telescope moves through ether Must tilt telescope to see star

This phenomenon had been measured, using the fact that the earth first moves in
one direction around the sun and then, six months later, it moves in the opposite
direction. In fact, someone else (Fizeau) had measured the effect again using
telescopes filled with water. The light moves more slowly through water than
through the air, so this should change the angle of aberration in a predictable
way. While the details of the results were actually quite confusing, the fact that
the effect occurred at all seemed to verify that the earth did move through the
ether and, moreover, that the earth did not drag very much of the ether along
with it.

You might wonder how Fizeau could reach such a conclusion. After all, as
you can see from the diagram below, there is also and effect if the ether is
dragged along by the earth. In the region far from the earth where the ether is
not being dragged, it still provides a ‘current’ that affects the path of the light.
The point, however, is that the telescope on the Earth must now point at the
place where the light ray enters the region of ether being dragged by the earth.
Note that this point does not depend on whether the telescope is filled with air
or with water! So, Fizeau’s observation that filling the telescope with water
increases the stellar aberration tells us that the ether is not strongly dragged
along by the earth.
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2.2.2 Michelson, Morely, and their experiment

Because of the confusion surrounding the details of Fizeau’s results, it seemed
that the matter deserved further investigation. Michelson and Morely thought
that they might get a handle on things by measuring the velocity of the ether
with respect to the earth in a different way. Have a look at their original paper
(which I will provide as a handout) to see what they did in their own words.

Michelson and Morely used a device called an interferometer, which looks like
the picture below. The idea is that they would shine light (an electromagnetic
wave) down each arm of the interferometer where it would bounce off a mirror
at the end and return. The two beams are then recombined and viewed by the
experimenters. Both arms are the same length, say L.

Light rays bounce off both mirrors

Mirror

Mirror
rays start

here

rays are viewed 
here

What do the experimenters see? Well, if the earth was at rest in the ether, the
light would take the same amount of time to travel down each arm and return.
Now, when the two beams left they were synchronized (“in phase”), meaning
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that wave crests and wave troughs start down each arm at the same time7. Since
each beam takes the same time to travel, this means that wave crests emerge
at the same time from each arm and similarly with wave troughs. Waves add
together as shown below8, with two crests combining to make a big crest, and
two troughs combining to make a big trough. The result is therefore a a bright
beam of light emerging from the device. This is what the experimenters should
see.

zero

zero
+ = zero

On the other hand, if the earth is moving through the ether (say, to the right),
then the right mirror runs away from the light beam and it takes the light longer
to go down the right arm than down the top arm. On the way back though, it
takes less time to travel the right arm because of the opposite effect. A detailed
calculation is required to see which effect is greater (and to properly take into
account that the top beam actually moves at an angle as shown below).

This one takes less time.
After doing this calculation one finds9 that the light beam in the right arm

comes back faster than light beam in the top arm. The two signals would no
longer be in phase, and the light would not be so bright. In fact, if the difference
were great enough that a crest came back in one arm when a trough came back
in the other, then the waves would cancel out completely and they would see
nothing at all! Michelson and Morely planned to use this effect to measure the
speed of the earth with respect to the ether.

zero

+ = zero

zero

These waves cancel out

However, they saw no effect whatsoever! No matter which direction they pointed
their device, the light seemed to take the same time to travel down each arm.
Clearly, they thought, the earth just happens to be moving with the ether right

7Michelson and Morely achieved this synchronization by just taking one light beam and
splitting it into two pieces.

8My apologies for the sharp corners, but triangular waves are a lot easier to draw on a
computer than sine waves!

9See homework problem 2-2.
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now (i.e., bad timing). So, they waited six months until the earth was moving
around the sun in the opposite direction, expecting a relative velocity between
earth and ether equal to twice the speed of the earth around the sun. However,
they still found that the light took the same amount of time to travel down both
arms of the interferometer!

So, what did they conclude? They thought that maybe the ether is dragged
along by the earth... But then, how would we explain the stellar aberration
effects?

Deeply confused, Michelson and Morely decided to gather more data. Despite
stellar aberration, they thought the earth must drag some ether along with it.
After all, as we mentioned, the details of the aberration experiments were a
little weird, so maybe the conclusion that the earth did not drag the ether was
not really justified..... If the earth did drag the ether along, they thought there
might be less of this effect up high, like on a mountain top. So, they repeated
their experiment at the top of a mountain. Still, they found no effect. There
then followed a long search trying to find the ether, but no luck. Some people
were still trying to find an ether ‘dragged along very efficiently by everything’
in the 1920’s and 1930’s. They never had any luck.

2.3 Homework Problems

2-1. Calculate 1/
√
ε0µ0 from the values given in the text.

2-2. Following the framework of Newtonian physics, suppose that that earth is
moving through the luminiferous ether at a speed v. Suppose that you are
Michelson (of the famous experiment) and that you have an interferometer
with two arms, each of length L as shown below. If one arm is directed
along the direction of the earth’s motion and one arm is directed in a
perpendicular direction,

i How long will it take a bit of light to make a complete circuit (out and
back) along each arm??

ii How big is the difference between these two times?

You will need the following ‘expansions’ (formula’s that are approximately
true when x is small): (1 + x)−1 = 1 − x + x2, (1 − x)−1 = 1 + x + x2,
and (1 − x2)−1/2 = 1 + 1

2x
2. You will need these formulas for the small

quantity x = v/c. Light, of course, travels through the ether at speed c.
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Path 1

Path 2 Motion of earth relative to Ether

are mirrors

2-3. Calculate the size of the stellar aberration effect in Newtonian physics for
light coming straight down at speed c and a telescope moving straight
sideways at speed v. At what angle θ must we point the telescope to see
the star? Hint: In what direction is the light moving in the reference frame
of the telescope? Express θ in terms of v and c. Give the exact value, not
the small v approximation mentioned in the main chapter.

θ

c

v



Chapter 3

Einstein and Inertial
Frames

Read Einstein, ch. 8-14, Appendix 1

In the last chapter we learned that something is very wrong. The stellar aberra-
tion results indicate that the earth is moving through the ether. But, Michelson
and Morely found results indicating that the ether is dragged along perfectly
by the earth. All of the experiments seem to have been done properly, so how
can we understand what is going on? Which interpretation is correct?

3.1 The Postulates of Relativity

In 1905, Albert Einstein tried a different approach. He asked “What if there is
no ether?” What if the speed of light in a vacuum really is the same in every
inertial reference frame? He soon realized, as we have done, that this means
that we must abandon T and S, our Newtonian assumptions about space and
time.

Hopefully, you are sufficiently confused by the Michelson and Morely and stellar
aberration results that you will agree to play along with Einstein for awhile. This
is what we want to do in the next few sections. We will explore the consequences
of Einstein’s idea. Surprisingly, one can use this idea to build a consistent
picture of what is going on that explains both the Michelson-Morely and stellar
aberration. It turns out that this idea makes a number of other weird and
ridiculous-sounding predictions as well. Perhaps even more surprisingly, these
predictions have actually been confirmed by countless experiments over the last
100 years.

We are about to embark on a very strange path, one that runs counter to the
intuition that we accumulate in our daily lives. As a result, we will have to tread

55
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carefully, taking the greatest care with our logical reasoning. As we saw in chap-
ter 1, careful logical reasoning can only proceed from clearly stated assumptions
(a.k.a. ‘axioms’ or ‘postulates’). We’re throwing out almost everything that we
thought we understood about space and time. So then, what should we keep?

We’ll keep the bare minimum consistent with Einstein’s idea. We will take our
postulates to be:

I) The laws of physics are the same in every inertial frame.

II) The speed of light in an inertial frame is always c = 2.99...× 108m/s.

We also keep Newton’s first law, which is just the definition of an inertial frame:

There exists a class of reference frames (called inertial frames) in which an
object moves in a straight line at constant speed if and only if zero net force

acts on that object.

Finally, we will need a few properties of inertial frames. We therefore postulate
the following familiar statement.

Object A is in an inertial frame ⇔ Object A experiences zero force ⇔ Object
A moves at constant velocity in any other inertial frame.

Since we no longer have S and T, we can no longer derive this last statement.
It turns out that this statement does in fact follow from even more elementary
(albeit technical) assumptions that we could introduce and use to derive it. This
is essentially what Einstein did. However, in practice it is easiest just to assume
that the result is true and go from there.

Finally, it will be convenient to introduce a new term:

Definition An “observer” is a person or apparatus that makes measurements.

Using this term, assumption II becomes: The speed of light is always c =
2.9979× 108m/s as measured by any inertial observer.

By the way, it will be convenient to be a little sloppy in our language and to say
that two observers with zero relative velocity are in the same reference frame,
even if they are separated in space.

3.2 Time and Position, take II

Recall that in Chapter 1 we used the (mistaken!) old assumptions T and S to
show that our previous notions of time and position were well-defined. Thus, we
can no longer rely even on the definitions of ‘time and position of some event in
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some reference frame’ as given in chapter 1. We will need new definitions based
on our new postulates.

For the moment, let us stick to inertial reference frames. What tools can we
use? We don’t have much to work with. The only assumption that deals with
time or space at all is postulate II, which sets the speed of light. Thus, we’re
going to somehow base out definitions on the speed of light.

We will use the following:

To define position in a given inertial frame: Build a framework of measuring
rods and make sure that the zero mark always stays with the object that
defines the (inertial) reference frame. Note that, once we set it up, this
framework will move with the inertial observer without us having to apply
any forces. The measuring rods will move with the reference frame. An
observer (say, a friend of ours who rides with the framework) at an event
can read off the position (in this reference frame) of the event from the
mark on the rod that passes through that event.

To define time in a given inertial frame: Put an ideal clock at each mark on
the framework of measuring rods above. Keep the clocks there, moving
with the reference frame. The clocks can be synchronized with a pulse of
light emitted, for example, from t = 0. A clock at x knows that, when it
receives the pulse, it should read |x|/c.

These notions are manifestly well-defined. We do not need to make the same
kind of checks as before as to whether replacing one clock with another would
lead to the same time measurements. This is because the rules just given do
not in fact allow us to use any other clocks, but only the particular set of
clocks which are bolted to our framework of measuring rods. Whether other
clocks yield the same values is still an interesting question, but not one that
affects whether the above notions of time and position of some event in a given
reference frame are well defined.

Significantly, we have used a different method here to synchronize clocks than
we did in chapter 1. The new method based on a pulse of light is available
now that we have assumption II, which guarantees that it is an accurate way to
synchronize clocks in an inertial frame. This synchronization process is shown
in the spacetime diagram below.

x=0              x=1m

t=0

t=(1m)/c

t= -(1m)/c

x=-1m
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Note that the diagram is really hard to read if we use meters and seconds as
units:

x=0              x=1m

t=0

t=+1sec

t= -1sec

x=-1m

Therefore, it is convenient to use units of seconds and light-seconds: 1Ls =
(1 sec)c = 3x× 108m = 3× 105km. This is the distance that light can travel in
one second, roughly 7 times around the equator. Working in such units is often
called “choosing c = 1,” since light travels at 1Ls/sec. We will make this choice
for the rest of the course, so that light rays will always appear on our diagrams
as lines at a 45◦ angle with respect to the vertical; i.e. slope = 1.

x=0              x=1Ls

t=0

t=+1sec

t= -1sec

x=-1Ls

3.3 Simultaneity: Our first departure from Galileo
and Newton

The above rules allow us to construct spacetime diagrams in various reference
frames. An interesting question then becomes just how these diagrams are
related. Let us start with an important example. Back in chapter 1, we went
to some trouble to show that the notion that two events happen ‘at the same
time’ does not depend on which reference frame (i.e., on which synchronized set
of clocks) we used to measure these times. Now that we have thrown out T and
S, will this statement still be true?

Let us try to find an operational definition of whether two events occur ‘simul-
taneously’ (i.e., at the same time) in some reference frame. We can of course
read the clocks of our friends who are at those events and who are in our ref-
erence frame. However, it turns out to be useful to find a way of determining
which events are simultaneous with each other directly from postulate II, the
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one about the speed of light. Note that there is no problem in determining
whether or not two things happen (like a door closing and a firecracker going
off) at the same event. The question is merely whether two things that occur
at different events take place simultaneously.

Suppose that we have a friend in an inertial frame and that she emit a flash
of light from her worldline. The light will travel outward both to the left and
the right, always moving at speed c. Suppose that some of this light is reflected
back to her from event A on the left and from event B on the right. The
diagram below makes it clear that the two reflected pulses of light reach her at
the same time if and only if A and B are simultaneous. So, if event C (where
the reflected pulses cross) lies on her worldline, she knows that A and B are in
fact simultaneous in our frame of reference.

Note: Although the light does not reach our friend until event C (at t = 2 sec.,
where she ‘sees’ the light), she knows that the light has taken some time to
travel and he measurements place the reflections at t = 1 sec.

t  =+1sec t    =+1sec
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f

f

A

Friend

B

if and only if the 
events are simultaneous 

Signals return at the same time 

t    =0

f

f

A B
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x    =0 f

x    =0 f

C C

In fact, even if we are in a different reference frame, we can tell that A and B
are simultaneous in our friend’s frame if event C lies on her worldline.

Suppose that we are also inertial observers who meet our friend at the origin
event and then move on. What does the above experiment look like in our
frame? We’ll take the case of the figure on the left above.

Let’s start by drawing our friend’s worldline and marking event C. We don’t
really know where event C should appear, but it doesn’t make much difference
since I have drawn no scale on the diagram below. All that matters is that event
C is on our friend’s worldline (xf = 0).
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t  =0us

Us

C

x = 0
f
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Now let’s add the light rays (45◦ lines) from the origin and from event C.
The events where these lines cross must be A and B, as shown below.
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t  =0us

Us

C

B

x = 0
f

A

Friend’s Line of
Simultaneity

Note that, on either diagram, the worldline xf = 0 makes the same angle with
the light cone as the line of simultaneity tf = const. That is, the angles α and β
below are equal. You will in fact derive this in one of your homework problems.

?? By the way, we also can find other pairs of events on our diagram that are
simultaneous in our friend’s reference frame. We do this by sending out light
signals from another observer in the moving frame (say, located 1m to the right
of our friend). For example, the diagram below shows another event (D) that is
also simultaneous with A and B in our friend’s frame of reference.
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In this way we can map out our friend’s entire line of simultaneity – the set of all
events that are simultaneous with each other in her reference frame. The result
is that the line of simultaneity for the moving frame does indeed appear as a
straight line on our spacetime diagram. This property will be very important
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in what is to come.

Before moving on, let us get just a bit more practice and ask what set of events
our friend (the moving observer) finds to be simultaneous with the origin (the
event where the her worldline crosses ours)? We can use light signals to find
this line as well. Let’s label that line tf = 0 under the assumption that our
friend chooses to set her watch to zero at the event where the worldlines cross.
Drawing in a carefully chosen box of light rays, we arrive at the diagram below.
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α
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Note that we could also have used the rule noticed above: that the worldline
and any line of simultaneity make equal angles with the light cone.

As a final comment, note that while we know that the line of simultaneity drawn
above (tf = const) represents some constant time in the moving frame, we do
not yet know which time that is! In particular, we do not yet know whether it
represents a time greater than one second or a time less than on second. We
were able to label the tf = 0 line with an actual value only because we explicitly
assumed that our friend would measure time from the event (on that line) where
our worldlines crossed. We will explore the question of how to assign actual time
values to other lines of simultaneity shortly.

Summary: We have learned that events which are simultaneous in one inertial
reference frame are not in fact simultaneous in a different inertial frame. We
used light signals and postulate II to determine which events were simultaneous
in which frame of reference.

3.4 Relations between events in Spacetime

It will take some time to absorb the implications of the last section, but let
us begin with an interesting observation. Looking back at the diagrams above,
note that a pair of events which is separated by “pure space” in one inertial
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frame (i.e., is simultaneous in that frame) is separated by both space and time
in another. Similarly, a pair of events that is separated by “pure time” in one
frame (occurring at the same location in that frame) is separated by both space
and time in any other frame. This may remind you a bit of our discussion
of electric and magnetic fields, where a field that was purely magnetic in one
frame involved both electric and magnetic parts in another frame. In that case
we decided that is was best to combine the two and to speak simply of a single
“electromagnetic” field. Similarly here, it is best not to speak of space and
time separately, but instead only of “spacetime” as a whole. The spacetime
separation is fixed, but the decomposition into space and time depends on the
frame of reference.

Note the analogy to what happens when you turn around in space. The notions
of Forward/Backward vs. Right/Left get mixed up when you turn (rotate) your
body. If you face one way, you may say that the Hall of Languages is “straight
ahead.” If you turn a bit, you might say that the Hall of Languages is “somewhat
ahead and somewhat to the left.” However, the separation between you and the
Hall of Languages is the same no matter which way you are facing. As a result,
Forward/Backward and Right/Left are not strictly speaking separate, but rather
fit together to form two-dimensional space.

This is exactly what is meant by the phrase “space and time are not separate,
but fit together to form four-dimensional spacetime.” As a result, “time is the
fourth dimension of spacetime.”

So then, how do we understand the way that events are related in this spacetime?
In particular, we have seen that simultaneity is not an absolute concept in
spacetime itself. There is no meaning to whether two events occur at the same
time unless we state which reference frame is being used. If there is no absolute
meaning to the word ‘simultaneous,’ what about ‘before’ and ‘after’ or ‘past’
and ‘future?’

Let’s start off slowly. We have seen that if A and B are simultaneous in your
(inertial) frame of reference (but are not located at the same place), then there
is another inertial frame in which A occurs before B. A similar argument
(considering a new inertial observer moving in the other direction) shows that
there is another inertial frame in which B occurs before A. Looking back at our
diagrams, the same is true if A occurs just slightly before B in your frame of
reference.....

However, this does not happen if B is on the light cone emitted from A, or if B is
inside the light cone of A. To see this, remember that since the speed of light is
c = 1 in any inertial frame, the light cone looks the same on everyone’s spacetime
diagram. A line more horizontal than the light cone therefore represents a
‘speed’ greater than c, while a line more vertical than the light cone represents
a speed less than c. Because light rays look the same on everyone’s spacetime
diagram, the distinction between these three classes of lines must also be the
same in all reference frames.
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Thus, it is worthwhile to distinguish three classes of relationships that pairs of
events can have. These classes and some of their properties are described below.
Note that in describing these properties we limit ourselves to inertial reference
frames that have a relative speed less than that of light1.

case 1) A and B are outside each other’s light cones.

A

B
simultaneous frame

frame in which A happens first

In this case, we say that they are spacelike related. Note that the
following things are true in this case:

a) There is an inertial frame in which A and B are simultaneous.

b) There are also inertial frames in which event A happens first as
well as frames in which event B happens first (even more tilted
than the simultaneous frame shown above). However, A and B
remain outside of each other’s light cones in all inertial frames.

case 2) A and B are inside each other’s light cones in all inertial frames.

1We will justify this in a moment.
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A

B

Observer who passes through both events

In this case we say that they are timelike related. Note that the fol-
lowing things are true in this case:

a) There is an inertial observer who moves through both events and
whose speed in the original frame is less than that of light.

b) All inertial observers agree on which event (A or B) happened first.

c) As a result, we can meaningfully speak of, say, event A being to the
past of event B.

case 3) A and B are on each other’s light cones. In this case we say that they
are lightlike related. Again, all inertial observers agree on which event
happened first and we can meaningfully speak of one of them being to
the past of the other.

Now, why did we consider only inertial frames with relative speeds less than
c? Suppose for the moment that our busy friend (the inertial observer) could
in fact travel at v > c (i.e., faster than light) as shown below at left. I have
marked two events, A and B that occur on her worldline. In our frame event
A occurs first. However, the two events are spacelike related. Thus, there is
another inertial frame (tother, xother) in which B occurs before A as shown below
at right. This means that there is some inertial observer (the one whose frame
is drawn at right) who would see her traveling backwards in time.
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This was too weird even for Einstein. After all, if she could turn around, our
faster-than-light friend could even carry a message from some observer’s future
into that observer’s past. This raises all of the famous ‘what if you killed your
grandparents’ scenarios from science fiction fame. The point is that, in relativity,
travel faster than light is travel backwards in time. For this reason, let us simply
ignore the possibility of such observers for awhile. In fact, we will assume that
no information of any kind can be transmitted faster than c. I promise that we
will come back to this issue later. The proper place to deal with this turns out
to be in chapter 5.

Me

x = 0
s

t    = const
B

A

C

other

other
t      =0

3.5 Time Dilation

We are beginning to come to terms with simultaneity but, as pointed out earlier,
we are still missing important information about how different inertial frames
match up. In particular, we still do not know just what value of constant tf the
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line marked “friend’s line of simultaneity” below actually represents.
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In other words, we do not yet understand the rate at which some observer’s clock
ticks in another observer’s reference frame.

To work this out, it is useful to tie time measurements directly to our axioms,
just as we found it useful to tie simultaneity directly to our axioms in section
3.4. That is, we should somehow make a clock out of light! For example, we
can bounce a beam of light back and forth between two mirrors separated by
a known distance. Perhaps we imagine the mirrors being attached to a rod of
fixed length L. Since we know how far apart the mirrors are, we know how long
it takes a pulse of light to travel up and down and we can use this to mark the
passage of time. We have a clock.

3.5.1 Rods in the perpendicular direction

A useful trick is to think about what happens when this ‘light clock’ is held
perpendicular to the direction of relative motion. This direction is simpler
than the direction of relative motion itself. For example, two inertial observers
actually do agree on which events are simultaneous in that direction. To see
this, suppose that I am moving straight toward you (from the front) at some
constant speed. Suppose that you have two firecrackers, one placed one light
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second to your left and one placed one light second to your right. Suppose that
both explode at the same time in your frame of reference. Does one of them
explode earlier in mine?

No, and the easiest way to see this is to argue by symmetry: the only difference
between the two firecrackers is that one is on the right and the other is on the
left. Since the motion is forward or backward, left and right act exactly the
same in this problem. Thus, the answer to the question ‘which is the earliest’
must not distinguish between left and right. But, there are only three possible
answers to this question: left, right, and neither. Thus, the answer must be
‘neither’, and both firecrackers explode at the same time in our reference frame
as well2.

Now, suppose we ask about the length of the meter sticks. Let’s ask whose
meter stick you measure to be longer. For simplicity, let us suppose that you
conduct the experiment at the moment that the two meter sticks are in contact
(when they “pass through each other”). Note that both you and I agree on
which events constitute the meter sticks passing through each other, since this
involves only simultaneity in the direction along the meter sticks and, in the
present case, this direction is perpendicular to our relative velocity.

On the one hand, since we both agree that we are discussing the same set of
events, we must also agree on which meter stick is longer. This is merely a
question of whether the event at the end of your meter stick is inside or outside
of the line of events representing my meter stick.

Said more physically, suppose that we put a piece of blue chalk on the end of
my meter stick, and a piece of red chalk on the end of yours. Then, after the
meter sticks touch, we must agree on whether there is now a blue mark on your
stick (in which case yours in longer), there is a red mark on my stick (in which
case that mine is longer), or whether each piece of chalk marked the very end
of the other stick (in which case they are the same length).

On the other hand, the laws of physics are the same in all inertial frames.
In particular, suppose that the laws of physics say that, if you (as an inertial
observer) take a meter stick 1m long in its own rest frame and move it toward
you, then that that meter stick appears to be longer than a meter stick that is
at rest in your frame of reference. Here we assume that it does not matter in
which direction (forward or backward) the meter stick is moving, as all direction
in space are the same. In that case, the laws of physics must also say that, if I
(as an inertial observer) take a meter stick 1m long in its own rest frame and
move it toward me, that that meter stick again appears to be longer than a
meter stick that is at rest in my of reference. Thus, if you find my stick to be
longer, I must find your stick to be longer. If you find my stick to be shorter,

2It is useful to contrast this with what happens in the direction of relative motion. There
is a physical difference between the end ‘in front’ (i.e., in the direction of the relative velocity)
and the end ‘in back’ (in the direction opposite to the relative velocity). So, in that case
it was consistent for the answer to be that the event in front of the moving observer occurs
earlier. We say that the velocity breaks (i.e., destroys) the symmetry between front and back
while the right/left symmetry remains.
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then I must find your stick to be shorter. As a result, consistency requires both
of us find the two meter sticks to be of the same length.

We conclude that the length of a meter stick is the same in two inertial
frames for the case where the stick points in the direction perpendicular to the
relative motion.

3.5.2 Light Clocks and Reference Frames

The property just derived makes it convenient to use such meter sticks to build
clocks. Recall that we have given up most of our beliefs about physics for the
moment, so that in particular we need to think about how to build a reliable
clock. The one thing that we have chosen to build our new framework upon is
the constancy of the speed of light. Therefore, it makes sense to use light to
build our clocks. We will do this by sending light signals out to the end of our
meter stick and back. For convenience, let us assume that the meter stick is one
light-second long. This means that it will take the light one second to travel
out to the end of the stick and then one second to come back. A simple model
of such a light clock would be a device in which we put mirrors on each end of
the meter stick and let a short pulse of light bounce back and forth. Each time
the light returns to the first mirror, the clock goes ‘tick’ and two seconds have
passed.

Now, suppose we look at our light clock from the side. Let’s say that the rod in
the clock is oriented in the vertical direction. The path taken by the light looks
like this:

However, what if we look at a light clock carried by our inertial friend who
is moving by at speed v? Suppose that the rod in her clock is also oriented
vertically, with the relative motion in the horizontal direction. Since the light
goes straight up and down in her reference frame, the light pulse moves up and
forward (and then down and forward) in our reference frame. In other words,
it follows the path shown below. This should be clear from thinking about the
path you see a basketball follow if someone lifts the basketball above their head
while they are walking past you.
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The length of each side of the triangle is marked on the diagram above. Here,
L is the length of her rod and tus is the time (as measured by us) that it takes
the light to move from one end of the stick to the other. To compute two of the
lengths, we have used the fact that, in our reference frame, the light moves at
speed c while our friend moves at speed v.

The interesting question, of course, is just how long is this time tus. We know
that the light takes 1 second to travel between the tips of the rod as measured in
our friend’s reference frame, but what about in ours? It turns out that we can
calculate the answer by considering the length of the path traced out by the light
pulse (the hypotenuse of the triangle above). Using the Pythagorean theorem,
the distance that we measure the light to travel is

√
(vtus)2 + L2. However, we

know that it covers this distance in a time tus at speed c. Therefore, we have

c2t2us = v2t2us + L2, (3.1)

or,

L2/c2 = t2us − (v/c)2t2us = (1− [v/c]2)t2us. (3.2)

Thus, we measure a time tus = L

c
√

1−(v/c)2
between when the light leaves

one mirror and when it hits the next! This is in contrast to the time tfriend =
L/c = 1second measured by our friend between these same to events. Since this
will be true for each tick of our friend’s clock, we can conclude that:

Between any two events where our friend’s clock ticks, the time tus that we
measure is related to the time tfriend measured by our friend by through

tus =
tfriend√

1− (v/c)2
. (3.3)

Finally, we have learned how to label another line on our diagram above:
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Note that I have marked two special events on the diagram. The dot labeled A
is the event where the moving (friend’s) clock ticks t = 1 second. It is an event
on the friend’s worldline. The dot labeled B is the event where our clock ticks
t = 1 second. It is an event on our worldline.

3.5.3 Proper Time

We have seen that3 different observers in different inertial frames measure dif-
ferent amounts of time to pass between two given events. We might ask if any
one of these is a “better” answer than another? Well, in some sense the answer
must be ‘no,’ since the principle of relativity tells us that all inertial frames
are equally valid. However, there can be a distinguished answer. Note that, if
one inertial observer actually experiences both events, then inertial observers in
other frames have different worldlines and so cannot pass through both of these
events. It is useful to use the term proper time between two events to refer to
the time measured by an inertial observer who actually moves between the two
events. Note that this concept exists only for timelike separated events.

Let’s work through at a few cases to make sure that we understand what is
going on. Consider two observers, red and blue. The worldlines of the two
observers intersect at an event, where both set their clocks to read t = 0.

1) Suppose that red sets a firecracker to go off on red’s worldline at tred = 1.
At what time does blue find it to go off? Our result (3.3) tells us that
tblue = 1/

√
1− (v/c)2.

2) Suppose now that blue sets a firecracker to go off on blue’s worldline at
tblue = 1. At what time does red find it to go off? From (3.3) we now have
tred = 1/

√
1− (v/c)2.

3Still assuming that Einstein’s idea is right.
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3) Suppose that (when they meet) blue plants a time bomb in red’s luggage
and sets it to go off after 1sec. What times does blue find it to go off? The
time bomb will go off after it experiences 1sec of time. In other words, it
will go off at the point along its worldline which is 1sec of proper time later.
Since red is traveling along the same worldline, this is 1sec later according
to red and on red’s worldline. As a result, (3.3) tells us that this happens at
tblue = 1/

√
1− (v/c)2.

4) Suppose that (when they meet) red plants a time bomb in blue’s luggage
and he wants it to go off at tred=1. How much time delay should the bomb be
given? This requires figuring out how much proper time will pass on blue’s
worldline between red’s lines of simultaneity tred=0 and tred=1. Since the
events are on blue’s worldline, blue plays the role of the moving friend in
(3.3). As a result, the time until the explosion as measured by blue should
be tblue =

√
1− (v/c)2, and this is the delay to set.

3.5.4 Why should you believe all of this?

So far, we have just been working out consequences of Einstein’s idea. We have
said little about whether you should actually believe that this represents reality.
In particular, the idea that clocks in different reference frames measure different
amounts of time to pass blatantly contradicts your experience, doesn’t it? Just
because you go and fly around in an airplane does not mean that your watch
becomes unsynchronized with the Cartoon Network’s broadcast schedule, does
it?

Well, let’s start thinking about this by figuring out how big the time dilation
effect would be in everyday life. Commercial airplanes move at about4 300m/s.
So, v/c ≈ 10−6 for an airplane. Now5,

√
1− (v/c)2 ≈ 1 − 1

2 (v/c)2 + ... ≈
1− 5× 10−13 for the airplane. This is less than 1 part in a trillion.

Tiny, eh? You’d never notice this by checking your watch against the Cartoon
Network. However, physics is a very precise science. It turns out that it is
in fact possible to measure time to better than one part in a trillion. A nice
form of this experiment was first done in the 1960’s. Some physicists got two
identical atomic clocks, brought them together, and checked that they agreed to
much better than 1 part in a trillion. Then, they left one in the lab and put the
other on an airplane (such clocks were big, they bought a seat for the clock on
a commercial airplane flight) and flew around for awhile. When they brought
the clocks back together at the end of the experiment, the moving clock had in
fact ‘ticked’ less times, measuring less time to pass in precise accord with our
calculations above and Einstein’s prediction.

?? You should not underestimate the significance of what I have just said. Just
a moment ago, we were merrily exploring Einstein’s crazy idea. While Einstein’s

4Those of you with physics background may recognize this as roughly the speed of sound
in air. Travel faster than the speed of sound is difficult and therefore expensive, so most
commercial planes lurk as just below sound speed.

5Note that I am using the expansion from problem (2-2). It really is handy.
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suggestion clearly fits with the Michelson-Morely experiment, we still have not
figured out how it fits with the stellar aberration experiments. So, we were
just exploring the suggestion to see where it leads. It led to a (ridiculous??)
prediction that clocks in different reference frames measure different amounts of
time to pass. Then, I tell you that this prediction has in fact been experimentally
tested, and that Einstein’s idea passed with flying colors. Now, you should begin
to believe that all of this crazy stuff really is true. Oh, and there will be plenty
more weird predictions and experimental verifications to come.

Another lovely example of this kind of thing comes from small subatomic parti-
cles called muons (pronounced moo-ons). Muons are “unstable,” meaning that
they exist only for a short time and then turn into something else involving a
burst of radiation. You can think of them like little time bombs. They live (on
average) about 10−6 seconds. Now, muons are created in the upper atmosphere
when a cosmic ray collides with the nucleus of some atom in the air (say, oxygen
or nitrogen). In the 1930’s, people noticed that these particles were traveling
down through the atmosphere and appearing in their physics labs. Now, the
atmosphere is about 30,000m tall, and these muons are created near the top.
The muons then travel downward at something close to the speed of light. Note
that, if they traveled at the speed of light 3 × 108m/s, it would take them a
time t = 3 × 104m/(3 × 108m/s) = 10−4sec. to reach the earth. But, they are
only supposed to live for 10−6seconds! So, they should only make it 1/100 of
they way down before they explode. [By the way, the explosion times follow
an exponential distribution, so that the probability of a muon “getting lucky”
enough to last for 10−4 seconds is e−100 ≈ 10−30. This is just about often
enough for you to expect it to happen a few times in the entire lifetime of the
Universe.]

The point is that the birth and death of a muon are like the ticks of its clock
and should be separated by 10−6 seconds as measured in the rest frame of the
muon. In other words, the relevant concept here is 10−6 seconds of proper time.
In our rest frame, we will measure a time 10−6sec/

√
1− (v/c)2 to pass. For v

close enough to c, this can be as large (or larger than) 10−4 seconds.

This concludes our first look at time dilation. In the section below, we turn
our attention to measurements of position and distance. However, there remain
several subtleties involving time dilation that we have not yet explored. We will
be revisiting the subject soon.

3.6 Length Contraction

In the last section, we learned how to relate times measured in different inertial
frames. Clearly, the next thing to understand is distance. While we had to work
fairly hard to compute the amount of time dilation that occurs, we will see that
the effect on distances follow quickly from our results for time.

Let’s suppose that two inertial observers both have measuring rods that are at
rest in their respective inertial frames. Each rod has length L in the frame in
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which it is at rest (it’s “rest frame”).

In section 3.5.1, we saw that distances in the direction perpendicular to the
relative motion are not affected. So, to finish things off, this time we must
consider the case where the measuring rods are aligned with the direction of the
relative velocity.

For definiteness, let us suppose that the two observers each hold their meter stick
at the leftmost end. The relevant spacetime diagram is shown below. As usual,
we assume that the two observers clocks both read t = 0 at the event where
their worldlines cross. We will call our observers ‘student’ and ‘professor.’ We
begin by drawing the diagram in the student’s rest frame and with the professor
moving by at relative velocity v.

2 2  1 - v  /c

t  =0s

s

x = 0p

x  =0 

x  (end) = ???????p

t  = L/vs

t    = 0p

t    =p
L

v

Event A

Now, the student must find that the professor takes a time L/v to traverse the
length of the student’s measuring rod. Let us refer to the event (marked in
magenta) where the moving professor arrives at the right end of the student’s
measuring rod as “event A.” Since this event has ts = L/v, we can use our
knowledge of time dilation (3.3) to conclude that the professor assigns a time
tP = (L/v)

√
1− (v/c)2 to this event.

Our goal is to determine the length of the student’s measuring rod in the pro-
fessor’s frame of reference. That is, we wish to know what position xP (end) the
professor assigns to the rightmost end of the students rod when this end crosses
the professor’s line of simultaneity tP = 0.

To find this out, note that from the professor’s perspective it is the student’s
rod that moves past him at speed v. Recall that we determined above that
the professor finds that it takes the rod a time tP = (L/v)

√
1− (v/c)2 to pass

by. Thus, the student’s rod must have a length LP = L
√

1− (v/c)2 in the
professor’s frame of reference. The professor’s rod, of course, will similarly be
shortened in the student’s frame of reference.
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So, we see that distance measurements also depend on the observer’s frame of
reference. Note however, that given any inertial object, there is a special inertial
frame in which the object is at rest. The length of an object in its own rest
frame is known as its proper length. The length of the object in any other inertial
frame will be shorter than the object’s proper length. We can summarize what
we have learned by stating:

An object of proper length L moving through an inertial frame at speed v
has length L

√
1− v2/c2 as measured in that inertial frame.

There is an important subtlety that we should explore. Note that the above
statement refers to an object. However, we can also talk about proper distance
between two events. When two events are spacelike related, there is a special
frame of reference in which the events are simultaneous and the separation is
“pure space” (with no separation in time). The distance between them in this
frame is called the proper distance between the events. It turns out that this
distance is in fact longer in any other frame of reference.....

Why longer? To understand this, look back at the above diagram and compare
the two events at either end of the students’ rod that are simultaneous in the
professor’s frame of reference. Note that the proper distance is the distance
measured in the professor’s reference frame, which we just concluded is shorter
than the distance measured by the student. The difference here is that we are
now talking about events (points on the diagram) where as before we were
talking about objects (whose ends appear as worldlines on the spacetime dia-
gram). The point is that, when we talk about measuring the length of an object,
different observers are actually measuring the distance between different pairs
of events.

3.7 The Train Paradox

Let us now test our new skills and work through some subtleties by considering
an age-old parable known as the train paradox. It goes like this:

Once upon a time there was a really fast Japanese bullet train that ran at 80%
of the speed of light. The train was 100m long in its own rest frame. The
train carried as cargo the profits of SONY corporation from Tokyo out to their
headquarters in the countryside. The profits were, of course, carried in pure
gold.

Now, some less than reputable characters found out about this and devised an
elaborate scheme to rob the train. They knew that the train would pass through
a 100m long tunnel on its route. Watching the train go by, they measured the
train to be quite a bit less than 100m long and so figured that they could easily
trap it in the tunnel.

Of course, the people on the train found that, when the train was in motion,
it was the train that was 100m long while the tunnel was significantly shorter.
As a result, they had no fear of being trapped in the tunnel by train robbers.
Now, do you think the robbers managed to catch the train?
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Let’s draw a spacetime diagram using the tunnel’s frame of reference. We can
let E represent the tunnel entrance and X represent the tunnel exit. Similarly,
we let B represent the back of the train and F represent the front of the train.
Let event 1 be the event where the back of the train finally reaches the tunnel
and let event 2 be the event where the front of the train reaches the exit.
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Suppose that one robber sits at the entrance to the tunnel and that one sits at
the exit. When the train nears, they can blow up the entrance just after event 1
and they can blow up the exit just before event 2. Note that, in between these
two events, the robbers find the train to be completely inside the tunnel.

Now, what does the train think about all this? How are these events described
in its frame of reference? Note that the train finds event 2 to occur long before
event 1. So, can the train escape?

Let’s think about what the train would need to do to escape. At event 2, the exit
to the tunnel is blocked, and (from the train’s perspective) the debris blocking
the exit is rushing toward the train at 80% the speed of light. The only way the
train could escape would be to turn around and back out of the tunnel. Recall
that the train finds that the entrance is still open at the time of event 2.

Of course, both the front and back of the train must turn around. How does the
back of the train know that it should do this? It could find out via a phone call
from an engineer at the front to an engineer at the back of the train, or it could
be via a shock wave that travels through the metal of the train as the front of
the train throws on its brakes and reverses its engines. The point is though that
some signal must pass from event 2 to the back of the train, possibly relayed
along the way by something at the front of the train. Sticking to our assumption
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that signals can only be sent at speed c or slower, the earliest possible time that
the back of the train could discover the exit explosion is at the event marked
D on the diagram. Note that, at event D, the back of the train does find itself
inside the tunnel and also finds that event 1 has already occurred. The entrance
is closed and the train cannot escape.

There are two things that deserve more explanation. The first is the above
comment about the shock wave. Normally we think of objects like trains as
being perfectly stiff. However, this is not really so. Let’s think about what
happens when I push on one end of a meter stick. I press on the atoms on the
end, which press on the atoms next to them, which press on the atoms next
to them ..... Also, it takes a (small but finite) amount of time for each atom
to respond to the push it has been given on one side and to move over and
begin to push the atom on the other side. The result is known as a “shock
wave” that travels at finite speed down the object. Note that an important
part of the shock wave are the electric forces that two atoms use to push each
other around. Thus, the shock wave can certainly not propagate faster than
an electromagnetic disturbance can. As a result, it must move at less than the
speed of light.

For the other point, let’s suppose that the people at the front of the train step
on the brakes and stop immediately. Stopping the atoms at the front of the
train will make them push on the atoms behind them, stopping them, etc. The
shock wave results from the fact that atoms just behind the front slam into
atoms right at the front; the whole system compresses a bit and then may try
to reexpand, pushing some of the atoms farther back.

?? What we saw above is that the shock wave cannot reach the back of the train
until event D. Suppose that it does indeed stop the back of the train there. The
train has now come to rest in the tunnel’s frame of reference. Thus, after event
D, the proper length of the train is less than 100m!!!!

In fact, suppose that we use the lines of simultaneity in the train’s original frame
of reference (before it tries to stop) to measure the proper length of the train.
Then, immediately after event 2 the front of the train changes its motion, but
the back of the train keeps going. As a result, in this sense the proper length
of the train starts to shrink immediately after event 2. This is how it manages
to fit itself into a tunnel that, in this frame, is less than 100m long.

What has happened? The answer is in the compression that generates the shock
wave. The train really has been physically compressed by the wall of debris at
the exit slamming into it at half the speed of light6! This compression is of
course accompanied by tearing of metal, shattering of glass, death screams of
passengers, and the like, just as you would expect in a crash. The train is
completely and utterly destroyed. The robbers will be lucky if the gold they
wish to steal has not been completely vaporized in the carnage.

Now, you might want to get one more perspective on this (trying to show some
hidden inconsistency?) by analyzing the problem again in a frame of reference

6Or the equivalent damage inflicted through the use of the train’s brakes.
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that moves with the train at all times, even slowing down and stopping as the
train slows down and stops. However, we do not know enough to do this yet
since such a frame is not inertial. We will get to accelerating reference frames
in chapter 5.

3.8 Homework Problems

3-1. Use your knowledge of geometry (and/or trigonometry) to show that the
angle α between the worldline of an inertial observer and the lightcone
(drawn in an inertial frame using units in which light rays travel at 45
degrees) is the same as the angle β between that observer’s line of si-
multaneity and the lightcone. (Hint: Many people find it easier to use
trigonometry to solve this problem than to use geometry.)

t    =+1sec
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3-2. Suppose that you and your friend are inertial observers (that is, that both
reference frames are inertial). Suppose that two events, A and B, are
simultaneous in your own reference frame. Draw two spacetime diagrams
in your reference frame. Include your friend’s worldline in both. For the
first, arrange the relative velocity of you and your friend so that event A
occurs before event B in your friend’s reference frame. For the second,
arrange it so that event B occurs first in your friend’s frame. In both
cases, include one of your friend’s lines of simultaneity on the diagram.

3-3. Draw a spacetime diagram in an inertial reference frame.

a) Mark any two spacelike related events on your diagram and label them
both ‘S.’

b) Mark any two lightlike related events on your diagram and label them
both ‘L.’
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c) Mark any two timelike related events on your diagram and label them
both ‘T.’

3-4. You and your friend are again inertial observers and this time your relative
velocity is 1

2c. Also, suppose that both of your watches read t = 0 at the
instant that you pass each other. At the event where your worldlines cross,
a firecracker explodes (or a light bulb is turned on and off very quickly, or
something else happens to create a brief burst of light).

a) Draw a spacetime diagram in your reference frame showing your friend’s
worldline and the outgoing light from the explosion.

b) Let events A and B be the events on the left and right light rays
respectively that are one second (as determined by your own reference
frame) after the explosion. Label these two events on your diagram.

c) Let event C be the the event on the left light ray that is simultaneous
with B as determined by your friend. Mark this event on the diagram.

3-5. As in problem (3-4), you and your friend are inertial observers with relative
velocity 1

2c and your watches both “tick” t = 0 at the instant that you
pass each other. For this problem, it is important that you use a large
scale to draw the spacetime diagram so that t = 1 is far from the origin.

a) Draw the two worldlines on a spacetime diagram in your frame of refer-
ence, and draw and label (i) the event where your watch “ticks” t = 1
and (ii) the event where your friend’s watch “ticks” t = 1. At what
time is this second event in your reference frame? Did you draw it in
the right place?

b) On the same diagram, sketch the line of events which are at t = 1 second
as determined by your system of reference. This is your t = 1 line of
simultaneity.

c) On the same diagram, sketch the line of events which are at t = 1 second
as determined by your friend’s system of reference. (Hint: At what time
in your system of reference does his watch tick t = 1?) This is your
friend’s t = 1 line of simultaneity.

d) Consider the event where your friend’s t = 1 line of simultaneity crosses
your worldline. What time does your friend assign to this event? What
time do you assign to this event?

e) Consider the event where your t = 1 line of simultaneity crosses your
friend’s worldline. What time do you assign to this event? What time
does your friend assign to this event?

3-6. Suppose that you are in an airplane and that you are watching another
airplane fly in the opposite direction. Your relative velocity is roughly
600m/s. Calculate the size of the time dilation effect you would observe if
you measured the ticking of a clock in the other airplane. If that clock ticks
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once each second, how much time passes in your reference frame between
two of it’s ticks?

Hint: Your calculator may not be able to deal effectively with the tiny
numbers involved. As a result, if you just try to type formula (3.3) into
your calculator you may get the value 1. What I want to know is how
much the actual value is different from 1. In cases like this, it is helpful to
use Taylor series expansions. The expansions you need to complete this
problem were given in problem (2-2).

3-7. A muon is a particle that has a lifetime of about 10−6 seconds. In other
words, when you make a muon, it lives for that long (as measured in its
own rest frame) and then decays (disintegrates) into other particles.

a) The atmosphere is about 30km tall. If a muon is created in the upper
atmosphere moving (straight down) at 1

2c, will it live long enough to
reach the ground?

b) Suppose that a muon is created at the top of the atmosphere moving
straight down at .999999c. Suppose that you want to catch this muon
at the surface and shoot it back up at .999999c so that it decays just
when it reaches the top of the atmosphere. How long should you hold
onto the muon?

3-8. For this problem, consider three inertial observers: You, Alice, and Bob.
All three of you meet at one event where your watches all read zero. Alice
recedes from you at 1

2c on your left and Bob recedes from you at 1
2c on

your right. Draw this situation on a spacetime diagram in your frame of
reference. Also draw in a light cone from the event where you all meet.
Recall that you measure distances using your own lines of simultaneity,
and note that you find each of the others to be ‘halfway between you and
the light cone’ along any of your lines of simultaneity.

Now, use the above observation to draw this situation on a spacetime
diagram in Alice’s frame of reference. Use this second diagram to estimate
the speed at which Alice finds Bob to be receding from her. What happens
if you draw in another observer (again meeting all of you at t = 0) and
traveling away from Bob on the right at 1

2c as measured in Bob’s frame of
reference??

3-9. Consider a specific version of the ‘train paradox’ that we discussed in class.
Suppose that we a have tunnel of length 100m (measured in its rest frame)
and a train whose length is 100m (measured in its rest frame). The train
is moving along the track at .8c, and the robbers want to trap it using the
following scheme: one robber will sit at the entrance to the tunnel and
blow it up just after the back end of the train has entered, while the other
robber will sit at the exit of the tunnel and blow it up just before the front
end of the train gets there.
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i) Draw a spacetime diagram of all of this in the (inertial) reference frame
of the tunnel. Be sure to include the explosions and the response of
the train. Use the graph paper to make your diagram accurate.

ii) Draw a spacetime diagram of all of this using the inertial frame that
matches the train while it is moving smoothly down the tracks. Be
sure to include the explosions and the response of the train. Use the
graph paper to make your diagram accurate.

iii) Describe the events shown on your diagrams from the point of view
of the robbers (either one). Be sure to state the order in which the
events occur in their frame of reference, to discuss whether the train
can escape, and to explain why or why not.

iv) Describe what happens from the point of view of someone at the front
of the train. Be sure to state the order in which the events occur in
their frame of reference, to discuss whether the train can escape, and
to explain why or why not.

v) Finally, briefly describe what happens from the point of view of some-
one at the back of the train.

3-10. The starting point for our discussion of relativity was the observation that
velocities do not combine in the naive way by just adding together. Clearly
then, a good question is “just how do they combine?” In this problem, you
will derive the formula for the ‘relativistic composition of velocities.’ Let
me point out that you have all of the tools with which to do this, since you
know how to translate both distances and times between reference frames.
This is just a quantitative version of problem (3-8), but we now work in
the more general case where vAB is arbitrary. Feel free to choose units so
that c = 1. Then you can ignore all the factors of c to make the algebra
easier.

Let’s proceed in the following way. Think about three inertial observers:
you (and let’s say that I’m traveling with you), Alice, and Bob. Suppose
as that you all three meet at some event and that you find Alice to be
moving away from you (to the right) at speed vA, while Alice finds Bob
to be moving away from her (to the right) at speed vBA. The question
is, what is the speed vB with which Bob is moving away from you?? We
want to find a formula for vB in terms of vA and vBA.

As usual, let’s start by drawing a diagram:
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I have drawn a few lines of simultaneity to remind us of what is going on,
and I have marked two events (A and B) on the diagram. Event A is where
Alice’s clock ticks 1, and event B is the event on Bob’s worldline that is at
tA = 1 (that is, the event that Alice finds to be simultaneous with event
A). Since Bob recedes from Alice at speed vBA, in Alice’s reference system
event B has coordinates (tA = 1, xA = vBA).

(a) What are the values of xus and tus at event A?

Now, recall that Bob passes through the event (xus = 0, tus = 0). So, if
we knew the coordinates (in our reference frame) of any other event on
Bob’s worldline, we could calculate his velocity (as measured by us) using
v = ∆x/∆t. Let us use event B for this purpose. We already know the
coordinates of event B in Alice’s system of reference, but we still need to
figure out what the coordinates are in our system of reference.

(b) Since event B lies on Alice’s tA = 1 line, a good place to start is to
write down the equation for this line in terms of our coordinates (xus and
tus). That is, determine the values of m and b for which the equation

tus = mxus + b

describes the line tA = 1. Note that b is just the time (tus) at which the
line intersects the line xus = 0 and m is the slope of the line. If you are
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not sure what the slope is, you may find it helpful to use the results of
part (a) and your value of the parameter b to compute the slope.

Now that you have done part (b), recall that two intersecting lines uniquely
determine a point. So, if we could find another line whose equation we
know (in terms of our coordinates), we could solve the two equations to-
gether to find the coordinates of event B. (Note that Bob’s worldline won’t
work for this, because we don’t yet know what his speed is in our reference
frame.) What other line could we use? Well, we know that event B occurs
a distance vBA(1sec) to Alice’s right in Alice’s frame of reference. This
means that it lies along the line xA = vBA:
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(c) Find the values of m and xus,0 for which the equation

tus = m(xus − xus,0)

describes the line xA = vBA. Note that m is the slope of the line and xus,0
is the place where the line of interest intersects the line tus = 0. It may
also be useful to note that, if Alice holds a rod of proper length vBA and
carries it with her, holding it at one end, then the line xA = vBA is the
worldline of the other end.

(d) Solve the equations from (b) and (c) to find the coordinates of event
B.
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(e) Use the results of part d to show that

vB =
vA + vBA

1 + vAvBA/c2
, (3.4)

or, in units where c = 1,

vB =
vA + vBA
1 + vAvBA

. (3.5)

3-11. What happens in the relativistic addition of velocities formula (derived
in problem (10) when the two velocities are both very small? Try it for
vBA = .01c and vA = .01c. How much does the relativistic result differ
from the Newtonian result (1.2) in this case?

3-12. What happens in the relativistic addition of velocities formula (derived in
problem (10) when one of the velocities (say, vBA) is the speed of light??

3-13. The most common use of relativity in every day life involves what is called
the ‘Doppler effect.’ This is an effect in which the frequency (= rate at
which crests pass by you) of a wave depends on the reference frame. There
is also a Doppler effect in Newtonian physics, but Newtonian physics would
predict a different amount of the effect. The Doppler effect is used in
various devices such as ‘Doppler radar’ and police radar guns to measure
the speed of storm systems or cars. For this problem, derive the formula
for the relativistic Doppler effect

τR =

√
c+ v

c− v
τS . (3.6)

where v is the velocity of the source (S) away from the receiver (R). Here,
I have expressed the formula using the period τ (the time between wave
crests) as measured by each observer.

Hint: A good way to figure this out is to think about a strobe light carried
by the source which emits light pulses at regular intervals τS . Then we
can ask what the time interval τR is (as measured by the receiver) between
the events where the light pulses are received. If we then think about each
of the strobe pulses as tracking a wave crest, this will give us the Doppler
effect formula.
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For comparison, the Newtonian formula is

τR =

(
c+ vS
c+ vR

)
τS (3.7)

where c is the speed of the wave relative to the medium that carries it (i.e.,
sound in air, waves on water), vS is the velocity of the source relative to
the medium, and vR is the velocity of the receiver relative to the medium.
[For fun, you might try deriving that one, too ...]

3-14. By expanding equations (3.6) and (3.7) in a Taylor series, show that the
Newtonian and relativistic effects agree to first order in v

c = vS−vR
c . This

means that engineers who design radar devices do not in fact need to un-
derstand relativity. You can do this using the expansions from problem
(2-2). Note that “to first order” means that we ignore any terms propor-
tional to v2, v2

R, v
2
S or higher powers of v, vR, vS .



Chapter 4

Special Relativity is
Minkowskian Geometry

Read Einstein, ch. 16,17, Appendix 2

Let’s take a look at where we are. In chapter 2 we were faced with the baffling
results of the Michelson-Morely experiment and the stellar aberration experi-
ments. In the end, we decided to follow Einstein and to allow the possibility that
space and time simply do not work in the way that our intuition predicts. In
particular, we took our cue from the Michelson-Morely experiment which seems
to say that the speed of light in a vacuum is the same in all inertial frames
and, therefore, that velocities do not add together in the Newtonian way. We
wondered “How can this be possible?”

We then spent the last chapter working out “how this can be possible.” That is,
we have worked out what the rules governing time and space must actually be
in order for the speed of light in a vacuum to be the same in all inertial reference
frames. In this way, we discovered that different observers have different notions
of simultaneity, and we also discovered time dilation and length contraction.
Finally, we learned that some of these strange predictions are actually correct
and have been well verified experimentally.

It takes awhile to really absorb what is going on here. The process does take
time, though at this stage of the course the students who regularly come to my
office hours are typically moving along well. If you are having trouble making
the transition, I encourage you to come and talk to me.

There are lots of levels at which one might try to “understand” the various
effects1. Some examples are:

1This is as opposed to why you should believe in these effects. The fundamental reason to
believe them must always be that they predicted new phenomena (like time dilation) which
were then experimentally verified.

85
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Logical Necessity: Do see that the chain of reasoning leading to these con-
clusions is correct? If so, and if you believe the results of Michelson and
Morely that the speed of light is constant in all inertial frames, then you
must believe the conclusions.

External Consistency: Since I have never seen any sign of these strange
things in my life, how can they be true? How can all of this be consistent
with my own experience? Understanding at this level involves determin-
ing how big the affects actually would be in your everyday life. You will
quickly find that they are seldom more than one part in a billion or a
trillion. At this level, it is no wonder that you never noticed.

Internal Consistency: How can these various effects possibly be self-consistent?
How can a train 100m long get stuck inside a tunnel that, in it’s initial
frame of reference, is less than 100m long? To understand things at this
level involves working through various ‘paradoxes’ such as the train para-
dox of the last chapter and the paradox that we will address below in
section 4.2.

Step Outside the old Structure: People often say “OK, but WHY are space
and time this way?” Typically, when people ask this question, what they
mean is “Can you explain why these strange things occur in terms of things
that are familiar to my experience, or which are reasonable to my intu-
ition?” It is important to realize that, in relativity, this is most definitely
not possible in a direct way. This is because all of your experience has built
up an intuition that believes in the Newtonian assumptions about space
and time and, as we have seen, these cannot possibly be true! Therefore,
you must remove your old intuition, remodel it completely, and then put
a new kind of intuition back in your head.

Finding the new logic: If we have thrown out all of our intuition and expe-
rience, what does it mean to “understand” relativity? We will see that
relativity has a certain logic of its own. What we need to do is to uncover
the lovely structure that space and time really do have, and not the one
that we want them to have. In physics as in life, this is often necessary.
Typically, when one understands a subject deeply enough, one finds that
the subject really does have an intrinsic logic and an intrinsic sense that
are all its own. This is the level at which finally see “what is actually
going on.” This is also the level at which people finally begin to “like” the
new rules for space and time.

Starting with the next section we’ll begin to see a little bit of the underlying
structure, the “new logic” of relativity. There are some technicalities involved,
so we won’t do it all at once. We’ll do just a bit, and then go on to talk about
one of the classic ‘paradoxes’ – the so-called twin paradox in section 4.2. Then
we’ll return to the “new logic” in section 4.3. The new logic goes by the name
of Minkowskian Geometry.
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4.1 Minkowskian Geometry

Minkowski was a mathematician, and he is usually credited with emphasizing
the fact that time and space are part of the same “spacetime” whole in relativity.
He also who emphasized the fact that this spacetime has a special kind of
geometry. It is this geometry which is the underlying structure and the new
logic of relativity.

Understanding this geometry will provide both insight and useful technical tools.
For this reason, we now pursue what at first sight will seem like a technical aside
in which we first recall how the familiar Euclidean geometry relates quantities
in different coordinate systems. We can then build an analogous technology in
which Minkowskian geometry relates different inertial frames.

4.1.1 Invariants: Distance vs. the Interval

Recall that a fundamental part of familiar Euclidean geometry is the Pythagorean
theorem. One way to express this result is to say that

(distance)2 = ∆x2 + ∆y2, (4.1)

where distance is the distance between two points and ∆x, ∆y are respectively
the differences between the x coordinates and between the y coordinates of these
points. Here the notation ∆x2 means (∆x)2 and not the change in x2. Note
that this relation holds in either of the two coordinate systems drawn below.

∆ x1

y∆ 2
∆ y1
∆ x2

y1

x1

y
2

x2

Now, recall that I have made analogies between changing reference frames
and rotations. Note that when I perform a rotation, distances do not change,
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and if I compare coordinate systems (with one rotated relative to the other) I
find

∆x2
1 + ∆y2

1 = ∆x2
2 + ∆y2

2 .

Let’s think about an analogous issue involving changing inertial frames. Con-
sider, for example, two inertial observers. Suppose that our friend flies by at
speed v. For simplicity, let us both choose the event where our worldlines in-
tersect to be t = 0. Let us now consider the event (on his worldline) where his
clock ‘ticks’ tf = T . Note that our friend assigns this event the position xf = 0
since she passes through it.

What coordinates do we assign? Our knowledge of time dilation tells us that
we assign a longer time: tus = T/

√
1− v2/c2. For position, recall that at

tus = 0 our friend was at the same place that we are (xus = 0). Therefore,
after moving at a speed v for a time tus = T/

√
1− v2/c2, our friend is at

xus = vtus = Tv/
√

1− v2/c2.

t  =0

t  = 1 secs

2 2  1 - v  /c

1
t     = 

t  = 1 sec

x = 0s

x  = 0us

us

us

us

x = v t
us us

Now, we’d like to examine a Pythagorean-like relation. Of course we can’t just
mix x and t in an algebraic expression since they have different units. But,
we have seen that x and ct do mix well! Thinking of the marked event where
our friend’s clock ticks, is it true that x2 + (ct)2 is the same in both reference
frames? Clearly no, since both of these terms are larger in our reference frame
than in our friend’s (xus > 0 and ctus > ctf )!

Just for fun, let’s calculate something similar, but slightly different. Let’s com-
pare x2

f − (ctf )2 and x2
us − (ctus)

2. I know you don’t actually want to read
through lines of algebra here, so please stop reading and do this calculation
yourself.

?? You did do the calculation, didn’t you?? If so, you found −c2T 2 in both
cases!!!!
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What we have just observed is that whenever an inertial observer passes through
two events and measures a proper time T between them, any inertial observer
finds ∆x2 − c2∆t2 = −c2T 2. But, given any two timelike separated events, an
inertial observer could in fact pass through them. So, we conclude that the
quantity ∆x2 − c2∆t2 computed for a pair of timelike separated events is the
same in all inertial frames of reference. Any quantity with this property is called
an ‘invariant’ because it does not vary when we change reference frames.

A quick check (which I will let you work out) shows that the same is true for
spacelike separated events. For lightlike separated events, the quantity ∆x2 −
c2∆t2 is actually zero in all reference frames. As a result, we see that for any
pair of events the quantity ∆x2−c2∆t2 is completely independent of the inertial
frame that you use to compute it. This quantity is known as the (interval)2.

(interval)2 = ∆x2 − c2∆t2 (4.2)

The language here is a bit difficult since this can be negative. The way that
physicists solve this in modern times is that we always discuss the (interval)2

and never (except in the abstract) just “the interval” (so that we don’t have
to deal with the square root). The interval functions like ‘distance,’ but in
spacetime, not in space.

Let us now explore a few properties of the interval. As usual, there are three
cases to discuss depending on the nature of the separation between the two
events.

timelike separation: In this case the squared interval is negative. As noted
before, for two timelike separated events there is (or could be) some iner-
tial observer who actually passes through both events, experiencing them
both. One might think that her notion of the amount of time between the
two events is the most interesting and indeed we have given it a special
name, the “proper time” (∆τ ; “delta tau”) between the events. Note that,
for this observer the events occur at the same place. Since the squared
interval is the same in all inertial frames of reference, we therefore have:

02 − c2(∆τ)2 = ∆x2 − c2∆t2.

Solving this equation, we find that we can calculate the proper time ∆τ
in terms of the distance ∆x and time ∆t in any inertial frame using:

∆τ =
√

∆t2 −∆x2/c2 = ∆t

√
1− ∆x2

c2∆t2
= ∆t

√
1− v2/c2.

As before, we see that ∆τ ≤ ∆t.
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spacelike separation: Similarly, if the events are spacelike separated, there is
an inertial frame in which the two are simultaneous – that is, in which
∆t = 0. The distance between two events measured in such a reference
frame is called the proper distance d. Much as above,

d =
√

∆x2 − c2∆t2 ≤ ∆x.

Note that this seems to “go the opposite way” from the length contraction
effect we derived in section 3.6. That is because here we consider the
proper distance between two particular events. In contrast, in measuring
the length of an object, different observers do NOT use the same pair of
events to determine length. Do you remember our previous discussion of
this issue?

lightlike separation: Two events that are along the same light ray satisfy
∆x = ±c∆t. It follows that they are separated by zero interval in all
reference frames. One can say that they are separated by both zero proper
time and zero proper distance.

4.1.2 Curved lines and accelerated objects

Thinking of things in terms of proper time and proper distance makes it easier to
deal with, say, accelerated objects. Suppose we want to compute, for example,
the amount of time experienced by a clock that is not in an inertial frame.
Perhaps it quickly changes from one inertial frame to another, shown in the
blue worldline (marked B) below. This blue worldline (B) is similar in nature
to the worldline of the muon in part (b) of problem 3-7.

B
R

a

b

c

d

t=0

x=-4 x=4x=0

t=-4

t=4

Note that the time experienced by the blue clock between events (a) and (b)
is equal to the proper time between these events since, on that segment, the
clock could be in an inertial frame. Surely the time measured by an ideal clock
between (a) and (b) cannot depend on what it was doing before (a) or on what
it does after (b).

Similarly, the time experienced by the blue clock between events (b) and (c)
should be the same as that experienced by a truly inertial clock moving between
these events; i.e. the proper time between these events. Thus, we can find the
total proper time experienced by the clock by adding the proper time between
(a) and (b) to the proper time between (b) and (c) and between (c) and (d). We
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also refer to this as the total proper time along the clock’s worldline between
(a) and (d).

A red observer (R) is also shown above moving between events (0,−4) and
(0,+4). Let ∆τRad and ∆τBad be the proper time experienced by the red and the
blue observer respectively between times t = −4 and t = +4; that is, between
events (a) and (d). Note that ∆τRa,d > ∆τBa,d and similarly for the other time
intervals. Thus we see that the proper time along the broken line is less than
the proper time along the straight line.

Since proper time (i.e., the interval) is analogous to distance in Euclidean ge-
ometry, we also talk about the total proper time along a curved worldline in
much the same way that we talk about the length of a curved line in space.
We obtain this total proper time much as we did for the blue worldline above
by adding up the proper times associated with each short piece of the curve.
This is just the usual calculus trick in which we approximate a curved line by a
sequence of lines made entirely from straight line segments. One simply replaces
any ∆x (or ∆t) denoting a difference between two points with dx or dt which
denotes the difference between two infinitesimally close points. The rationale
here, of course, is that if you look at a small enough (infinitesimal) piece of a
curve, then that piece actually looks like a straight line segment. Thus we have
dτ = dt

√
1− v2/c2 < dt, or ∆τ =

∫
dτ =

∫ √
1− v2/c2dt < ∆t.

dt

dτ = dt    1   -  v  / c22t=0

x=-4 x=4x=0

t=-4

t=4

Again we see that a straight (inertial) line in spacetime has the longest proper
time between two events. In other words, in Minkowskian geometry the longest
line between two events is a straight line.

4.2 The Twin paradox

That’s enough technical stuff for the moment. We’re now going to use the
language and results from the previous section to discuss a relativity classic:
“The twin paradox.” Using the notions of proper time and proper distance
turns out to simplify the discussion significantly compared to what we would
have had to go through before section 4.1.

Let’s think about two identical twins who, for obscure historical reasons are
named Alphonse and Gaston. Alphonse is in an inertial reference frame floating
in space somewhere near our solar system. Gaston, on the other hand, will
travel to the nearest star (Alpha Centauri) and back at .8c. Alpha Centauri is
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(more or less) at rest relative to our solar system and is four light years away.
During the trip, Alphonse finds Gaston to be aging slowly because he is traveling
at .8c. On the other hand, Gaston finds Alphonse to be aging slowly because,
relative to Gaston, Alphonse is traveling at .8c. During the trip out there is no
blatant contradiction, since we have seen that the twins will not agree on which
event (birthday) on Gaston’s worldline they should compare with which event
(birthday) on Alphonse’s worldline in order to decide who is older. But, who is
older when they meet again and Alphonse returns to earth?

∆τ   =

∆τ   = 3 yr

3 yr

G

G

x   =0A Ax   =4

Alphonse

t    =0A

At    =5

Alpha
Centauri

G
a
s
t
o
n

The above diagram shows the trip in a spacetime diagram in Alphonse’s frame
of reference. Let’s work out the proper time experienced by each observer. For
Alphonse, ∆x = 0. How about ∆t? Well, the amount of time that passes is
long enough for Gaston to travel 8 light-years (there and back) at .8c. That is,
∆t = 8lyr/(.8c) = 10yr. So, the proper time ∆τA experienced by Alphonse is
ten years.

On the other hand, we see that on the first half of his trip Gaston travels 4 light-
years in 5 years (according to Alphonse’s frame). Thus, Gaston experiences a
proper time of

√
52 − 42 = 3years. The same occurs on the trip back. So, the

total proper time experienced by Gaston is ∆τG = 6years.

Is Gaston really younger then when they get back together? Couldn’t we draw
the same picture in Gaston’s frame of reference and reach the opposite conclu-
sion? NO, we cannot. The reason is that Gaston’s frame of reference is not an
inertial frame! Gaston does not always move in a straight line at constant speed
with respect to Alphonse. In order to turn around and come back, Gaston must
experience some force which makes him non-inertial. Most importantly, Gaston
knows this! When, say, his rocket engine fires, he will feel the force acting on
him and he will know that he is no longer in an inertial reference frame.

?? The point here is not that the process is impossible to describe in Gaston’s
frame of reference. Gaston experiences what he experiences, so there must be
such a description. The point is, however, that so far we have not worked out
the rules to understand frames of reference that are not inertial. Therefore,
we cannot simply blindly apply the time dilation/length contraction rules for
inertial frames to Gaston’s frame of reference. Thus, we should not expect our
results so far to directly explain what is happening from Gaston’s point of view.
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But, you might say, Gaston is almost always in an inertial reference frame. He
is in one inertial frame on the trip out, and he is in another inertial frame on the
trip back. What happens if we just put these two frames of reference together?

Let’s do this, but we must do it carefully since we are now treading new ground.
First, we should draw in Gaston’s lines of simultaneity on Alphonse’s spacetime
diagram above. His lines of simultaneity will match2 simultaneity in one inertial
frame during the trip out, but they will match those of a different frame during
the trip back. Then, I will use those lines of simultaneity to help me draw a
diagram in Gaston’s not-quite-inertial frame of reference, much as we have done
in the past in going from one inertial frame to another.

Since Gaston is in a different inertial reference frame on the way out than on the
way back, I will have to draw two sets of lines of simultaneity and each set will
have a different slope. Now, two lines with different slopes must intersect......

t   = 0
t   = 3 yrs.

G
G

t   = 3 yrs.
G

t   = 6 yrs.
G
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x   =0A Ax   =4

Alphonse

t    =0A

At    =5

Alpha
Centauri

Here, I have marked several interesting events on the diagram, and I have also
labeled the lines of simultaneity with Gaston’s proper time at the events where
he crosses those lines. Note that there are two lines of simultaneity marked
tG = 3years!. I have marked one of these 3− (which is “just before” Gaston
turns around) and I have marked one 3+ (which is “just after” Gaston turns
around).

If I simply knit together Gaston’s lines of simultaneity and copy the events from
the diagram above, I get the following diagram in Gaston’s frame of reference.
Note that it is safe to use the standard length contraction result to find that
in the inertial frame of Gaston on his trip out and in the inertial frame of
Gaston on his way back the distance between Alphonse and Alpha Centauri
is 4Lyr

√
1− (4/5)2 = (12/5)Lyr.

2Strictly speaking, we have defined lines of simultaneity only for observers who remain
inertial for all time. However, for an observer following a segment of an inertial worldline,
it is natural to introduce lines of simultaneity which match the lines of simultaneity in the
corresponding fully inertial frame.
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G
x   = 0x   = -12/5 Lyr.

G

t    = 0G

t    = 3 yr.G

t    = 6 yr.G

A

B

C

D

There are a couple of weird things here. For example, what happened to event
E? In fact, what happened to all of the events between B and C? By the way,
how old is Alphonse at event B? In Gaston’s frame of reference (which is inertial
before tG = 3, so we can safely calculate things that are confined to this region of
time), Alphonse has traveled (12/5)Lyr. in three years. So, Alphonse must expe-
rience a proper time of

√
32 − (12/5)2 =

√
9− 144/25 =

√
81/25 = (9/5)years.

Similarly, Alphonse experiences (9/5)years between events C and D. This means
that there are 10− 18/5 = (32/5)years of Alphonse’s life missing from the dia-
gram. (Oooops!)

It turns out that part of our problem is the sharp corner in Gaston’s worldline.
The corner means that Gaston’s acceleration is infinite there, since he changes
velocity in zero time. Let’s smooth it out a little and see what happens.

Suppose that Gaston still turns around quickly, but not so quickly that we
cannot see this process on the diagram. If the turn-around is short, this should
not change any of our proper times very much (proper time is a continuous
function of the curve!!!), so Gaston will still experience roughly 6 years over the
whole trip, and roughly 3 years over half. Let’s say that he begins to slow down
(and therefore ceases to be inertial) after 2.9 years so that after 3 years he is
momentarily at rest with respect to Alphonse. Then, his acceleration begins to
send him back home. A tenth of a year later (3.1 years into the trip) he reaches
.8 c, his rockets shut off, and he coasts home as an inertial observer.

We have already worked out what is going on during the periods where Gaston
is inertial. But, what about during the acceleration? Note that, at each instant,
Gaston is in fact at rest in some inertial frame – it is just that he keeps changing
from one inertial frame to another. One way to draw a spacetime diagram for
Gaston is try to use, at each time, the inertial frame with respect to which he
is at rest. This means that we would use the inertial frames to draw in more
of Gaston’s lines of simultaneity on Alphonse’s diagram, at which point we can
again copy things to Gaston’s diagram.

A line that is particularly easy to draw is Gaston’s tG = 3year line. This is
because, at tG = 3years, Gaston is momentarily at rest relative to Alphonse.
This means that Gaston and Alphonse share a line of simultaneity! Of course,
they label it differently. For Alphonse, it it tA = 5years. For Gaston, it is
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tG = 3years. On that line, Alphonse and Gaston have a common frame of
reference and their measurements agree.
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t    =5
A

Note that we finally have a line of simultaneity for Gaston that passes through
event E!!! So, event E really does belong on Gaston’s tG = 3year line after all.
By the way, just “for fun” I have added to our diagram a light ray moving to
the left from the origin.

We are almost ready to copy the events onto Gaston’s diagram. But, to properly
place event R, we must figure out just where it is in Gaston’s frame. In other
words, how far away is it from Gaston along the line tG = 3years? Recall that,
along that particular line of simultaneity, Gaston and Alphonse measure things
in the same way. Therefore they agree that, along that line, event E is four light
years away from Alphonse.

Placing event E onto Gaston’s diagram connecting the dots to get Alphonse’s
worldline, we find:

t    = 0G

t    = 3 yr.G

t    = 6 yr.G

G
x   = 0

A

B

C

D

x   = -12/5 Lyr.Gx   = -4 Lyr.
G

E

gold light ray

There is something interesting about Alphonse’s worldline between B and E. It
is almost horizontal, and has speed much greater than one light-year per year!!!
What is happening?

Notice that I have also drawn in the gold light ray from above, and that it too
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moves at more than one light-year per year in this frame. We see that Alphonse
is in fact moving more slowly than the light ray, which is good. However, we
also see that the speed of a light ray is not in general equal to c in an accelerated
reference frame! In fact, it is not even constant since the gold light ray appears
‘bent’ on Gaston’s diagram. Thus, it is only in inertial frames that light moves
at a constant speed of 3 × 108 meters per second. This is one reason to avoid
drawing diagrams in non-inertial frames whenever you can.

Actually, though, things are even worse than they may seem at first glance....
Suppose, for example, that Alphonse has a friend Zelda who is an inertial ob-
server at rest with respect to Alphonse, but located four light years on the other
side of Alpha Centauri. We can then draw the following diagram in Alphonse’s
frame of reference:
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Once again, we simply can use Gaston’s lines of simultaneity to mark the events
(T,U,V,W,X,Y,Z) in Zelda’s life on Gaston’s diagram. In doing so, however, we
find that some of Zelda’s events appear on TWO of Gaston’s lines of simultaneity
– a (magenta) one from before the turnaround and a (green) one from after
the turnaround! In fact, many of them (like event W) appear on three lines
of simultaneity, as they are caught by a third ‘during’ the turnaround when
Gaston’s line of simultaneity sweeps downward from the magenta t = 2.9 to the
green t = 3.1 as indicated by the big blue arrow!

Marking all of these events on Gaston’s diagram (taking the time to first calcu-
late the corresponding positions) yields something like this:
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The events T, U, V, W at the very bottom and W, X, Y, Z are not drawn to
scale, but they indicate that Zelda’s worldline is reproduced in that region of
the diagram in a more or less normal fashion.

Let us quickly run though Gaston’s description of Zelda’s life: Zelda merrily
experiences events T, U, V, W, X, and Y. Then, Zelda is described as “moving
backwards in time” through events Y, X, W, V, and U. During most of this
period she is also described as moving faster than one light-year per year. After
Gaston’s tG = 3.1year line, Zelda is again described as moving forward in time
(at a speed of 4 light-years per 5 years), experiencing events V, W, X, Y, for
the third time and finally experiencing event Z.

The moral here is that non-inertial reference frames are “all screwed up.” Ob-
servers in such reference frames are likely to describe the world in a very funny
way. To figure out what happens to them, it is certainly best to work in an iner-
tial frame of reference and use it to carefully construct the non-inertial spacetime
diagram.

?? By the way, there is also the issue of what Gaston would see if he watched
Alphonse and Zelda through a telescope. This has to do with the sequence in
which light rays reach him, and with the rate at which they reach him. This is
also interesting to explore, but I will leave it for the homework (see problem 4).
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4.3 More on Minkowskian Geometry

Now that we’ve ironed out the twin paradox, I think it’s time to talk more
about Minkowskian Geometry (a.k.a. “why you should like relativity”). We
will shortly see that understanding this geometry makes relativity much simpler.
Or, perhaps it is better to say that relativity is in fact simple but that we so far
been viewing it through a confusing “filter” of trying to separate space and time.
Understanding Minkowskian geometry removes this filter, as we realize that
space and time are really part of the same object. (I am sure that, somewhere,
there is a very appropriate Buddhist quote that should go here.)

4.3.1 Drawing proper time and proper distance

Recall that in section 4.1 we introduced the notion of the spacetime interval.
The interval was a quantity built from both time and space, but which had the
interesting property of being the same in all reference frames. We write it as:

(interval)2 = ∆x2 − c2∆t2. (4.3)

Recall also that this quantity has two different manifestations3: proper time,
and proper distance. In essence these are much the same concept. However, it is
convenient to use one term (proper time) when the squared interval is negative
and another (proper distance) when the squared interval is positive.

Let’s draw some pictures to better understand these concepts. Suppose I want
to draw (in an inertial frame) the set of all events that are one second of proper
time (∆τ = 1sec) to the future of some event (x0, t0). We have

−(1sec)2 = −∆τ2 = ∆t2 −∆x2/c2.

Suppose that we take x0 = 0, t0 = 0 for simplicity. Then we have just x2/c2 −
t2 = −(1sec)2.

You may recognize this as the equation of a hyperbola with focus at the origin
and asymptotes x = ±ct. In other words, the hyperbola asymptotes to the light
cone. Since we want the events one second of proper time to the future, we
draw just the top branch of this hyperbola:

3Insert appropriate Hindu quote here.
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∆τ = 1 sec

t  =0
us

Us

1 sec. proper time 
to the future

There are similar hyperbolae representing the events one second of proper time
in the past, and the events one light-second of proper distance to the left and
right. We should also note in passing that the light light rays form the (some-
what degenerate) hyperbolae of zero proper time and zero proper distance.

∆τ = 1 sec

of origin

of origin

of origin
of origin

t  =0
us

Us

1 sec. proper time 
to the future

1 ls proper distance
to the left

1 ls proper distance
to the right

1 sec. proper time 
to the past

4.3.2 Changing Reference Frames

Note that on the diagram above I have drawn in the worldline and a line of simul-
taneity for a second inertial observer moving at half the speed of light relative
to the first. How would the curves of constant proper time and proper distance
look if we re-drew the diagram in this new inertial frame? Stop reading and
think about this for a minute.

Because the separation of two events in proper time and proper distance is
invariant (i.e., independent of reference frame), these curves must look exactly
the same in the new frame. That is, any event which is one second of proper
time to the future of some event A (say, the origin in the diagram above) in one
inertial frame is also one second of proper time to the future of that event in any
other inertial frame and therefore must lie on the same hyperbola x2 − c2t2 =
−(1sec)2. The same thing holds for the other proper time and proper distance
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hyperbolae.

of origin

of origin

of origin
of origin

1 sec. proper time 
to the future

1 ls proper distance
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1 ls proper distance
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1 sec. proper time 
to the past

Us

t  =0us

We see that changing the inertial reference frame simply slides events along
a given hyperbola of constant time or constant distance, but does not move
events from one hyperbola to another.

Remember our Euclidean geometry analogue from last time? The above obser-
vation is exactly analogous to what happens when we rotate an object4. The
points of the object move along circles of constant radius from the axis, but do
not hop from circle to circle.

4Actually, it is analogous to what happens when we rotate but the object stays in place.
This is known as the different between an ‘active’ and a ‘passive’ rotation. It seemed to me,
however, that the main idea would be easier to digest if I did not make a big deal out of this
subtlety.
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By the way, the transformation that changes reference frames is called a ‘boost.’
(Think of an object being “boosted” up to a higher level or strength (speed),
or think of a “booster” stage on a rocket.) So, what I mean is that “boosts are
analogous to rotations.”

4.3.3 Hyperbolae, again

In order to extract the most from our diagrams, let’s hit the analogy with circles
one last time. If I draw an arbitrary straight line through the center of a circle,
it always intersects the circle a given distance from the center.

r r

What happens if I draw an arbitrary straight line through the origin of our
hyperbolae?
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∆τ = 1 sec

t = 1 sec∆

1 Ls
proper distance

∆ x = 1Ls

If it is a timelike line, it could represent the worldline of some inertial observer.
Suppose that the observer’s clock reads zero at the origin. Then the worldline
intersects the future ∆τ = 1sec hyperbola at the event where that observers
clock reads one second.

Similarly, since a spacelike line is the line of simultaneity of some inertial ob-
server. It intersects the d = 1Ls curve at what that observer measures to be a
distance of 1Ls from the origin.

What we have seen is that these hyperbolae encode the Minkowskian geometry
of spacetime. The hyperbolae of proper time and proper distance (which are
different manifestations of the same concept: the interval) are the right way to
think about how events are related in spacetime and make things much simpler
than trying to think about time and space separately.

4.3.4 Boost Parameters and Hyperbolic Trigonometry

I keep claiming that this Minkowskian geometry will simplify things. So, you
might rightfully ask, what exactly can we do with this new way of looking at
things? Let’s go back and look at how velocities combine in relativity. This
is the question of “why don’t velocities just add?” Or, if I am going at 1/2
c relative to Alice, and Charlie is going at 1/2 c relative to me, how fast is
Charlie going relative to Alice? Deriving the answer is part of your homework
in problem 3-10. As you have already seen in Einstein’s book, the formula looks
like

vAC/c =
vAB/c+ vBC/c

1 + vABvBC/c2
. (4.4)

It is interesting to remark here that this odd effect was actually observed ex-
perimentally by Fizeau in the 1850’s. He managed to get an effect big enough
to see by looking at light moving through a moving fluid (say, a stream of wa-
ter). The point is that, when it is moving through water, light does not in fact
travel at speed c. Instead, it travels relative to the water at a speed c/n where
n is around 1.5. The quantity n is known as the ‘index of refraction’ of water.
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Thus, it is still moving at a good fraction of “the speed of light.” Anyway, if
the water is also flowing (say, toward us) at a fast rate, then the speed of the
light toward us is given by the above expression in which the velocities do not
just add together. This is just what Fizeau found5, though he had no idea why
it should be true!

Now, the above formula looks like a mess. Why in the world should the com-
position of two velocities be such an awful thing? As with many questions, the
answer is that the awfulness is not in the composition rule itself, but in the filter
(the notion of velocity) through which we view it. We will now see that, when
this filter is removed and we view it in terms native to Minkowskian geometry,
the result is quite simple indeed.

Recall the analogy between boosts and rotations. How do we describe rotations?
We use an angle θ. Recall that rotations mix x and y through the sine and cosine
functions.

r

y  = 0

x  = 0 1

1

y = r cos
2 θ

x = r sin θ2

x2 = r sin θ,
y2 = r cos θ. (4.5)

Note what happens when rotations combine. Well, they add of course. Com-
bining rotations by θ1 and θ2 yields a rotation by an angle θ = θ1 + θ2. But
we often measure things in terms of the slope m = x

y (note the similarity to

v = x/t). Now, each rotation θ1, θ2 is associated with a slope m1 = tan θ1,
m2 = tan θ2. But the full rotation by θ is associated with a slope:

m = tan θ = tan(θ1 + θ2)

=
tan θ1 + tan θ2

1− tan θ1 tan θ2

=
m1 +m2

1−m1m2
. (4.6)

So, by expressing things in terms of the slope we have turned a simple addition
rule into something much more complicated.

5Recall that Fizeau’s experiments were one of the motivations for Michelson and Morely.
Thus, we now understand the results not only of Michelson and Morely’s experiment, but also
of the experiments that prompted their work.
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The point here is that the final result (4.6) bears a strong resemblance to
our formula for the addition of velocities. In units where c = 1, they differ only
by the minus sign in the deominator above. This suggests that the addition
of velocities can be simplified by using something similar to, but still different
than, the trigonometry above.

To get an idea of where to start, recall one of the basic facts associated with
the relation of sine and cosine to circles is the relation:

sin2 θ + cos2 θ = 1. (4.7)

It turns out that there are other natural mathematical functions called hyperbolic
sine (sinh) and hyperbolic cosine (cosh) that satisfy a similar (but different!)

cosh2 θ − sinh2 θ = 1 , (4.8)

so that they are related to hyperbolae.

These functions can be defined in terms of the exponential function, ex:

sinh θ =
eθ − e−θ

2

cosh θ =
eθ + e−θ

2
. (4.9)

You can do the algebra to check for yourself that these satisfy relation (4.8)
above. By the way, although you may not recognize this form, these functions
are actually very close to the usual sine and cosine functions. Introducing i =√
−1, one can write sine and cosine as6.

sin θ =
eiθ − e−iθ

2i

cos θ =
eiθ + e−iθ

2
. (4.10)

Thus, the two sets of functions differ only by factors of i which, as you can
imagine, are related to the minus sign that appears in the formula for the squared
interval.

Now, consider any event (A) on the hyperbola that is a proper time τ to the
future of the origin. Due to the relation 4.8, we can write the coordinates t, x
of this event as:

t = τ cosh θ,

6These representations of sine and cosine may be new to you. That they are correct may
be inferred from the following observations: 1) Both expressions are real. 2) If we square both
and add them together we get 1. Thus, they represent the path of an object moving around
the unit circle. 3) They satisfy d

dθ
sin θ = cos θ and d

dθ
cos θ = − sin θ. As a result, for θ = ωt

they represent an object moving around the unit circle at angular velocity ω.
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x = cτ sinh θ. (4.11)

τ

A

θ

t =    coshτ θ

τx = c   sinh

t  =0

x = 0

On the diagram above I have drawn the worldline of an inertial observer that
passes through both the origin and event A. Note that the parameter θ gives
some notion of how different the two inertial frames (that of the moving observer
and that of the stationary observer) actually are. For θ = 0, event A is at x = 0
and the two frames are the same, while for large θ event A is far up the hyperbola
and the two frames are very different.

We can parameterize the points that are a proper distance d from the origin in
a similar way, though we need to ‘flip x and t.’

t = (d/c) sinh θ,
x = d cosh θ. (4.12)

If we choose the same value of θ, then we do in fact just interchange x and t,
“flipping things about the light cone.” Note that this will take the worldline of
the above inertial observer into the corresponding line of simultaneity. In other
words, a given worldline and the corresponding line of simultaneity have the
same ‘hyperbolic angle,’ though we measure this angle from different reference
lines (x = 0 vs. t = 0) in each case.



106 CHAPTER 4. MINKOWSKIAN GEOMETRY

θ

d

d
ct =    sinh

x =  d coshθ

x = 0

t  =0

Again, we see that θ is really a measure of the separation of the two reference
frames. In this context, we also refer to θ as the boost parameter relating the
two frames. The boost parameter is another way to encode the information
present in the relative velocity, and in particular it is a very natural way to do
so from the viewpoint of Minkowskian geometry.

In what way is the relative velocity v of the reference frames related to the boost
parameter θ? Let us again consider the inertial observer passing from the origin
through event A on the hyperbola of constant proper time. This observer moves
at speed:

v =
x

t
=
cτ sinh θ

τ cosh θ
= c

sinh θ

cosh θ
= c tanh θ, (4.13)

and we have the desired relation. Here, we have introduced the hyperbolic
tangent function in direct analogy to the more familiar tangent function of
trigonometry. Note that we may also write this function as

tanh θ =
eθ − e−θ

eθ + e−θ
.

The hyperbolic tangent function may seem a little weird, but we can get a better
feel for it by drawing a graph like the one below. The vertical axis is tanh θ and
the horizontal axis is θ.

−5 0 5
boost parameter

−1

0

1

ve
lo
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ty

To go from velocity v to boost parameter θ, we just invert the relationship:
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θ = tanh−1(v/c).

Here, tanh−1 is the function such that tanh−1(tanh θ) = tanh(tanh−1 θ) = 1.
This one is difficult to write in terms of more elementary functions (though it
can be done). However, we can draw a nice graph simply by ‘turning the above
picture on its side.’ The horizontal axis on the graph below is x and the vertical
axis is tanh−1 x. Note that two reference frames that differ by the speed of light
in fact differ by an infinite boost parameter.
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Now for the magic: Let’s consider three inertial reference frames, Alice, Bob,
and Charlie. Let Bob have boost parameter θBC = tanh−1(vBC/c) relative to
Charlie, and let Alice have boost parameter θAB = tanh−1(vAB/c) relative to
Bob. Then the relative velocity of Alice and Charlie is

vAC/c =
vAB/c+ vBC/c

1 + vABvBC/c2
. (4.14)

Let’s write this in terms of the boost parameter:

vAC/c =
tanh(θAB) + tanh(θBC)

1 + tanh(θAB) tanh(θBC/c2)
. (4.15)

After a little algebra (which I have saved for your next homework), one can
show that this is in fact:

vAC/c = tanh(θAB + θBC). (4.16)

In other words, the boost parameter θAC relating Alice to Charlie is just the
sum of the boost parameters θAB and θBC .

Boost parameters add:

θAC = θAB + θBC !! (4.17)
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Because boost parameters are part of the native Minkowskian geometry of space-
time, they allow us to see the rule for combining boosts in a simple form. In
particular, they allow us to avoid the confusion created by first splitting things
into space and time and introducing the notion of “velocity.”

4.4 2+1 and higher dimensional effects: A re-
turn to Stellar Aberration

So, we are beginning to understand how this relativity stuff works, and how
it can be self-consistent. In the last section we even saw that relativity looks
pretty when viewed it is viewed in the right way! However, we are still missing
something....

Although we now ‘understand’ the fact that the speed of light is the same
in all inertial reference frames (and thus the Michelson-Morely experiment),
recall that it was not just the Michelson-Morely experiment that compelled us
to abandon the ether and to move to this new point of view. Another very
important set of experiments involved stellar aberration (the tilting telescopes)
– a subject to which we need to return. One might think that assuming the
speed of light to be constant in all reference frames would remove all effects of
relative motion on light, in which case the stellar aberration experiments would
contradict relativity. However, we will now see that this is not so.

4.4.1 Stellar Aberration in Relativity

Recall the basic setup of the aberration experiments. Starlight hits the earth
from the side, but the earth is “moving forward” so this somehow means that
astronomers can’t point their telescopes straight toward the star if they actually
want to see it. This is shown in the diagram below.

Light Ray hits side instead of reaching bottom

Telescope moves through ether Must tilt telescope to see star

To reanalyze the situation using our new understanding of relativity we will
have to deal the fact that the star light comes in from the side while the earth
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travels forward (relative to the star). Thus, we will need to use a spacetime
diagram having three dimensions – two space, and one time. One often calls
such diagrams “2+1 dimensional.” These are harder to draw than the 1+1
dimensional diagrams that we have been using so far, but are really not so
much different. After all, we have already talked a little bit about the fact that,
under a boost, things behave reasonably simply in the direction perpendicular
to the action of the boost: neither simultaneity nor lengths are affected in that
direction.

We’ll try to draw 2+1 dimensional spacetime diagrams using our standard con-
ventions: all light rays move at 45 degrees to the vertical. Thus, a light cone
looks like this:

We can also draw an observer and their plane of simultaneity.
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In the direction of the boost, this plane of simultaneity acts just like the
lines of simultaneity that we have been drawing. However, in the direction
perpendicular to the boost direction, the boosted plane of simultaneity is not
tilted. This is the statement that simultaneity is not affected in this direction.

Now, let’s put this all together. I also want to display the moving observer’s
idea of “right and left,” so I have drawn the plane of events that the moving
observer finds to be straight to her right or to her left (and not at all in front
of or behind her). Here, the observer is moving across the paper, so her “right
and left” are more or less into and out of the paper.
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Of course, we would like to know how this all looks when redrawn in the moving
observer’s reference frame. One thing that we know is that every ray of light
must still be drawn along some line at 45 degrees from the vertical. Thus, it will
remain on the light cone. However, it may not be located at the same place on
this light cone. In particular, note that the light rays direct straight into and
out of the page as seen in the original reference frame are ‘left behind’ by the
motion of the moving observer. That is to say that our friend is moving away
from the plane containing these light rays. Thus, in the moving reference frame
these two light rays do not travel straight into and out of the page, but instead
move somewhat in the “backwards” direction!

This is how the aberration effect is described in relativity. Suppose that, in
the reference frame of our sun, the star being viewed through the telescope is
“straight into the page.” Then, in the reference frame of the sun, the light
from the star is a light ray coming straight out from the page. However, in the
“moving” reference frame of the earth, this light ray appears to be moving a
bit “backwards.” Thus, astronomers must point their telescopes a bit forward
in order to catch this light ray.

Qualitatively, the aberration effect is actually quite similar in Newtonian and
post-Einstein physics. However, you may recall that I mentioned before that the
actual amount of the aberration effect observed in the 1800’s made no sense to
physicists of the time. This is because, at the quantitative level, the Newtonian
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and post-Einstein aberration effects are quite different. As usual, the post-
Einstein version gets the numbers exactly correct, finally tying up the loose
ends of 19th century observations. Einstein’s idea that the speed of light is in
fact the same in all inertial reference frames wins again.

4.4.2 More on boosts and the 2+1 light cone: the head-
light effect

It is interesting to explore the effect of boosts on 2+1 light cones in more detail,
as this turns out to uncover two more new effects. Instead of investigating this
by drawing lots of three-dimensional pictures, it is useful to find a way to encode
the information in terms of a two-dimensional picture that is easily drawn on
the blackboard or on paper. We can do this by realizing that the light cone
above can be thought of as being made up of a collection of light rays arrayed
in a circle.

To see what I mean, consider some inertial reference frame, perhaps the one in
which one of the above diagrams is drawn. That observer finds that light from
an “explosion” at the origin moves outward along various rays of light. One
light ray travels straight forward, one travels straight to the observer’s left (into
the page), one travels straight to the observer’s right (out of the page), and one
travels straight backward. These light rays have been drawn below (front =
yellow, back = green, left (into page) =tan, right (out of page) = magenta in
the color version).
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There is one light ray traveling outward in each direction, and of course the
set of all directions (in two space dimensions) forms a circle. Thus, we may
talk about the circle of light rays. It us convenient to dispense with all of the
other parts of the diagram and just draw this circle of light rays. The picture
below depicts the circle of light rays in the same reference frame used to draw
the above diagram and uses the corresponding colored dots to depict the front,
back, left, and right light rays. I have also added a few more light rays for future
use and I have numbered the light rays to help keep track of them in the black
and white version.

FrontBack

Left

Right

1

2
3

4

5

6
7

8

Light Circle in the Original Frame

Now let’s draw the corresponding circle of light rays from the moving observer’s
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perspective. As we saw before, a given light ray from one reference frame is still
some light ray in the new reference frame. Therefore, the effect of the boost on
the light cone can be described by simply moving the various dots to appropriate
new locations on the circle. For example, the light rays that originally traveled
straight into and out of the page now fall a bit ‘behind’ the moving observer.
So, they are now moved a bit toward the back. Front, back, left, and right now
refer to the new reference frame.

FrontBack

Left

Right

1
5

8

2
3

76

4

Light Circle in the Second Frame

Note that most of the dots have fallen toward our current observer’s back side
– the side which represents (in the current reference frame) the direction of
motion of the first observer! Suppose then that the first observer were actually,
say, a star like the sun. In it’s own rest frame, a star shines more or less equally
brightly in all directions – in other words, it emits the same number of rays
of light in all directions. So, if we drew those rays as dots on a corresponding
light-circle in the star’s frame of reference, they would all be equally spread out
as in the first light circle we drew above.

?? What we see, therefore, is that in another reference frame (with respect to
which the star is moving) the light rays do not radiate symmetrically from the
star. Instead, most of the light rays come out in one particular direction! In
particular, they tend to come out in the direction that the star is moving. Thus,
in this reference frame, the light emitted by the star is bright in the direction
of motion and dim in the opposite direction and the star shines like a beacon
in the direction it is moving. For this reason, this is known as the “headlight”
effect.

By the way, this effect is seen all the time in high energy particle accelerators
and has important applications in materials science and medicine. Charged
particles whizzing around the accelerator emit radiation in all directions as
described in their own rest frame. However, in the frame of reference of the
laboratory, the radiation comes out in a tightly focussed beam in the direction
of the particles’ motion. This means that the radiation can be directed very
precisely at materials to be studied or tumors to be destroyed.
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4.4.3 Multiple boosts in 2+1 dimensions

Cool, eh? But wait! We’re not done yet. I want you to look back at the above
two circles of light rays and notice that there is a certain symmetry about the
direction of motion. So, suppose you are given a circle of light rays marked
with dots which show, as above, the direction of motion of light rays in your
reference frame. Suppose also that these light rays were emitted by a star, or
by any other source that emits equally in all directions in its rest frame. Then
you can tell which direction the star is moving relative to you by identifying the
symmetry axis in the circle! There must always be such a symmetry axis. The
result of the boost was to make the dots flow as shown below:

Left

Right

Back Front
symmetry

axis

The yellow and
green (font and back) dots are on the symmetry axis, and so do not move at all.

So, just for fun, let’s take the case above and consider another observer who
is moving not in the forward/backward direction, but instead is moving in the
direction that is “left/right” relative to the “moving” observer above. To find
out what the dots looks like in the new frame of references, we just rotate the
flow shown above by 90 degrees as shown below

Right

Left

FrontBack

symmetry axis

and apply it to the dots in the second frame. The result looks something like
this:
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FrontBack

Left

Right

1

8

2

3

45
6
7

The new symmetry axis is shown above. Thus, with respect to the original
observer, this new observer is not moving along a line straight to the right.
Instead, the new observer is moving somewhat in the forward direction as well.

But wait.... something else interesting is going on here.... the light rays don’t
line up right. Note that if we copied the above symmetry axis onto the light
circle in the original frame, it would sit exactly on top of rays 4 and 8. However,
in the figure above the symmetry axis sits half-way between 1 and 8 and 4 and 5.
This is the equivalent of having first rotated the light circle in the original frame
by 1/16 of a revolution before performing a boost along the new symmetry axis!
The new observer differs from the original one not just by a boost, but by a
rotation as well!

In fact, by considering two further boost transformations as above (one acting
only backward, and then one acting to the right), one can obtain the following
circle of light rays, which are again evenly distributed around the circle. You
should work through this for yourself, pushing the dots around the circle with
care.

FrontBack

Left

Right

2
3

4

5

6
7

8

1

Thus, by a series of boosts, one can arrive at a frame of reference which, while it
is not moving with respect to the original fame, is in fact rotated with respect to
the original frame. By applying only boost transformations, we have managed
to turn our observer by 45 degrees in space. This just goes to show again
that time and space are completely mixed together in relativity, and that boost
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transformations are even more closely related to rotations than you might have
thought.

A boost transformation can often be thought of as a “rotation of time into
space.” In this sense the above effect may be more familiar: Consider three
perpendicular axes, x, y, and z. By performing only rotations about the x and
y axes, one can achieve the same result as any rotation about the z axes. In the
above discussion, the boosts are analogous to rotations about the x and y axes,
while the rotation is indeed a rotation ‘about the t axis.’

4.4.4 Other effects

Boosts in 3+1 dimensions and higher works pretty much like it they do in
2+1 dimensions, which as we have seen has only a few new effects beyond the
1+1 case on which we spent most of our time. There is really only one other
interesting effect in 2+1 or higher dimensions that we have not discussed. This
has to do with how rapidly moving objects actually look; that is, they have to do
with how light rays actually reach your eyes to be processed by your brain. This
is discussed reasonably well in section 4.9 of Inside Relativity Mook and Vargish,
which used to be a required textbook for this class. This section is probably
the greatest loss due to no longer using this text as it is quite well done. It
used to be that I would save time by not talking about this effect directly and
simply asking students to read that section. At the time of writing these notes,
I had not decided for sure whether I would discuss this material this time, but
probably time will simply not allow it. For anyone who is interested, I suggest
you find a copy of Mook and Vargish (I think there are several in the Physics
Library) and read 4.9. If you are interested in reading even more, the references
in their footnote 13 on page 117 are a good place to start. One of those papers
refers to another paper by Penrose, which is probably the standard reference
on the subject. By the way, this can be an excellent topic for a course project,
especially if you are artistically inclined or if you like to do computer graphics.

4.5 Homework Problems

4-1. The diagram below is drawn in some inertial reference frame using units
of seconds for time and light-seconds for distance. Calculate the total time
experienced by a clock carried along each of the four worldlines (A,B,C,D)
shown below. Each of the four worldlines starts at (t = −4, x = 0) and ends
at (t = +4, x = 0). Path B runs straight up the t-axis. Remember that
the proper time for a path that is not straight can be found by breaking
it up into straight pieces and adding up the proper times for each piece.



118 CHAPTER 4. MINKOWSKIAN GEOMETRY

t=0

x=-4 x=4x=0

t=-4

t=4

A

B

C

D

4-2. This problem is to give you some practice putting everything together.
Once again, we and our friends, Alice and Bob, are inertial observers who
all meet at a single event. At this event, our clock, Alice’s clock, and Bob’s
clock all read zero and a firecracker explodes. Alice moves to our right at
c/2 and Bob moves to our left at c/2.

Draw a single spacetime diagram in our reference frame showing all of the
following:

(a) Alice, Bob, and the outgoing light from the explosion.

(b) The curve representing all events that are a proper time of one second
to the future of the explosion. Also draw in the curves representing
the events that are: i) one second of proper time to the past of the
explosion, ii) one light second of proper distance to the left of the
explosion, and iii) one light second of proper distance to the right of
the explosion.

(c) The events A, U, and B where Alice’s clock reads one second, where
our clock reads one second, and where Bob’s clock reads one second.

(d) Finally, suppose that we (but not Alice or Bob) are holding the middle
of a stick that is two light seconds long (and which is at rest relative
to us). Draw in the worldlines of both ends of that stick. Also mark
the events X and Y occupied by the ends of that stick on the line
tus = 0.

4-3. Redraw everything in problem (4-2) using Alice’s frame of reference.

4-4. Let’s get one more perspective on the twin paradox. It is always interesting
to ask what each twin sees during the trip. Now, note that what you
actually see has to do with light rays, and with when a bit of light happens
to reach your eye. So, to study this question, we should study light rays
sent from one twin to the other. We will again have Gaston go off to
Alpha Centauri (4 light-years away) and back at .8c while Alphonse stays
at home.

(a) Let’s first think about what Gaston (the traveling twin) sees. Start
by drawing a spacetime diagram for the trip in any inertial frame (it
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is easiest to use Alphonse’s frame of reference). Now, suppose that
Alphonse emits one light ray every year (according to his own proper
time). Draw these light rays on the diagram. How many of these
light rays does Gaston see on his way out? [Hint: You should be able
to read this off of your graph.] How many does Gaston see on his way
back? What does this tell you about what Gaston actually sees if he
watches Alphonse through a telescope?

(b) Now let’s figure out what Alphonse sees. Draw another spacetime
diagram for the trip in some inertial frame (again, Alphonse’s frame
is the easiest one to use), but this time suppose that Gaston emits
one light ray every year (according to his own proper time – you may
have to calculate this). What does this diagram tell you about what
Alphonse sees if he watches Gaston through a telescope during the
trip??

4-5. In relativity, it is always nice to look at things from several different ref-
erence frames. Let’s look at the same trip of Gaston to Alpha Centauri
and back, with Alphonse staying at home. This time, though, draw the
spacetime diagram using the inertial reference frame that Gaston had on
his outward trip. Using this frame of reference, calculate the total proper
time that elapses for both Alphonse and Gaston between the event where
Gaston leaves Alphonse and the event where they rejoin.

4-6. How about some practice working with hyperbolic trig functions? Recall
that

sinh θ =
eθ − e−θ

2
,

cosh θ =
eθ + e−θ

2
,

and

tanh θ =
sinh θ

cosh θ
.

(a) Verify that cosh2 θ − sinh2 θ = 1.

(b) Verify that
tanh θ1 + tanh θ2

1 + tanh θ1 tanh θ2
= tanh(θ1 + θ2),

so that the law of composition of velocities from last week just means
that “boost parameters add.”
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[Hint: Note that

tanh θ1 + tanh θ2

1 + tanh θ1 tanh θ2
=

(2 cosh θ1)(2 sinh θ2) + (2 sinh θ1)(2 cosh θ2)

(2 cosh θ1)(2 cosh θ2) + (2 sinh θ1)(2 sinh θ2)
.

Try evaluating the numerator and denominator separately.]

(c) Sketch a graph of cosh θ vs. θ, letting θ range from large negative
values to large positive values. [Hint: Note that for large positive θ,
e−θ is very small (e−θ ≈ 0).]

(d) Sketch a graph of sinh θ vs. θ, letting θ range from large negative
values to large positive values. [Hint: Note that for large positive θ,
e−θ is very small (e−θ ≈ 0).]

(e) Sketch a graph of v/c vs. θ for v/c = tanh θ, letting θ range from
large negative values to large positive values. [Hint: Note that for
large positive θ, e−θ is very small (e−θ ≈ 0).]

(f) Let τ = 1sec and let θ range from large negative values to large
positive values. Sketch the curve in spacetime described by:

t = τ cosh θ,

x = (cτ) sinh θ.

(g) Let d = 1Ls and let θ range from large negative values to large
positive values. Sketch the curve in spacetime described by:

t = (d/c) sinh θ,

x = d cosh θ.

4-7. Suppose that Alice is moving to your right at speed c/2 (relative to you)
and Bob is moving to Alice’s right at speed c/2 relative to her.

(a) What is the boost parameter between you and Alice?

(b) Between Alice and Bob?

(c) Between you and Bob? Use this to calculate the relative velocity
between you and Bob. [Hint: Your calculator almost certainly7 has
a built-in function called tanh−1 or arctanh. The relation between θ
and v can be written as θ = tanh−1(v/c) = arctanh(v/c).]

7On some modern calculators this function is hidden inside various menus. If you really

can’t find it you may want to use the fact that tanh−1 x = 1
2

ln
(

1+x
1−x

)
.



Chapter 5

Accelerating Reference
Frames in Special Relativity

We have now reached an important point in our study of relativity. Although I
know that many of you are still absorbing it, we have learned the basic structure
of the new ideas about spacetime, how they developed, and how they fit with the
various pieces of experimental data. We have also finished all of the material in
Einstein’s Relativity (and in fact in most introductions) associated with so-called
‘special relativity.’ You may well be wondering, “What’s next?”

One important subject with which we have not yet dealt is that of “dynamics,”
or, “what replaces Newton’s Laws in post-Einstein physics?” I would like to
discuss this in some depth, both for its own sake and because it will provide
a natural transition to our study of General Relativity and gravity. However,
there is something else that we must discuss first. Recall, for example, that
Newton’s second Law (F=ma), the centerpiece of pre-relativistic physics, in-
volves acceleration. Although we have to some extent been able to deal with
accelerations in special relativity (as in the twin paradox), we have seen that
accelerations produce further unexpected effects. We need to study these more
carefully before continuing onward. So, for most of this chapter we are going
to carefully investigate the simple but illustrative special case known as ‘uni-
form’ acceleration. We’ll save true discussion of dynamics (forces and such) for
chapter 6.

5.1 The Uniformly Accelerating Worldline

Now, what do I mean by ‘uniform’ acceleration? One might at first think
that this means that the acceleration a = dv/dt of some object is constant, as
measured in some inertial frame. However, this would imply that the velocity
(relative to that frame) as a function of time is of the form v = v0 + at. One
notes that this eventually exceed the speed of light. Given our experience to

121
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date, this would seem to be a bit odd.

Also, on further reflection, one realizes that this notion of acceleration depends
strongly on the choice of inertial frame. The dv part of a involves subtracting
velocities, and we have seen that plain old subtraction does not in fact give the
relative velocity between two inertial frames. Also, the dt part involves time
measurements, which we know to vary greatly between reference frames. Thus,
there is no guarantee that a constant acceleration a as measured in some inertial
frame will be constant in any other inertial frame, or that it will in any way
“feel” constant to the object that is being accelerated.

5.1.1 Defining uniform acceleration

What we have in mind for uniform acceleration is something that does in fact feel
constant to the object being accelerated. In fact, we will take this as a definition
of “uniform acceleration.” Recall that we can in fact feel accelerations directly:
when an airplane takes off, a car goes around a corner, or an elevator begins to
move upward we feel the forces associated with this acceleration (as in Newton’s
law F=ma). To get the idea of uniform acceleration, picture a large rocket in
deep space that burns fuel at a constant rate. Here we have in mind that this
rate should be constant as measured by a clock in the rocket ship. Presumably
the astronauts on this rocket experience the same force at all times.

Now, I admitted a few minutes ago that Newton’s laws will need to be modified
in relativity. However, we know that Newton’s laws hold for objects small
velocities (much less than the speed of light) relative to us. So, it is OK to use
them for slowly moving objects. We will suppose that these laws are precisely
correct in the limit of zero relative velocity.

So, how can we keep the rocket “moving slowly” relative to us as it continues
to accelerate? We can do so by continuously changing our own reference frame.
Perhaps a better way to say this is that we should arrange for many of our
friends to be inertial observers, but with a wide range of velocities relative to
us. During the short time that the rocket moves slowly relative to us, we use our
reference frame to describe the motion. Then, at event E1 (after the rocket has
sped up a bit), we’ll use the reference frame of one of our inertial friends whose
velocity relative to us matches that of the rocket at event E1. Then the rocket
will be at rest relative to our friend. Our friend’s reference frame is known as
the momentarily co-moving inertial frame at event E1. A bit later (at event
E2), we will switch to another friend, and so on.
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E1

Friend 1

E

Friend 2

2

In fact, to do this properly, we should switch friends (and reference frames)
fast enough so that we are always using a reference frame in which the rocket
is moving only infinitesimally slowly. Then the relativistic effects will be of
zero size. In other words, we wish to borrow techniques from calculus and
take the limit in which we switch reference frames continually, always using the
momentarily co-moving inertial frame. So, we’ll have lots of fun with calculus
in this chapter.

Anyway, the thing that we want to be constant in uniform acceleration is called
the “proper acceleration.” Of course, it can change along the rocket’s worldline
(depending on how fast the rocket decides to burn fuel), so we should talk about
the proper acceleration ‘at some event (E) on the rocket’s worldline.’ To find
the proper acceleration (α) at event E, first consider an inertial reference frame
in which the rocket is at rest at event E.

E

Momentarily Co-moving Frame

t=0

x=0

t=0

x=0

E
At E, the
rocket is at rest
in this frame.

The proper acceleration α(E) at event E is just the acceleration of the rocket
at event E as computed in this momentarily co-moving reference frame.

Thus we have

α(E) = dvE/dtE , (5.1)
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where the E-subscripts remind us that this is to be computed in the momentarily
co-moving inertial frame at event E. Notice the analogy with the definition of
proper time along a worldline, which says that the proper time is the time as
measured in a co-moving inertial frame (i.e., a frame in which the worldline is
at rest).

An important point is that, although our computation of α(E) involves a dis-
cussion of certain reference frames, α(E) is a quantity that is intrinsic to the
motion of the rocket and does not depend on choosing of some particular inertial
frame from which to measure it. Thus, it is not necessary to specify an inertial
frame in which α(E) is measured, or to talk about α(E) “relative” to some
frame. As with proper time, we use a Greek letter (α) to distinguish proper
acceleration from the more familiar frame-dependent acceleration a.

We should also point out that the notion of proper acceleration is also just
how the rocket would naturally measure its own acceleration (relative to inertial
frames). For example, a person in the rocket might decide to drop a rock
out the window at event E. If the rock is gently released at event E, it will
initially have no velocity relative to the rocket – its frame of reference will be
the momentarily co-moving inertial frame at event E. Of course, the rock will
then begin to be left behind. If the observer in the rocket measures the relative
acceleration between the rock and the rocket, this will be the same size (though
in the opposite direction) as the acceleration of the rocket as measured by the
(inertial and momentarily co-moving) rock. In other words, it will be the proper
acceleration α of the rocket.

5.1.2 Uniform Acceleration and Boost Parameters

So, now we know what we mean by uniform acceleration. But, it would be
useful to know how to draw this kind of motion on a spacetime diagram (in
some inertial frame). In other words, we’d like to know what sort of worldline
this rocket actually follows through spacetime.

There are several ways to approach this question, but I want to use some of
the tools that we’ve been developing. As we have seen, uniform acceleration
is a very natural notion that is not tied to any particular reference frame. We
also know that, in some sense, it involves a change in velocity and a change
in time. One might expect the discussion to be simplest if we measure each
of these in the most natural way possible, without referring to any particular
reference frame. What do you think is the natural measure of velocity (and the
change in velocity)? By natural, I mean something associated with the basic
structure (geometry!) of spacetime. What do you think is a natural measure of
the passage time? Stop reading for a moment and think about this.

As we discussed last week, the natural way to describe velocity (in terms of, say,
Minkowskian geometry) is in terms of the associated boost parameter θ. Recall
that boost parameters really do add together (eq. 4.17) in the simple, natural
way. This means that when we consider a difference of two boost parameters
(like, say, in ∆θ or dθ), this difference is in fact independent of the reference
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frame in which it is computed. The boost parameter of the reference frame itself
just cancels out.

What about measuring time? Well, as we have discussed, the ‘natural’ mea-
sure of time along a worldline is the proper time. The proper time is again
independent of any choice of reference frame.

OK, so how does this relate to our above discussion? Let’s again think about
computing the proper acceleration α(E) at some event E using the momentarily
co-moving inertial frame. We have

α(E) =
dvE
dtE

. (5.2)

What we want to do is to write dvE and dtE in terms of the boost parameter
(θ) and the proper time (τ).

Let’s start with the time part. Recall that the proper time τ along the rocket’s
worldline is just the time that is measured by a clock on the rocket. Thus,
the question is just “How would a small time interval dτ measured by this
clock (at event E) compare to the corresponding time interval dtE measured
in the momentarily co-moving inertial frame?” But we are interested only in
the infinitesimal time around event E where there is negligible relative velocity
between these two clocks. Clocks with no relative velocity measure time intervals
in exactly the same way. So, we have dtE = dτ .

Now let’s work in the boost parameter, using dθ to replace the dvE in equation
(5.1). Recall that the boost parameter θ is just a function of the velocity v/c =
tanh θ. So, let’s try to compute dvE/dtE using the chain rule. You can use the
definition of tanh to check that

dv

dθ
=

c

cosh2 θ
.

Thus, we have
dv

dτ
=
dv

dθ

dθ

dτ
=

c

cosh2 θ

dθ

dτ
. (5.3)

Finally, note that at event E, the boost parameter θ of the rocket relative to
the momentarily co-moving inertial frame is zero. So, if we want dvE

dτ we should
substitute θ = 0 into the above equation1:

α =
dvE
dτ

=
c

cosh2 θ

∣∣∣
θ=0

dθ

dτ
= c

dθ

dτ
. (5.4)

In other words,
dθ

dτ
= α/c. (5.5)

1Note that this means that our chain rule calculation (5.3) has in fact shown that, for small
velocities, we have approximately θ ≈ v/c. This may make you feel even better about using
boost parameters as a measure of velocity.
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As we have discussed, dθ and dτ do not in fact depend on a choice of inertial
reference frame. As a result, the relation (5.5) holds whether or not we are in
the momentarily co-moving inertial frame.

If we translate equation (5.5) into words, it will come as no surprise: “An
object that experiences uniform acceleration gains the same amount of boost
parameter for every second of proper time; that is, for every second of time
measured by a clock on the rocket.”

It will be useful to solve (5.5) for the case of uniform α and in which the boost
parameter (and thus the relative velocity) vanishes at τ = 0. For this case, (5.5)
yields the relation:

θ = ατ/c. (5.6)

This statement encodes a particularly deep bit of physics. In particular, it turns
out to answer the question “Why can’t an object go faster than the speed of
light?” to which I promised we would return. Here, we have considered the
simple case of a rocket that tries to continually accelerate by burning fuel at
a constant rate. What we see is that it gains equal boost parameter in every
interval of proper time. So, will it ever reach the speed of light? No. After a
very long (but finite) proper time has elapsed the rocket will merely have a large
(but finite) boost parameter. Since any finite boost parameter (no matter how
large) corresponds to some v less than c, the rocket never reaches the speed of
light.

Similarly, it turns out that whether or not the acceleration is uniform, any
rocket must burn an infinite amount of fuel to reach the speed of light. Thus,
the speed of light (infinite boost parameter) plays the same role in relativity
that was played by infinite velocity in Newtonian physics.

5.1.3 Finding the Worldline

In the preceding section we worked out the relation between the proper acceler-
ation α of an object, the boost parameter θ that describes the object’s motion,
and the proper time τ along the object’s worldline. This relation was encoded
in equation (5.5), dθ

dτ = α/c.

This results told us quite a bit, and in particular let to insight into the “why
things don’t go faster than light” issue. However, we still don’t know exactly
what worldline a uniformly accelerating object actually follows in some inertial
frame. This means that we don’t yet really know how to draw the uniformly
accelerating object on a spacetime diagram, so that we cannot yet apply our
powerful diagrammatic tools to understanding the physics of uniform accelera-
tion.

We will work out the exact shape of this worldline in this section. Let’s start by
drawing the rough qualitative shape of the worldline on a spacetime diagram.
The worldline will have v = 0 at t = 0, but the velocity will grow with t. The
velocity will thus be nearly +c for large positive t and it will be nearly −c for
large negative t. As a result, the diagram will look something like this:
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Next, let us recall that uniform acceleration is in some sense invariant. When
the uniformly accelerated rocket enters our frame of reference (i.e., when v = 0!),
I find its acceleration to be α no matter what inertial frame we are in! Thus,
the curve should in some sense ‘look the same’ in every inertial frame.

So, any guesses? Can you think of a curve that looks something like the figure
above that is ‘the same’ in all inertial frames?

How about the constant proper distance curve x = d cosh θ from section (4.3.4)?
Since θ was a boost angle there, it is natural to guess that it is the same θ = ατ/c
that we used above.

d x =  d cosh (   t/c)α

t =     sinh (   t/c)d
c α

x = 0

t  =0

Let us check our guess to see that it is in fact correct. What we will do is to
simply take the curve x = d cosh(ατ/c), t = (d/c) sinh(ατ/c) and show that, for
the proper choice of the distance d, its velocity is v = c tanh(ατ/c), where τ is
the proper time along the curve. But we have seen that this relation between
time is the defining property of a uniformly accelerated worldline with proper
acceleration α, so this will indeed check our guess.

First, we simply calculate:

dx =
αd

c
sinh(ατ)dτ

dt =
αd

c2
cosh(ατ)dτ. (5.7)
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Dividing these two equations we have

v =
dx

dt
= c tanh(ατ/c); (5.8)

i.e., θ is indeed ατ/c along this curve. Now, we must show that τ is the proper

time along the curve. But

dpropertime2 = dt2 − 1

c2
dx2 =

α2d2

c4
dτ2. (5.9)

So, we need only choose d such that αd/c2 = 1 and we are done. Thus, d = c2/α.
In summary,

If we start a uniformly accelerated object in the right place (c2/α away from
the origin), it follows a worldline that remains a constant proper distance (c2/α)
from the origin.

For a general choice of starting location (say, x0), it follows a worldline that

remains a constant proper distance c2

α from some other event. Since it is some-
times useful to have this more general equation, let us write it down here:

x− x0 =
c2

α

(
cosh

(ατ
c

)
− 1
)
. (5.10)

5.2 Exploring the uniformly accelerated refer-
ence frame

We have now found that a uniformly accelerating observer with proper acceler-
ation α follows a worldline that remains a constant proper distance c2/α away
from some event. Just which event this is depends on where and when the
observer began to accelerate. For simplicity, let us consider the case where this
special event is the origin. Let us now look more closely at the geometry of the
situation.

5.2.1 Horizons and Simultaneity

The diagram below shows the uniformly accelerating worldline together with a
few important light rays.
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Past Acceleration Horizon

Future Acceleration Horizon

Signals from this region can

never reach the rocket

The Light rays from
this event never

catch up with the rocket

The rocket can never
send signals to this region

(‘‘end of the world’’)

Note the existence of the light ray marked “future acceleration horizon.” It
marks the boundary of the region of spacetime from which the uniformly accel-
erated observer can receive signals, since such signals cannot travel faster than
c. This is an interesting phenomenon in and of itself: merely by undergoing
uniform acceleration, the rocket ship has cut itself off from communication with
a large part of the spacetime. In general, the term ‘horizon’ is used whenever an
object is cut off in this way. On the diagram above there is a light ray marked
“past acceleration horizon” which is the boundary of the region of spacetime to
which the uniformly accelerated observer can send signals.

When considering inertial observers, we found it very useful to know how to draw
their lines of simultaneity and their lines of constant position. Presumably, we
will learn equally interesting things from working this out for the uniformly
accelerating rocket.

But, what notion of simultaneity should the rocket use? Let us define the
rocket’s lines of simultaneity to be those of the associated momentarily co-
moving inertial frames. It turns out that these are easy to draw. Let us simply
pick any event A on the uniformly accelerated worldline as shown below. I have
also marked with a Z the event from which the worldline maintains a constant
proper distance.

A

Z

Recall that a boost transformation simply slides the events along the hyperbola.
This means that we can find an inertial frame in which the above picture looks
like this:



130 CHAPTER 5. ACCELERATING REFERENCE FRAMES . . .

Z A

In the new frame of reference, the rocket is at rest at event A. Therefore, the
rocket’s line of simultaneity through A is a horizontal line. Note that this line
passes through event Z.

This makes the line of simultaneity easy to draw on the original diagram. What
we have just seen is that:

Given a uniformly accelerating observer, there is an event Z from which
it maintains proper distance. The observer’s line of simultaneity through any
event A on her worldline is the line that connects event A to event Z.

Thus, the diagram below shows the rocket’s lines of simultaneity.

Z

-2

-1
0
1

2

Let me quickly make one comment here on the passage of time. Suppose that
events −2,−1 above are separated by the same sized boost as events −1, 0,
events 0, 1, and events 1, 2. From the relation θ = ατ/c2 it follows that each
such pair of events is also separated by the same interval of proper time along
the worldline.

?? But now on to the more interesting features of the diagram above! Note that
the acceleration horizons divide the spacetime into four regions. In the right-
most region, the lines of simultaneity look more or less normal. However, in the
top and bottom regions, there are no lines of simultaneity at all! The rocket’s
lines of simultaneity simply do not penetrate into these regions. Finally, in the
left-most region things again look more or less normal except that the labels on
the lines of simultaneity seem to go the wrong way, ‘moving backward in time.’



5.2. THE UNIFORMLY ACCELERATED FRAME 131

And, of course, all of the lines of simultaneity pass through event Z where the
horizons cross. These strange-sounding features of the diagram should remind
you of the weird effects we found associated with Gaston’s acceleration in our
discussion of the twin paradox in section 4.2.

As with Gaston, one is tempted to ask “How can the rocket see things running
backward in time in the left-most region?” In fact, the rocket does not see, or
even know about, anything in this region. As we mentioned above, no signal
of any kind from any event in this region can ever catch up to the rocket. As
a result, this phenomenon of finding things to run backwards in time is a pure
mathematical artifact and is not directly related to anything that observers on
the rocket actually notice.

5.2.2 Friends on a Rope

In the last section we uncovered some odd effects associated with the the ac-
celeration horizons. In particular, we found that there was a region in which
the lines of simultaneity seemed to run backward. However, we also found that
the rocket could neither signal this region nor receive a signal from it. As a
result, the fact that the lines of simultaneity run backward here is purely a
mathematical artifact.

Despite our discussion above, you might wonder if that funny part of the rocket’s
reference frame might somehow still be meaningful. It turns out to be productive
to get another perspective on this, so let’s think a bit about how we might
actually construct a reference frame for the rocket.

Suppose, for example, that I sit in the nose (the front) of the rocket. I would
probably like to use our usual trick of asking some of my friends (or the students
in class) to sit at a constant distance from me in either direction. I would then
try to have them observe nearby events and tell me which ones happen where.
We would like to know what happens to the ones that lie below the horizon.
Let us begin by asking the question: what worldlines do these fellow observers
follow?

Let’s see.... Consider a friend who remains a constant distance ∆ below us as
measured by us; that is, as measured in the momentarily co-moving frame of ref-
erence. This means that this distance is measured along our line of simultaneity.
But look at what this means on the diagram below:
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α
c 2

Z
∆

∆

∆

∆

α
c 2

Upper Observer

Lower
Observer

Recall that a distance (measured in some inertial frame) between two events on
a given a line of simultaneity (associated with that same inertial frame) is in fact
the proper distance between those events. Thus, on each line of simultaneity
the proper distance between us and our friend is ∆. But, along each of these
lines the proper distance between us and event Z is α/c2. Thus, along each of
these lines, the proper distance between our friend and event Z is α/c2 − ∆.
In other words, the proper distance between our friend and event Z is again a
constant and our friend’s worldline must also be a hyperbola!

Note, however, that the proper distance between our friend and event Z is less
than the proper distance c2/α between us and event Z. This means that our
friend is again a uniformly accelerated observer, but with a different proper
acceleration!

We can use the relations from section 5.1.3 to find the proper acceleration αL
of our lower friend. The result is

c2

αL
= proper distance between Z and lower friend =

c2

α
−∆, (5.11)

or
αL
c2

=
1

c2

α −∆
=

α

c2 −∆α
, (5.12)

so that our friend’s proper acceleration is larger than our own.

In particular, let’s look at what happens when our friend is sufficiently far below

us that they reach the acceleration horizons. This is ∆ = c2

α . At this value, we
find αL = ∞!! Note that this fits with the fact that they would have to travel
right along a pair of light rays and switch between one ray and the other in zero
time....
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?? So then, suppose that we hung someone below us on a rope and slowly lowered
them toward the horizon. The proper acceleration of the person (and thus the
force that the rope must exert on them) becomes infinite as they get near the
horizon. Similarly (by Newton’s 3rd law) the force that they exert on the rope
will become infinite as they near the horizon. Thus, no matter what it is made
out of, the rope must break (or begin to stretch, or somehow fail to remain rigid
such that the person falls away, never to be seen by us again) before the person
is lowered across the horizon.

Again we see that, in the region beyond the horizon, the reference frame of a
uniformly accelerating object is “unphysical” and could never in fact be con-
structed. There is no way to make one of our friends move along a worldline
below the horizon that remains at a constant proper distance from us.

5.2.3 The Long Rocket

Suppose now that our rocket is long enough that we should draw separate world-
lines for its front and back. If the rocket is ‘rigid,’ it will remain a constant
proper length ∆ as time passes. This is just like our ‘friend on a rope’ example.
Thus, the back of the rocket also follows a uniformly accelerated worldline with
a proper acceleration αB which is related to the proper acceleration αF of the
front by:

αB =
αF c

2

c2 −∆αF
. (5.13)

Clearly, the back and front have different proper accelerations.

c 2

αF

Z
L

Front of Rocket

Back of
Rocket

c 2

αB
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Note that the front and back of the rocket do in fact have the same lines of simul-
taneity, so that they agree on which events happen “at the same time.” But do
they agree on how much time passes between events that are not simultaneous?

Since they agree about lines of simultaneity it must be that, along any such line,
both ends of the rocket have the same speed v and the same boost parameter
θ. However, because the proper acceleration of the back is greater than that of
the front, the relation θ = ατ/c2 then tells us that more proper time τ passes
at the front of the rocket than at the back. In other words, there is more proper
time between the events AF , BF below than between events AB , BB . In fact,
αtopτtop = αbottomτbottom.

c 2

αF

Z
L

Front of Rocket

Back of
Rocket

c 2

αB

A

A

B

B

F

B

B

F

?? Here it is important to note that, since they use the same lines of simultaneity,
both ends of the rocket agree that the front (top) clock runs faster! Thus, this
effect is of a somewhat different nature than the time dilation associated with
inertial observers. This, of course, is because all accelerated observers are not
equivalent – some are more accelerated than others.

By the way, we could have read off the fact that ∆τFront is bigger than ∆τBack
directly from our diagram without doing any calculations. (This way of doing
things is useful for certain similar homework problems.) To see this, note that
between the two lines (t = ±t0) of simultaneity (for the inertial frame!!) drawn
below, the back of the rocket is moving faster (relative to the inertial frame in
which the diagram is drawn) than is the front of the rocket. You can see this
from the fact that the front and back have the same line of simultaneity (and
therefore the same speed) at events BF , BB and at events AF , AB . This means
that the speed of the back at BB is greater than that of the front at DF and
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that the speed of the back at AB is greater than that of the front at CF .

Z

Front of Rocket

Back of
Rocket

A

A

B

B

F

B

B

F

t = - t

t =   t

0

0

C

D

F

F

Thus, relative to the inertial frame in which the diagram is drawn, the back of
the rocket experiences more time dilation in the interval (−t0, t0) and it’s clock
runs more slowly. Thus, the proper time along the back’s worldline between
events AB and BB is less than the proper time along the front’s worldline
between events CF and DF . ?? We now combine this with the fact that the
proper time along the front’s worldline between AF and BF is even greater than
that between CF and DF . Thus, we see that the front clock records much more
proper time between AF and BF than does the back clock between AB and BB .

5.3 Homework Problems

5-1. Suppose that you are in a (small) rocket and that you make the following
trip: You start in a rocket in our solar system (at rest with respect to
the Sun). You then point your rocket toward the center of the galaxy and
accelerate uniformly for ten years of your (i.e., proper) time with a proper
acceleration of 1g = 10m/s2. Then, you decelerate uniformly for ten years
(of proper time) at 1g, so that you are again at rest relative to the sun:

(a) Show that 1g is very close to 1light− year/year2. Use this value for
g in the problems below. [Note: This part is just a unit-conversion
problem.]

(b) Draw a spacetime diagram showing your worldline (and that of the
Sun) in the Sun’s reference frame.
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(c) As measured in the Sun’s reference frame, how far have you traveled?

(d) As measured in the Sun’s reference frame, how long did it take you
to get there?

(e) Relative to the Sun, what were your boost parameter (θ) and your
velocity v at the event where you switched from accelerating to de-
celerating?

5-2. Suppose that you are at the top of a (rigid) rocket which is half a light
year tall. If the rocket is accelerating such that your proper acceleration
is 1g,

(a) What is the proper acceleration at the bottom of the rocket? (Also,
how heavy would you feel if you were at the bottom?)

(b) For every second that passes for a clock at the bottom of the rocket,
how much time passes for you?

(c) Draw a spacetime diagram (using an inertial frame of reference) that
shows the front of the rocket, the back of the rocket, and at least two
of the rocket’s lines of simultaneity.

(d) What is the proper acceleration of the bottom if the rocket is 3/4 of
a light year tall?

(e) What is the proper acceleration of the bottom if the rocket is 99/100
of a light year tall?

5-3. Suppose that you are tossed out of a (short) uniformly accelerating rocket.

a) Sketch a spacetime diagram (in an inertial frame) showing the acceler-
ation horizons of the accelerating rocket.

b) Draw your worldline on this diagram.

c) Suppose that you send out light rays at regular intervals to signal the
rocket. Draw several of these light rays on your diagram.

d) The people on the rocket watch the light rays you send out through
a telescope. Describe what they see. Do they see you age slowly or
quickly? When do they see you cross the horizon?

e) Suppose now that the rocket sends out light rays toward you at regular
intervals. Describe what you see if you watch these light rays through
a telescope. Do you see people in the rocket age slowly or quickly? Do
you see anything special when you cross the horizon?

5-4. If you like, you may assume that all accelerations are uniform in
this problem.

Three small rocket ships A, B, and C drift freely in a region of space far
from all other objects:
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A

CB

The rockets are not rotating and have no relative motion. Rocket A is
equidistant from B and C (i.e., it is the same distance from each). Rocket
A sends out a light pulse and, when the rockets B and C receive this pulse,
each starts its engine. (The things sticking out of the rockets in the picture
above are the antennas that emit and receive the light pulse.) Rockets B
and C are identical, and their guidance computers are programmed in
exactly the same way. As a result, as reckoned by A, rockets B and C will
have the same velocity at every instant of time and so remain a constant
distance apart (again as measured by A). Rocket A remains in the same
inertial frame the entire time. Rockets A, B, and C carry clocks of identical
construction, all of which reach t = 0 when the light signal arrives at B
and C.

(a) Using the reference frame of Rocket A, draw a spacetime diagram
showing the worldlines of rockets B and C.

(b) Suppose that, at some time after rockets B and C begin to accelerate,
an observer in the inertial rocket (A) takes readings of the clocks in
rockets B and C. As usual, A does this by using various friends with
the same reference or by otherwise ensuring that light travel time is
not an issue. How do the clocks A, B, and C compare? (Just say
which is running fastest, slowest, etc. I don’t need a quantitative
answer.)

(c) What happens if an observer in rocket B compares the clocks? Hint:
Recall that since the speed of B (relative to A) continues to increase,
the associated time dilation factor will not be constant. As a result,
the answer (at least for comparing B’s clock to A’s) will depend on
when B makes this comparison. For simplicity, I suggest you think
about what happens at a very late time, long after B has passed A,
when the relative speed of A and B is nearly the speed of light.

(d) What happens if an observer in rocket C compares the clocks? Sup-
pose that B and C begin very close together and consider only what
happens at a very late time. Note: A complete analysis covering all
cases is more complicated. It turns out that whether C sees A’s clock
run faster or B’s clock run faster depends on the initial separation
between B and C.

(e) [Optional] Does the answer to D depend on whether rockets A and C
start off close together or far apart?

Preliminary Comments for problems 5 and 6: The problems below
will give you a feel for how to answer more complicated questions in special
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relativity. In problem 1, you calculated the proper time along a number
of worldlines made up of straight line segments. Using a little calculus,
much the same method gives the proper time along continuous curves as
well. Remember that, if t and x are coordinates in some inertial frame,
the proper time is given by

∆τ2 = ∆t2 − ∆x2

c2
.

For an infinitesimal piece of worldline spanning a time dt, a distance dx,
and a proper time dτ , we have

dτ2 = dt2 − dx2

c2
,

or,

dτ =

√
dt2 − dx2

c2
=

√
1− dx

dt

1

c2
dt.

Thus, if we know the velocity v(t) of some worldline, we can find the
associated proper time by using:

∆τ =

∫ t

t0

dt
√

1− [v(t)]2/c2.

5-5. Suppose that we are in an inertial reference frame, and that some (small)
rocket is moving relative to us. Suppose that the rocket is at rest relative
to us until t = t0, after which it moves relative to us with velocity v(t) =

c

√
1− t20

t2 . Finally, let τ be the reading on a clock in that rocket and
suppose that this clock is set to read τ = 0 when t = t0.

(a) Calculate the reading τ on this clock as a function of t (after t = t0).

(b) Use equation (5.5) to calculate the proper acceleration α of the rocket
as a function of τ. Note that (5.5) involves dθ

dτ and not dθ
dt . As a result,

you may need to use the chain rule:

dθ

dτ
=
dθ

dt

dt

dτ
. (5.14)

(c) What happens to α as t→∞?

Hint: d
dx tanh−1(x) = 1

1−x2 .

5-6. Suppose that we are in an inertial reference frame, and that some (small)
rocket is moving relative to us. Suppose that the rocket is at rest relative

to us until t = t0, after which it moves with velocity v(t) = c

√
1− t40

t4 .
Let τ be the reading on a clock in that rocket and suppose that this clock
reads τ = 0 when t = t0.
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(a) What is the reading τ on this clock as a function of t (after t = t0)?

(b) What happens to τ as t→∞?

(c) Finally, what is the proper acceleration along this worldline?

(d) What happens to α as t→∞?

5-7. Suppose that, in problem 4 above, a fragile thread is strung between rock-
ets B and C as shown below:

A

CB

Initially, the thread is just barely long enough to cover the required dis-
tance. Now, as the rockets speed up, the distance between the rockets
remains constant as measured by A. But, the string ought to contract,
right? (Length contraction and all that ...) So, presumably, the string will
break when the speed becomes large enough that the artificial prevention
(from the fact that the string is tied to B and C) of the natural contraction
imposes an intolerable stress on the string.

Is this really so? Draw a spacetime diagram and use it to argue your point.

5-8. Three small rocket ships A, B, and C drift freely in a region of space far
from all other objects. The rockets are not rotating and have no relative
motion. Rocket A is equidistant from B and C (i.e., it is the same distance
from each). This time, however, rockets B and C face each other so that
they accelerate toward each other. Rocket A sends out a light pulse and,
when rockets B and C receive this pulse, each starts it’s engine. Rockets
B and C are identical and their guidance computers are programmed in
exactly the same way. As a result, as reckoned by A, rockets B and C will
have the same speed at every instant of time (although they will be moving
in opposite directions). Rocket A remains in the same inertial frame the
entire time. Rockets A, B, and C carry clocks of identical construction, all
of which read t = 0 when the light signal arrives at B and C.

A

CB

(a) Using the reference frame of Rocket A, draw a spacetime diagram
showing the worldlines of rockets B and C.

(b) Suppose that, at some time after rockets B and C begin to acceler-
ate, an observer in the inertial rocket (A) measures the readings of



140 CHAPTER 5. ACCELERATING REFERENCE FRAMES . . .

the clocks in rockets B and C. How do the clocks A, B, and C com-
pare? (Just say which is running fastest, slowest, etc. I don’t need a
quantitative answer.)

(c) What happens if an observer in rocket B compares the clocks?

(d) What happens if an observer in rocket C compares the clocks?

(e) Suppose that B and C make measurements of their separation from
A along their lines of simultaneity. How ‘fast’ do they find A to be
moving away from them? If they measure their separation from both
the front and back of A, what happens to their measurements of the
length of A as time passes?

5-9. Consider a wagon wheel of radius r with rigid spokes that starts at rest in
some inertial frame but then begins to spin rapidly so that the outside of
the wheel is moving at .8c relative to the inertial frame.

Since length contraction occurs only in the direction of motion, the radius
r of the wheel remains unchanged (as measured in the inertial frame).

(a) Suppose that you are in the original inertial frame. What value will
you measure for the circumference of the wheel? (Assume here that
the wheel does not break under the stress.)

(b) Suppose that you measure the circumference by tacking down mea-
suring rods around the outside of the spinning wheel (so that the
rods spin with the wheel). What value of the circumference will this
measurement produce?

(c) If the spokes of the wheel are connected by pieces of thread, what
will happen to the thread while the wheel is getting up to speed?

(d) Suppose that identical clocks are placed at the end of each spoke
and that the clocks are all synchronized in the original inertial frame
before the wheel is spun up. As viewed from the inertial frame, do the
clocks remain synchronized with each other after the wheel is spun
up? Do they remain synchronized with a clock that remains inertial?

(e) Consider again the clocks in (D). If you are standing at the end of
one of the spokes and make measurements of the clocks next to you,
what do you find? Are they synchronized with yours? Do they run
at the same rate?
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5-10. Consider a bunch of spokes of length r on a hub, spinning relative to
some inertial frame. We then send builders out onto the spokes to build a
platform on top of the spokes while it is spinning. For simplicity, suppose
that each builder is stationed at just one place on the wheel and does all
of her work there. Suppose that the wheel is spinning ‘quickly,’ say, fast
enough that the outside of the wheel is moving at .8c relative to the inertial
frame.

(a) Suppose that all of the builders at a given distance from the hub
stretch a tape measure around to measure the circumference of the
circle they make on the platform. How does this number compare
with the distance they measure to the hub (the radius they measure)?

(b) Suppose that all of the builders were the same age in the morning
before work. When they get together at the end of the day (where
the end of the day is determined in the inertial frame), will they all
still be the same age? If not, how will their ages differ?

(c) Suppose that, for some reason, we bring our merry-go-round to a stop
after it is built. Will it still fit together without having to buckle or
tear? If not, what will happen to it?

5-11. Consider a beacon on a light house. If a stationary observer holds up a
screen (see below), he finds a bright spot of light on the screen sweeping
past with a speed that increases with the distance from the light house.
Are there observers for whom the spot sweeps past at a speed greater than
c? Is this a problem for special relativity? Compare this with a very long
steel bar rotating at the same rate.
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House
Light Screen

Rotating



Chapter 6

Dynamics: Energy and
Momentum in Relativity

Read Einstein, ch. 15

Up until now, we have been concerned mostly with describing motion. We have
asked how various situations appear in different reference frames, both inertial
and accelerated. However, we have largely ignored the question of what would
make an object follow a given worldline (‘dynamics’). The one exception was
when we studied the uniformly accelerated rocket and realized that it must burn
equal amounts of fuel in equal amounts of proper time. This realization came
through using Newton’s second law in the regime where we expect it to hold
true: in the limit in which v/c is vanishingly small.

6.1 Dynamics, or, “Whatever happened to Forces?”

Recall that Newton’s various laws used the old concepts of space and time. As a
result, before we can apply them to situations with finite relative velocity, they
will have to be at least rewritten and perhaps greatly modified to accommodate
our new understanding of relativity. This was also true for our uniformly ac-
celerating rocket. A constant thrust does not provide a constant acceleration
as measured from a fixed inertial reference frame but, instead, it produces a
constant proper acceleration.

Now, a central feature of Newton’s laws (of much of pre-Einstein physics) was
the concept of force. It turns out that the concept of force is not as useful in
relativistic physics. This has something to do with our discovery that accelera-
tion is now a frame-dependent concept (so that a statement like F = ma would
be more complicated), but the main point actually involves Newton’s third law:

143
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The third law of Newtonian Physics: When two objects (A and B) exert
forces FA on B and FB on A on each other, these forces have the same size but
act in opposite directions.

To understand why this is a problem, let’s think about the gravitational forces
between the Sun and the Earth.

Earth

Sun 

Recall that Newton said that the force between the earth and the sun is given
by an inverse square law: F = GMearthMsun

d2 where d is the distance between
them. In particular, the force between the earth and sun decreases if they move
farther apart. Let’s draw a spacetime diagram showing the two objects moving
apart.

F F11

F2F2 t 2

t 1

At some time t1 when they are close together, there is some strong force F1

acting on each object. Then, later, when they are farther apart, there is some
weaker force F2 acting on each object.

However, what happens if we consider this diagram in a moving reference frame?
I have drawn in a line of simultaneity (the dashed line) for a different reference
frame above, and we can see that it passes through one point marked F1 and one
point marked F2! This shows that Newton’s third law as stated above cannot
possibly hold1 in all reference frames.

So, Newton’s third law has to go. But of course, Newton’s third law is not
completely wrong – it worked very well for several hundred years! So, as
with the law of composition of velocities and Newton’s second law, we may
expect that it is an approximation to some other (more correct) law, with this
approximation being valid only for velocities that are very small compared to c.

It turns out that this was not such a shock to Einstein, as there had been a bit
of trouble with Newton’s third law even before relativity itself was understood.
Again, the culprit was electromagnetism.

1You might wonder if you could somehow save the third law by having the concept of force
depend on which inertial frame you use to describe the system. Then in the moving frame, the
forces would not be F1 and F2. However, the forces in the moving frame must still somehow
be determined by F1 and F2. Thus, if F1 and F2 do not agree, neither can the forces in the
moving frame.
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6.2 Fields, Energy, and Momentum

To see the point, consider an electron in an electric field. We have said that it
is really the field that exerts a force on the electron. Newton’s third law would
seem to say that the electron then exerts a force on the electric field. But what
would this mean? Does an electric field have mass? Can it accelerate?

Luckily for Einstein, this problem had been solved. It was understood that the
way out of this mess was to replace the notion of force with two somewhat more
abstract notions: energy and momentum. Since not all of you are intimately
familiar with these notions, let me say just a few words about them before we
continue.

6.2.1 A word on Energy (E)

Actually, I don’t need to say too much here. Most people have an intuitive
concept of energy as “what comes out of a power plant” and this is almost
good enough for our purposes. Anything which can do something2 has energy:
batteries, light, gasoline, wood, coal (these three can be burned), radioactive
substances, food, and so on. Also, any moving object has energy due to it’s
motion. For example, a moving bowling ball has energy that allows it to knock
down bowling pins. By the way, in Newtonian physics, there in an energy 1

2mv
2

(called ‘kinetic energy’ from the Greek word for motion) due to the motion of
an object of mass m.

The most important thing about energy is that it cannot be created or destroyed;
it can only be transformed from one form to another. As an example, in a power
plant, coal is burned and electricity is generated. Burning coal is a process in
which the chemical energy stored in the coal is turned into heat energy. This
heat energy boils water and creates a rising column of steam (which has energy
due to its motion). The column of steam then turns a crank which turns a wire
in a magnetic field. This motion converts the mechanical energy of motion of
the wire into electrical energy.

Physicists say that Energy is “conserved,” which means that the total energy
E in the universe can not change.

6.2.2 A few words on Momentum (P)

Momentum is a bit less familiar, but it is like energy in that it cannot be
created or destroyed: it can only be transferred from one object to another.
Thus, momentum is also “conserved.” Momentum is a quantity that describes
in a certain sense “how much motion is taking place, and in what direction.” If
the total momentum is zero, we might say that there is “no net motion” of a
system. Physicists say that the velocity of the “center of mass” vanishes in this
case.

2Most physics books here say ‘work’ instead of ‘something,’ but that is another story.
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Let’s look back at the bowling ball example above. The energy of the bowling
ball is a measure of how much mayhem the ball can cause when it strikes the
pins. However, when the ball hits the pins, the pins do not fly about in an
arbitrary way. In particular, the pins tend to fly away in more or less the same
direction as the ball was moving originally. This is because, when the ball hits
the pins, it gives up not only some of its energy to the pins, but also some of
its momentum. The momentum is the thing that knows what direction the ball
was traveling and makes the pins move in the same direction that the ball was
going3.

As an example, consider what happens if the bowling ball explodes when
it reaches the pins. This releases more energy (so that the pins fly around
more) but will not change the momentum. As a result, the pins and ball shards
will have the same net forward motion as would have happened without the
explosion. Some pins and shards will now move more forward, but some other
bits will also move more backward to cancel this effect.

In Newtonian physics, the momentum p of a moving object is given by the
formula p = mv. This says that an object that moves very fast has more
momentum than one that moves slowly, and an object that has a large mass
has more momentum than one with a small mass. This second bit is why it is
easier to knock over a bowling pin with a bowling ball than with a ping-pong
ball.

By the way, the fact that momentum is a type of object which points in some
direction makes it something called a vector. A vector is something that you
can visualize as an arrow. The length of the arrow tells you how big the vector
is (how much momentum) and the direction of the arrow tells you the direction
of the momentum.

Now, in Newtonian physics, momentum conservation is closely associated with
Newton’s third law. One way to understand this is to realize that both rules
(Newton’s third law and momentum conservation) guarantee that an isolated
system (say, a closed box off in deep space) that begins at rest cannot ever
start to move. In terms of Newton’s third law, this is because, if we add
up all of the forces between things inside the box, they will cancel in pairs:
FA on B + FB on A = 0. In terms of momentum conservation, it is because the
box at rest has zero momentum, whereas a moving box has a nonzero momen-
tum. Momentum conservation says that the total momentum of the box cannot
change from zero to non-zero.

In fact, in Newtonian physics, Newton’s third law is equivalent to momentum
conservation. To see this, consider two objects, A and B, with momenta pA =

3Some pins will of course fly off somewhat to one side or another. This does not reflect
a failure of momentum conservation. Instead, the amount of ‘leftward’ momentum carried
by some of the objects will be equal and opposite to the amount of ‘rightward’ momentum
carried by the others, so that these bit exactly cancel out. An important difference between
Energy and momentum is that energy is always positive while momentum can have either
sign (in fact, it is a vector). Thus, while two energies never cancel against each other, two
momenta sometimes do.
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mvA and pB = mvB . Suppose for simplicity that the only forces on these objects
are caused by each other. Note what happens when we take a time derivative:

dpA
dt

= mAaA = FB on A,

dpB
dt

= mBaB = FA on B . (6.1)

The total momentum is Ptotal = pA + pB . We have

dPtotal
dt

= FB on A + FA on B = 0. (6.2)

Thus, Newton’s 3rd law is equivalent to momentum conservation. One holds if
and only if the other does.

Anyway, physicists in the 1800’s had understood that there was a problem
with Newton’s third law when one considered electric fields. It did not really
seem to make sense to talk about an electron exerting a force on an electric
field. However, it turns out that one can meaningfully talk about momentum
carried by an electromagnetic field, and one can even compute the momentum
of such a field – say, for the field representing a light wave or a radio wave.
Furthermore, if one adds the momentum of the electro-magnetic field to the
momentum of all other objects, Maxwell’s equations tell us that the resulting
total momentum is in fact conserved. In this way, physicists had discovered that
momentum conservation was a slightly more abstract principle that held true
more generally than did Newton’s third law.

In relativity, too, it turns out to be a good idea to think in terms of mo-
mentum and momentum conservation instead of thinking in terms of Newton’s
third law. For example, in the Sun-Earth example from a few pages back, the
field between the Sun and the Earth can carry momentum. As a result, mo-
mentum conservation does not have to fail if, on some slice of simultaneity, the
momentum being gained by the Earth does not equal the momentum being lost
by the Sun! Instead, the missing momentum is simply being stored or lost by
the field in between the two objects.

6.3 On to relativity

Now, while the concepts of momentum and energy can make sense in relativistic
physics, the detailed expressions for them in terms of mass and velocity should
be somewhat different than in the Newtonian versions. However, as usual we
expect that the Newtonian versions are correct in the particular limit in which
all velocities are small compared to the speed of light.

There are a number of ways to figure out what the correct relativistic expressions
are. A very nice (and self-contained4) way is described below in section 6.6.

4Our treatment in this section will rely on Maxwell’s equations, which we will not solve
ourselves.
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However, that way of getting at the answer is a bit technical. So, for the
moment, we’re going to approach the question from a different standpoint.

You see, Einstein noticed that, even within electromagnetism, there was still
something funny going on. Momentum was conserved, but this did not neces-
sarily seem to keep isolated boxes (initially at rest) from running away! The
example he had in mind was connected with the observation that light can exert
pressure. This was well known in Einstein’s time and could even be measured.
The measurements were made as early as 1900, while Einstein published his the-
ory of special relativity in 1905. It was known, for example, that pressure caused
by light from the sun was responsible for the long and lovely tails on comets:
light pressure (also called radiation pressure or solar wind) pushed droplets of
water and bits of dust and ice backwards from the comet making a long and
highly reflective tail. Nowadays, we can use lasers to lift grains of sand, or to
smash things together to induce nuclear fusion.

6.3.1 Lasers in a box

Anyway, suppose that we start with a box having a powerful laser5 at one end.

When the laser fires a pulse of light, the light is near the left end and pressure
from this light pushes the box to the left. The box moves to the left while
the pulse is traveling to the right. Then, when the pulse hits the far wall, its
pressure stops the motion of the box. The light itself is absorbed by the wall
and disappears.

Before

After

Now, momentum conservation says that the total momentum is always zero.
Nevertheless, the entire box seems to have moved a bit to the left. With a large

5Of course, lasers did not exist when Einstein was working on this. He just used a regular
light source but, if lasers had been around, that’s what he would have used in his example.
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enough battery to power the laser, we could repeat this experiment many times
and make the box end up very far to the left of where it started. Or, perhaps
we do not even need a large battery: we can imagine recycling the energy used
the laser. If we could catch the energy at the right end and then put it back in
the battery, we would only need a battery tiny enough for a single pulse. By
simply recycling the energy many times, we could still move the box very far to
the left. This is what really worried our friend Mr. Einstein.

6.3.2 Center of Mass

The moving laser box worried him because of something called the center of
mass. Here’s the idea: Imagine yourself in a canoe on a lake. You stand at one
end of the canoe and then walk forward. However, while you walk forward, the
canoe will slide backward a bit. A massive canoe slides only a little bit, but
a light canoe will slide a lot. It turns out that in non-relativistic physics the
average position of all the mass (including both you and the canoe) does not
move. This average location is technically known as the ‘center of mass’.

This follows from Newton’s third law and momentum conservation. To under-
stand the point suppose that in the above experiment we throw rocks from left
to right instead of firing the laser beam. While most of the box would shift a
bit to the left (due to the recoil) with each rock thrown, the rock in flight would
travel quite a bit to the right. In this case, a sort of average location of all of
the things in the box (including the rock) does not move.

Suppose now that we want to recycle the rock, taking it back to the left to be
thrown again. We might, for example, try to throw it back. But this would
make the rest of the box shift back to the right, just where it was before. It
turns out that any other method of moving the rock back to the left side has
the same effect.

To make a long story short, since the average position cannot change, a box can
never move itself more than one box-length in any direction, and this can only
be done by piling everything inside the box on one side. In fact, when there are
no forces from outside the box, the center of mass of the stuff in the box does
not accelerate at all! In general, it is the center of mass that responds directly
to outside forces.

6.3.3 Mass vs. Energy

So, what’s going on with our box? Let’s look at the experiment more carefully.
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Before

After

After the experiment, it is clear that the box has moved, and in fact that every
single atom in the box has slid to the left. So, the center of mass seems to have
moved! But, Einstein asked, might something else have changed during the
experiment which we need to take into account? Is the box after the experiment
really identical to the one before the experiment began?

The answer is: “not quite.” Before, the experiment, the battery that powers
the laser is fully charged. After the experiment, the battery is not fully charged.
What happened to the associated energy? It traveled across the box as a pulse
of light. It was then absorbed by the right wall, causing the wall to become
hot. The net result is that energy has been transported from one end of the box
(where it was battery energy) to the other (where it became heat).

Before

After

fully charged
Battery

fully charged
Battery not Hot wall

So, Einstein said, “perhaps we should think about something like the center of
energy as opposed to the center of mass.” But, of course, the mass must also
contribute to the center of energy... so is mass a form of energy?

Anyway, the relevant question here is “Suppose we want to calculate the center
of mass/energy. Just how much mass is a given amount of energy worth?” Or,
said another way, how much energy is a given amount of mass worth?

Well, from Maxwell’s equations, Einstein could figure out the energy trans-
ported. He could also figure out the pressure exerted on the box so that he
knew how far all of the atoms would slide. Assuming that the center of mass-
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energy did not move, this allowed him to figure out how much energy the mass
of the box was in fact worth. The computation is a bit complicated, so we won’t
do it here6. However, the result is that an object of mass m which is at rest is
worth the energy:

E = mc2 (6.3)

Note that, since c2 = 9 × 1016m2/s2 is a big number, a small mass is worth a
lot of energy. Or, a ‘reasonable amount’ of energy is in fact worth very little
mass. This is why the contribution of the energy to the ‘center of mass-energy’
had not been noticed in pre-Einstein experiments. Let’s look at a few. We buy
electricity in ‘kilowatt-hours’ (kWh) – roughly the amount of energy it takes to
run a house for an hour. The mass equivalent of 1 kilowatt-hour is

m =
1kWh

c2
=

1kWh

c2
3600sec

hr.

1000W

1kW
=

3.6× 106

9× 1016
= 4× 10−10kg. (6.4)

In other words, not much.

By the way, one might ask whether the fact that both mass and energy con-
tribute to the ‘center of mass-energy’ really means that mass and energy are
convertible into one another. Let’s think about what this really means. We
have a fair idea of what energy is, but what is mass? We have not really talked
about this yet in this course, but what Newtonian physicists meant by mass
might be better known as ‘inertia.’ In other words, mass is defined through its
presence in the formula F = ma which tells us that the mass is what governs
how difficult an object is to accelerate.

6.3.4 Mass, Energy, and Inertia

So, then, what we really want to know is whether adding energy to an object
increases its inertia. That is, is it harder to move a hot wall than a cold wall?

To get some perspective on this, recall that one way to add energy to an object is
to speed it up. But we have already seen that rapidly moving objects are indeed
hard to accelerate (e.g., a uniformly accelerating object never accelerates past
the speed of light). But, this just means that you make the various atoms speed
up and move around very fast in random ways. So, this example is really a lot
like our uniformly accelerating rocket.

In fact, there is no question about the answer. We saw that heat enters into
the calculation of the center of mass. So, let’s think back to the example of you
walking in a canoe floating in water. If the canoe is hot, we have seen that it
counts more in figuring the center of mass than when it is cold. It acts like a
heavier canoe and will not move as far. Why did it not move as far when you
walked in it in the same way? It must have been harder to push; i.e., it had
more inertia when it was hot. Thus we conclude that adding energy to a system
(say, charging a battery) does in fact give it more inertia; i.e, more mass.

6Perhaps some senior physics major would like to take it up as a course project?
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By the way, this explains something rather odd that became known through
experiments in the 1920’s and 30’s, a while after Einstein published his theory
of relativity (in 1905). As you know, atomic nuclei are made out of protons and
neutrons. An example is the Helium nucleus (also called an α particle) which
contains two neutrons and two protons. However, the masses of these objects
are:

Proton mass: 1.675× 10−27kg.

Neutron mass: 1.673× 10−27kg.

α particle mass: 6.648× 10−27kg.

So, if we check carefully, we see that an α particle has less mass than the mass of
two protons plus the mass of two neutrons. The difference is mα−2mp−2mn =
−.0477× 10−27kg.

Why should this be the case? First note that, since these when these four
particles stick together (i.e., the result is stable), they must have less energy
when they are close together than when they are far apart. That is, it takes
energy to rip them apart. But, if energy has inertia, this means exactly that the
object you get by sticking them together (the α particle) will have less inertia
(mass) than 2mp + 2mn.

This, by the way, is how nuclear fusion works as a power source. For example,
inside the sun, it often happens that two neutrons and two protons will be
pressed close together. If they bind together to form an α particle then this
releases an extra .0477× 10−27kg of energy that becomes heat and light.

Again, it is useful to have a look at the numbers. This amount of mass is worth
an energy of E = mc2 = 5×10−12Watt−seconds ≈ 1.4×10−15kWh. This may
not seem like much, but we were talking about just 2 protons and 2 neutrons.
What if we did this for one gram7 worth of stuff? Since four particles, each of
which is about 1 Amu of mass, give the above result, one gram would produce
the above energy multiplied by 1

4 of Avagadro’s number. In other words, we
should multiply by 1.5× 1023. This yields roughly 2× 108kWh = 5kW · years!.
In other words, fusion energy from 1 gram of material could power 5 houses for
one year! Nuclear fission yields comparable results.

By the way, when we consider any other form of power generation (like burning
coal or gasoline), the mass of the end products (the burned stuff) is again less
than the mass of the stuff we started with by an amount that is exactly c−2

times the energy released. However, for chemical processes this turns out to be
an extremely tiny fraction of the total mass and is thus nearly impossible to
detect.

7About half of a paper clip.
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6.4 More on Mass, Energy, and Momentum

In the last section we saw that what we used to call mass and energy can be
converted into each other – and in fact are converted into each other all of the
time. Does this mean that mass and energy really are the same thing? Well,
that depends on exactly how one defines mass and energy.... the point is that,
as with most things in physics, the old (Newtonian) notions of mass and energy
will no longer be appropriate. So, we must extend both the old concept of
mass and the old concept of energy before we can even start talking. There are
various ways to extend these concepts. I’m going to use a more modern choice
which is standard in the technical literature. Unfortunately, this modern choice
seems to be less common in the popular literature and may therefore seem to
contradict things you have read elsewhere.

6.4.1 Energy and Rest Mass

My notion of mass will be independent of reference frame. This is not the case
for an older convention which has a closer tie to the old F = ma. This older
convention then defines a mass that changes with velocity. However, for the
moment, let me skirt around this issue by talking about the “rest mass” (m0,
by definition an invariant) of an object, which is just the mass (inertia) it has
when it is at rest8. In particular, an object at rest has inertia m0c

2.

Recall that, in Newtonian physics, an object also has an energy 1
2m0v

2 due to its
motion. Almost certainly, this expression will need to be modified in relativity,
but it should be approximately correct for velocities small compared with the
speed of light. Thus, for a slowly moving object we have

E = m0c
2 +

1

2
m0v

2 + small corrections. (6.5)

Note that we can factor out an m0c
2 to write this as:

E = m0c
2(1 +

1

2

v2

c2
+ small corrections). (6.6)

In section 6.6 we will derive the precise form of these small corrections. However,
this derivation is somewhat technical and relies on a more in-depth knowledge of
energy and momentum in Newtonian physics than some of you will have. Since
I do not want it to obscure the main points of our discussion, I have relegated
the derivation to a separate section (6.6) at the end of the chapter. For the
moment, we will content ourselves with a well-motivated guess.

8I suspect that the linguistic evolution is as follows: People first used the old convention
where mass meant inertia. They then introduced this separate notion of ‘rest mass.’ As time
passed, physicists found that the only time they ever used the word mass was in the phrase
‘rest mass,’ as the other concept was in fact better served by the term energy (which, as we
have seen, carried inertia). After awhile, they got tired of inserting the word ‘rest’ and writing
the subscript 0.
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You may recall seeing an expression like (6.6) in some of your homework. It
came up there because it gives the first few terms in the Taylor’s series expansion
of the time-dilation factor,

1√
1− v2/c2

= 1 +
1

2

v2

c2
+ small corrections, (6.7)

a factor which has appeared in almost every equation we have due to its con-
nection to the interval and Minkowskian geometry.

It is therefore natural to guess that the correct relativistic formula for the total
energy of a moving object is

E =
m0c

2√
1− v2/c2

= m0c
2 cosh θ. (6.8)

This is exactly the formula9 that will be derived in section 6.6.

6.4.2 Momentum and Mass

Momentum is a little trickier, since we only have one term in the expansion
so far: p = mv + small corrections. Based on the analogy with energy, we
expect that this is the expansion of something native to Minkowskian geometry
– probably a hyperbolic trig function of the boost parameter θ. Unfortunately
there are at least two natural candidates, m0c sinh θ and m0c tanh θ (which is
of course just m0v). The detailed derivation is given in 6.6, but it should come
as no surprise that the answer is the sinh θ one that is simpler from the point
of Minkowskian geometry and which is not the Newtonian answer. Thus the
relativistic formula for momentum is:

p =
m0v√

1− v2/c2
= m0c sinh θ. (6.9)

If you don’t really know what momentum is, don’t worry too much about it.
We will only touch on momentum briefly and the brief introduction in section
6.2.2 should suffice. I should mention, however, that the relativistic formulas for
energy and momentum are very important for things you encounter everyday –
like high resolution computer graphics! The light from your computer monitor10

is generated by electrons traveling at 10 − 20% of the speed of light and then
hitting the screen. This is fast enough that, if engineers did not take into
account the relativistic formula for momentum and tried to use just p = mv,
the electrons would not land at the right places on the screen and the image
would be all screwed up. There are some calculations about this in homework
problem (5).

9The old convention that you will see in some books (but not in my class!!) is to define
a ‘velocity-dependent mass’ m(v) through m(v) = m0√

1−v2/c2
= E/c2. This is an outdated

convention and does not conform to the modern use of the term ‘mass.’
10So long as it is not an LCD display.
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By the way, you may notice a certain similarity between the formulas for p and
E in terms of rest mass m0 and, say, the formulas (4.11) on page 104 for the
position x and the coordinate time t relative to the origin for a moving inertial
object in terms of it’s own proper time τ and boost parameter θ. In particular,
we have

pc

E
=
v

c
= tanh θ (6.10)

We also have

E2 − c2p2 = m0c
4
(
cosh2 θ − sinh2 θ

)
= m2

0c
4. (6.11)

Since m0 does not depend on the reference frame, this is an invariant like,
say, the interval. Hmm.... The above expression even looks kind of like the
interval.... Perhaps it is a similar object?

? ? ? Here is what is going on: a displacement (like ∆x, or the position relative
to an origin) in general defines a vector – an object that can be thought of like
an arrow. Now, an arrow that you draw on a spacetime diagram can point in
a timelike direction as much as in a spacelike direction. Furthermore, an arrow
that points in a ‘purely spatial’ direction as seen in one frame of reference points
in a direction that is not purely spatial as seen in another frame.

So, spacetime vectors have time parts (components) as well as space parts.
A displacement in spacetime involves c∆t as much as a ∆x. The interval is
actually something that computes the size of a given spacetime vector. For a
displacement, it is ∆x2 − c∆t2.
Together, the momentum and the energy form a single spacetime vector. The
momentum is already a vector in space, so it forms the space part of this vector.
It turns out that the energy forms the time part of this vector. So, the size of
the energy-momentum vector is given by a formula much like the one above for
displacements. This means that the rest mass m0 is basically a measure of the
size of the energy-momentum vector.
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Furthermore, we see that this ‘size’ does not depend on the frame of reference
and so does not depend on how fast the object is moving. However, for a
rapidly moving object, both the time part (the energy) and the space part (the
momentum) are large – it’s just that the Minkowskian notion of the size of a
vector involves a minus sign, and these two parts largely cancel against each
other.

6.4.3 How about an example?

As with many topics, a concrete example is useful to understand certain details
of what is going on. In this case, I would like to illustrate the point that while
energy and momentum are both conserved, mass is not conserved.

Let’s suppose we take two electrons and places them in a box. Suppose that
both electrons are moving at 4/5c, but in opposite directions. If me is the rest
mass of an electron, each particle

|p| = mev√
1− v2/c2

=
4

3
mec, (6.12)

and an energy

E =
mec

2√
1− v2/c2

=
5

3
mec

2. (6.13)

We also need to consider the box. For simplicity, let us suppose that the box also
has mass me. But the box is not moving, so it has pBox = 0 and EBox = mec

2.

Now, what is the energy and momentum of the system as a whole? Well, the
two electron momenta are of the same size, but they are in opposite directions.
So, they cancel out. Since pBox = 0, the total momentum is also zero. However,
the energies are all positive (energy doesn’t care about the direction of motion),
so they add together. We find:

psystem = 0,

Esystem =
13

3
mec

2. (6.14)

So, what is the rest mass of the systemas a whole?

E2 − p2c2 =
169

9
m2
ec

4. (6.15)

So, the rest mass of the positronium system is given by dividing the right hand
side by c4. The result is 13

3 me, which is significantly greater than the rest mass
of the Box plus twice the rest mass of the electron!

Similarly, two massless particles can in fact combine to make an object with a
finite non-zero mass. For example, placing photons in a box adds to the mass
of the box. We’ll talk more about massless particles (and photons in particular)
below.
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6.5 Energy and Momentum for Light

At this point we have developed a good understanding of energy and momentum
for objects. However, there has always been one other very important player
in our discussions, which is of course light itself. In this section, we’ll take a
moment to explore the energy and momentum of light waves and to see what it
has to teach us.

6.5.1 Light speed and massless objects

OK, let’s look one more time at the question: “What happens if we try to get an
object moving at a speed greater than c?” Let’s look at the formulas for both

energy and momentum. Notice that E = m0c
2√

1−v2/c2
becomes infinitely large as

v approaches the speed of light. Similarly, an object (with finite rest mass m0)
requires an infinite momentum to move at the speed of light. Again this tells
us is that, much as with our uniformly accelerating rocket from last week, no
finite effort will ever be able to make any object (with m0 > 0) move at speed
c.

By the way, what happens if we try to talk about energy and momentum for
light itself? Of course, many of our formulas (such as the one above) fail to
make sense for v = c. However, some of them do. Consider, for example,

pc

E
=
v

c
. (6.16)

Since light moves at speed c through a vacuum, this would lead us to expect that
for light we have E = pc. In fact, one can compute the energy and momentum
of a light wave using Maxwell’s equations. One finds that both the energy and
the momentum of a light wave depend on several factors, like the wavelength
and the size of the wave. However, in all cases the energy and momentum
exactly satisfies the relation E = pc. As a result, we can consider a bit of light
(a.k.a., a photon) with any energy E so long as we also assign it a corresponding
momentum p = E/c. The energy and momentum of photons adds together in
just the way that we saw in section 6.4.3 for massive particles.

So, what is the rest mass of light? Well, if we compute m2
0c

2 = E2 − p2c2 = 0,
we find m0 = 0. Thus, light has no mass. This to some extent shows how light
can move at speed c and have finite energy. The zero rest mass ‘cancels’ against
the infinite factor coming from 1− v2/c2 in our formulas above.

By the way, note that this also goes the other way: if m0 = 0 then E = ±pc
and so v

c = pc
E = ±1. Such an object has no choice but to always move at the

speed of light.

6.5.2 Another look at the Doppler effect

Recall that, for a massive particle (i.e., with m0 > 0), if we are in a frame that is
moving rapidly toward the object, the object has a large energy and momentum
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as measured by us. One might ask if the same is true for light.

The easy way to discover that it is in fact true for light as well is to use the
fact (which we have not yet discussed, and which really belongs to a separate
subject called ‘quantum mechanics,’ but what the heck...) that light actually
comes in small chunks called ‘photons.’ The momentum and energy of a single
photon are both proportional to its frequency f , which is the number of times
that the corresponding wave shakes up and down every second.

Remember the Doppler effect from problem (3-13? This is also the effect seen in
problem (4-4) when our twins Alphonse and Gaston sent pulses of light toward
each other. The frequency with which the light was emitted in, say, Alphonse’s
frame of reference was not the same as the frequency at which the light was
received in the other frame (Gaston’s).

The result was that if Gaston was moving toward Alphonse, the frequency was
higher in Gaston’s frame of reference. Using the relation between frequency and
energy (and momentum), we see that for this case the energy and momentum
of the light is indeed higher in Gaston’s frame of reference than in Alphonse’s
frame of reference. So, moving toward a ray of light has a similar effect on how
we measure its energy and momentum as does moving toward a massive object.

G
a
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n

x   =0A Ax   =4

Alphonse

t    =0A

At    =5

Alpha
Centauri
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6.6 Deriving the Relativistic expressions for En-
ergy and Momentum

Due to its more technical nature and the fact that this discussion requires a
more solid understanding of energy and momentum in Newtonian physics, I
have saved this section for last. It is very unlikely that I will go over this in
class and you may consider this section as optional reading. Still, if you’re
inclined to see just how far logical reasoning can take you in this subject, you’re
going to really enjoy this section.

It turns out that the easiest way to do the derivation is by focusing on momen-
tum11. The energy part will then emerge as a pleasant surprise. The argument
has four basic inputs:

1. We know that Newtonian physics is not exactly right, but it is a good
approximation at small velocities. So, for an object that moves slowly, it’s
momentum is well approximated by p = mv.

2. We will assume that, whatever the formula for momentum is, momentum
in relativity is still conserved. That is, the total momentum does not
change with time.

3. We will use the principle of relativity; i.e., the idea that the laws of physics
are the same in any inertial frame of reference.

4. We choose a clever special case to study. We will look at a collision of two
objects and we will assume that this collision is ‘reversible.’ That is, we
will assume that it is possible for two objects to collide in such a way that,
if we filmed the collision and played the resulting movie backwards, what
we see on the screen could also be a real collision. In Newtonian physics,
such collisions are called elastic because energy is conserved.

Let us begin with the observation that momentum is a vector. In Newtonian
relativity, the momentum points in the same direction as the velocity vector.
This follows just from symmetry considerations (in what other direction could
it point?). As a result, it must also be true in relativistic physics. The only
special direction is the one along the velocity vector.

It turns out that to make our argument we will have to work with at least two
dimensions of space. This is sort of like how we needed to think about sticks
held perpendicular to the direction of motion when we worked out the time
dilation effect. There is just not enough information if we stay with only one
dimension of space.

So, let us suppose that we are in a long, rectangular room. The north and south
walls are fairly close together, while the east and west walls are far apart:

11I first learned this argument by reading Spacetime Physics by Taylor and Wheeler.
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North

South
Now, suppose that we have two particles that have the same rest mass m0,

and which in fact are exactly the same when they are at rest. We will set
things up so that the two particles are moving at the same speed relative to the
room, but in opposite directions. We will also set things up so that they collide
exactly in the middle of the room, but are not moving exactly along either the
north-south axis or the east-west axis. Also, the particles will not quite collide
head-on, so that one scatters to each side after the collision. In the reference
frame of the room, the collision will look like this:

North

South

B before

A afterA before

B after

However, we will assume that the particles are nearly aligned with the east-west
axis and that the collision is nearly head-on, so that their velocities in the north-
south direction are small. Note that I have labeled one of the particles ‘A’ and
one of them ‘B.’

To proceed, we will analyze the collision in a different reference frame. Suppose
that one of our friends (say, Alice) is moving rapidly to the east through the
room. If she travels at the right speed she will find that, before the collision and
relative to her, particle A does not move east or west but only moves north and
south. We wish to set things up so that the motion of particle A in Alice’s frame
of reference is slow enough that we can use the Newtonian formula p = mv for
this particle in this frame of reference. For symmetry purposes, we will have
another friend Bob who travels to the right fast enough that, relative to him,
particle B only moves in the north-south direction.

Now, suppose we set things up so that the collision is not only reversible, but
in fact looks exactly the same if we run it in reverse. That is, we suppose that
in Alice’s frame of reference, the collision looks like:

θ

A

B

North

South

θ

Before:

A

B

After:
North

South

x

y
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where particle A has the same speed before as it does after, as does particle B.
Also, the angle θ is the same both before and after. Such a symmetric situation
must be possible unless there is an inherent breaking of symmetry in spacetime.

Now, the velocity of particle A in this frame is to be slow enough that its
momentum is given by the Newtonian formula pA = m0vA. For convenience, I
have indicated coordinate directions x and y on the diagram in Alice’s reference
frame. It’s velocity in the x direction is zero, so its momentum in this direction
must also be zero. Thus, particle A only has momentum in the y direction. As
a result, the change in the momentum of particle A is 2m0dy/dt, where dy/dt
denotes the velocity in the y direction after the collision.

If momentum is to be conserved, the total vector momentum must be the
same before as after. That is to say, if (in Alice’s frame of reference) we add
the arrows corresponding to the momentum before, and the momentum after,
we must get the same result:

Total P

p     beforeA

p     before
p     before

p     beforeB

A
B

θ

θ

For the next part of the argument notice that if, after the collision, we observe
particle B for awhile, it will eventually hit the south wall. Let us call this event
Y, where B hits the south wall after the collision. Recall that the collision takes
place in the middle of the box. Event Y and the collision will be separated by
some period of time ∆tB (as measured by Alice) and some displacement vector
∆~xB = (∆xB ,∆yB) in space as measured by Alice. If the box has some length
2L in the north-south direction, then since the collision took place in the middle,
∆yB = L.

Also, if we trace particle B back in time before the collision, then there was
some event before the collision when it was also at the south wall. Let us call
this event X, when B was at the south wall before the collision. By symmetry,
this event will be separated from the collision by the same ∆tB and by −∆~xB .
What I want you to notice, is that the displacement ∆~xB points in the same
direction as the momentum of particle B, since that is the direction in which B
moves. Thus, we can draw another nice right triangle:

θ

∆ xB
L

Note that this triangle has the same angle θ as the one drawn above. As a
result, we have

L

|∆ ~xB |
= sin θ =

pA
|~pB |

. (6.17)

Note that, since pA has no x component, I have not bothered to represent it as
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a vector. If this notation bothers you, just replace all my pA’s with pAy. Here,
|~pB | is the usual length of this vector, and similarly for ~xB .

Technically speaking, what we will do is to rearrange this formula as

~pB =
(pA)(∆ ~xB)

L
, (6.18)

where now we have put the direction information back in. We will then compute
~pB in the limit as the vertical velocity of particle A (and thus pA, in Alice’s
frame) goes to zero. In other words, we will use the idea that a slowly moving
particle (in Alice’s frame) could have collided with particle B to determine
particle B’s momentum.

Let us now take a moment to calculate pA. In the limit where the velocity of
particle A is small, we should be able to use pA = m0dy/dt after the collision.
Now, we can calculate dy/dt by using the time ∆tA that it takes particle A to
go from the collision site (in the center of the box) to the north wall. In this
time, it travels a distance L, so pA = m0L/∆tA. Again, the distance is L in
Alice’s frame, Bob’s frame, or the Box’s frame of reference since it refers to a
direction perpendicular to the relative motion of the frames.

Thus we have

~pB = lim
vA→0

m0(∆ ~xB)

∆tA
. (6.19)

This is a somewhat funny formula as two bits (pB and ∆~xB) are measured in
the lab frame while another bit tA is measured in Alice’s frame. Nevertheless,
the relation is true and we will rewrite it in a more convenient form below.

Now, what we want to do is in fact to derive a formula for the momentum
of particle B. This formula should be the same whether or not the collision
actually took place. Thus, we should be able to forget entirely about particle
A and rewrite the above expression purely in terms of things having to do with
particle B. We can do this by a clever observation.

Recall that we originally set things up in a way that was symmetric with re-
spect to particles A and B. Thus, if we watched the collision from particle A’s
perspective, it would look just the same as if we watched it from particle B’s
perspective. In particular, we can see that the proper time ∆τ between the
collision and the event where particle A hits the north wall must be exactly the
same as the proper time between the collision and the event where particle B
hits the south wall.

Further, recall that we are interested in the formula above only in the limit of
small vA. However, in this limit Alice’s reference frame coincides with that of
particle A. As a result, the proper time ∆τ is just the time ∆tA measured by
Alice. Thus, we may replace ∆tA above with ∆τ .

~pB =
m0(∆ ~xB)

∆τ
. (6.20)

Now, this may seem like a trivial rewriting of (6.19), but this form is much
more powerful. The point is that ∆τ (proper time) is a concept we undersand
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in any frame of reference. In particular, we understand it in the lab frame where
the two particles (A and B) behave in a symmetric manner. (In physics speak,
we say that there is a ‘symmetry’ that relates the two particles.) Thus, ∆τ
is identical for both particles. Note that since ∆τ is independent of reference
frame, this statement holds in any frame – in particular, it holds in Alice’s frame.
Thus, the important point about equation (6.20) is that all of the quantities on
the right hand side can be taken to refer only to particle B!

In particular, the expression no longer depends on particle A, so the limit is
trivial. We have:

Since the motion of B is uniform after the collision, we can replace this ratio
with a derivative:

|~pB | = m0
d ~xB
dτ

= m0
1√

1− v2/c2
d ~xB
dt

. (6.21)

Thus, we have derived

|~p| = m0
~v√

1− v2/c2
, (6.22)

the relativistic formula for momentum.

Now, the form of equation (6.21) is rather suggestive. It shows that the mo-
mentum forms the spatial components of a spacetime vector:

p = m0
dx

dτ
, (6.23)

where x represents all of the spacetime coordinates (t, x, y, z). One is tempted
to ask, “What about the time component m0dt/dτ of this vector?”

Recall that we have assumed that the momentum is conserved, and that this
must therefore hold in every inertial frame! If 3 components of a spacetime
vector are conserved in every inertial frame, then it follows that the fourth one
does as well. (Think about this from two different reference frames and you’ll
see why ...). So, this time component does represent some conserved quantity.
We can get an idea of what it is by expanding the associated formula in a Taylor
series for small velocity:

m0
dt

dτ
= m0coshθ = m0

1

1− v2/c2
= m0(1+

1

2

v2

c2
+...) = c−2(m0c

2+
1

2
m0v

2+.....)

(6.24)

In Newtonian physics, the first term is just the mass, which is conserved sepa-
rately. The second term is the kinetic energy. So, we identify this time compo-
nent of the spacetime momentum as the (c−2 times) the energy:

E = cpt =
m0c

2√
1− v2/c2

. (6.25)
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In relativity, mass and energy are not conserved separately. Mass and energy
in some sense merge into a single concept ‘mass-energy12.’ Also, we have seen
that energy and momentum fit together into a single spacetime vector just
as space and time displacements fit together into a ‘spacetime displacement’
vector. Thus, the concepts of momentum and energy also merge into a single
‘energy-momentum vector.’

6.7 Homework Problems

Note: Energy can be measured in various units, like Joules (J) or kiloWatt-
hours (kW-hrs., this is the unit that Niagara Mohawk uses on my electric bill).
You can use any unit that you like. You may find the following relations between
the various units useful.

1kg(m2/s2) = 1Joule(J) = 1Watt− second(Ws) =
1

3.6
× 10−6kW − hrs.

6-1. How much energy would take to accelerate you up to .9c?

6-2. I pay Niagara Mohawk $0.107 per kW-hr. How much would it cost me to
accelerate you up to .9c?

6-3. Consider a box containing two photons traveling in opposite directions.

If the box has a rest mass m0 and each photon has an energy E0, what
is the rest mass of the combined box-plus-photons system? Hint: How
much energy and momentum does each of the three objects have?

6-4. In particle accelerators, one can collide an electron with a positron and
(sometimes) they turn into a proton/anti-proton pair. The rest mass of an
electron (or a positron) is 9.11 × 10−31kg. The rest mass of a proton (or
an anti-proton) is 1.673 × 10−27kg. Suppose that the proton/anti-proton
pair is created at rest and that the electron and positron had equal speed
in opposite directions. How fast must the electron and positron have been
moving for this reaction to be allowed by conservation of energy? Give the
answer both in terms of speed v and boost parameter θ.

6-5. Here’s a good calculation if you know a little physics. It has to do with
how your TV and computer monitor work:

Particle physicists often use a unit of energy called the “electron-Volt”
(eV). This amount of energy that an electron picks up when it accelerates

12Usually just called ‘energy’ in modern terminology.
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across a potential of one Volt13. Since the charge on an electron is 1.6 ×
10−19 Coulombs, one electron-Volt is 1.6× 10−19J .

(a) If an object at rest has a total energy of 1eV , what is it’s mass?

(b) The mass of an electron is 9.11 × 10−31kg. What is the energy (in
eV) of an electron at rest?

(c) In a standard CRT (Cathode Ray Tube, like the tube in your TV
or computer monitor), electrons are accelerated through a potential
difference of about 5000 volts. In other words, moving through that
potential adds 5000eV of energy to the electron. How fast is an
electron going when it strikes your TV or computer screen?

(d) Consider the electron that is just about to strike your screen. What is
it’s momentum? If you used the old (and incorrect) formula p = mv
to calculate its momentum, how much would the answer be off?

13You can look at a PHY212 or 216 physics book for a definition of the Volt, but you won’t
actually need to know it for this problem.
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Chapter 7

Relativity and the
Gravitational Field

Einstein: Chapters XVIII-XX
Read Einstein, ch. 18-22

At the end of the last chapter, we finished the part of the course that is re-
ferred to as ‘Special Relativity’ (SR). Now, special relativity by itself was a real
achievement. In addition to revolutionizing our conceptions of time and space,
uncovering new phenomena, and dramatically changing our understanding of
mass, energy, and momentum, Minkowskian geometry finally gave a good pic-
ture of how it can be that the speed of light (in a vacuum!) is the same in all
frames of reference. However, in some sense there is still a large hole to be filled.
We’ve talked about what happens when objects accelerate, but we have only
begun to discuss why they accelerate, in terms of why and how various forces
act on these objects.

We made some progress on this issue in the last chapter’s discussion of energy

and momentum. We have the relation E = m0c
2√

1−v2/c2
so we know that, when

we feed an object a certain amount of energy it will speed up, and when we
take energy away it will slow down. We can even use this formula to calculate
exactly how much the object will speed up or slow down. But what we haven’t
talked about are the basic mechanisms that add and subtract energy – the
‘forces’ themselves. Of course, physicists already had some understanding of
these forces when Einstein broke onto the scene. The important question, of
course, is whether this understanding fit well with relativity or whether relativity
would force some major change the understanding of the forces themselves.

Physicists in Einstein’s time knew about many kinds of forces:

a) Electricity.

b) Magnetism.

167
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c) Gravity.

d) Friction.

e) One object pushing another.

f) Pressure.

and so on..... Now, the first two of these forces are described by Maxwell’s
equations. As we have discussed, Maxwell’s equations fit well with (and even led
to!) relativity. Unlike Newton’s laws, Maxwell’s equations are fully compatible
with relativity and require no modifications at all. Thus, we may set these forces
aside as ‘complete’ and move on to the others.

Let’s skip ahead to the last three forces. These all have to do in the end with
atoms pushing and pulling on each other. In Einstein’s time, such things we
believed1 to be governed by the electric forces between atoms. So, it was thought
that this was also properly described by Maxwell’s equations and would fit well
with relativity.

You may have noticed that this leaves one force (gravity) as the odd one out.
Einstein wondered: how hard can it be to make gravity consistent with relativ-
ity?

7.1 The Gravitational Field

Let’s begin by revisiting the pre-relativistic understanding of gravity. Perhaps
we will get lucky and find that it too requires no modification.

7.1.1 Newtonian Gravity vs. relativity

Newton’s understanding of gravity was as follows:

Newton’s Universal Law of Gravity Any two objects of masses m1 and m2

exert ‘gravitational’ forces on each other of magnitude

F = G
m1m2

d2
, (7.1)

d

F1 F2
1This belief is basically false. A large part of such ‘forces’ comes from an effect that is not

in fact described as a ‘force’ today. This effect is known as the ‘Pauli exclusion principle’ and
states that no two electrons can occupy the same ‘quantum state’ (basically, that they cannot
be stacked on top of each other). Today, we recognize this effect as coming from the funda-
mental quantum nature of the electron. (Protons and other ‘fermions’ behave similarly, while
photons and other ‘bosons’ do not.) Quantum mechanics is another kettle of fish altogether,
but in the end it does fit well with special relativity.
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directed toward each other, where G = 6.67 × 10−11Nm2/kg2 is called
“Newton’s Gravitational Constant.” G is a kind of intrinsic measure of
how strong the gravitational force is.

It turns out that this rule is not compatible with special relativity. In particular,
having learned relativity we now believe that it should not be possible to send
messages faster than the speed of light. However, Newton’s rule above would
allow us to do so using gravity. The point is that Newton said that the force
depends on the separation between the objects at this instant2.

Example: The earth is about eight light-minutes from the sun. This means that,
at the speed of light, a message would take eight minutes to travel from the sun
to the earth. However, suppose that, unbeknownst to us, some aliens are about
to move the sun.

Then, based on our understanding of relativity, we would expect it to take eight
minutes for us to find out! But Newton would have expected us to find out
instantly because the force on the earth would shift (changing the tides and
other things.....)

Force before Force after

7.1.2 The importance of the field

Now, it is important to understand how Maxwell’s equations get around this
sort of problem. That is to say, what if the Sun were a positive electric charge,
the earth were a big negative electric charge, and they were held together by an
Electro-Magnetic field? We said that Maxwell’s equations are consistent with
relativity – so how what would they tell us happens when the aliens move the
sun?

The point is that the positive charge does not act directly on the negative charge.
Instead, the positive charge sets up an electric field which tells the negative
charge how to move.

+ -

When the positive charge is moved, the electric field around it must change,
but it turns out that the field does not change everywhere at the same time.

2Note that there is also an issue of simultaneity here. Which events on the two separated
worldlines should one compare to compute the distance? Which notion of ‘this instant’ would
one use to pick out these events?
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Instead, the movement of the charge modifies the field only where the charge
actually is. This makes a ‘ripple’ in the field which then moves outward at the
speed of light. In the figure below, the black circle is centered on the original
position of the charge and is of a size ct, where t is the time since the movement
began.

+

Thus, the basic way that Maxwell’s equations get around the problem of instant
reaction is by having a field that will carry the message to the other charge (or,
say, to the planet) at a finite speed. Oh, and remember that having a field that
could carry momentum was also what allowed Maxwell’s equations to fit with
momentum conservation in relativity. What we see is that the field concept is
the essential link that allows us to understand electric and magnetic forces in
relativity.

Something like this must happen for gravity as well. Let’s try to introduce a
gravitational field by breaking Newton’s law of gravity up into two parts. The
idea will again be than an object should produce a gravitational field (g) in the
spacetime around it, and that this gravitational field should then tell the other
objects how to move through spacetime. Any information about the object
causing the gravity should not reach the other objects directly, but should only
be communicated through the field.

Old: F = m1m2G
d2

New: Fon m1
= m1g,

g = m2G
d .

7.2 Some observations

I should mention that these notes will address our new topic (General Relativity)
from a somewhat different point of view than your readings do. I do not mean
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to imply that my version is more accurate than the one in your readings (or vice
versa) – the readings and I are simply stressing different aspects of the various
thoughts that were rattling around inside Albert Einstein’s head in the early
1900’s. BTW, figuring out General Relativity was much harder than figuring
out special relativity. Einstein worked out special relativity is about a year (and
he did many other things in that year). In contrast, the development of general
relativity required more or less continuous work from 1905 to 1916.

In fact, I’m going to stress several important ingredients, of which we have just
seen the first. For future reference, they are:

a) Free fall and the gravitational field.

b) The question of whether light is affected by gravity.

c) Further reflection on inertial frames.

7.2.1 Free Fall

Before going on to the other important ingredients, let’s take a moment to make
a few observations about gravitational fields and to introduce some terminology.

Notice an important property of the gravitational field. The gravitational force
on an object of mass m is given by F = mg. But, in Newtonian physics, we
also have F = ma. Thus, we have

a =
mg

m
= g. (7.2)

The result is that all objects in a given gravitational field accelerate at the same
rate (if no other forces act on them). The condition where gravity is the only
influence on an object is known as “free fall.” So, the gravitational field g has
a direct meaning: it gives the acceleration of “freely falling” objects.

A particularly impressive example of this is called the ‘quarter and feather
experiment.’ Imagine taking all of the air out of a cylinder (to remove air
resistance which would be an extra force), and then releasing a quarter and a
feather at the same time. The feather would then then “drops like a rock.” In
particular, the quarter and the feather fall together in exactly the same way. I
have put a video of this experiment (from when I did it live for my PHY211
class in fall 1999) on the PHY312 web site for you to check it out.

Now, people over the years have wondered if it was really true that all objects fall
at exactly the same rate in a gravitational field, or if this was only approximately
true. If it is exactly correct, they wondered why it should be so. It is certainly
a striking fact.

For example, we have seen that energy is related to mass through E = mc2. So,
sometimes in order to figure out the exact mass of an object (like a hot wall
that a laser has been shining on....) you have to include some things (like heat)
that we used to count separately as ‘energy’ .... Does this E/c2 have the same
effect on gravity as the more familiar notion of mass?
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In order to be able to talk about all of this without getting too confused, people
invented two distinct terms for the following two distinct concepts:

1) Gravitational mass mG. This is the kind of mass that interacts with the
gravitational field. Thus, we have F = mGg.

2) Inertial mass mI . This is the kind of mass that goes into Newton’s second
law. So, we have F = mIa.

Now, we can ask the question we have been thinking of in the clean form: is it
always true that gravitational mass and inertial mass are the same? That is, do
we always have mG = mI?

7.2.2 The 2nd ingredient: The effects of gravity on light

Let’s leave aside for the moment further thought about fields as such and turn
to another favorite question: to what extent is light affected by gravity?

Now, first, why do we care? Well, we built up our entire discussion of special
relativity using light rays and we assumed in the process that light always trav-
eled at a constant speed in straight lines! So, what if it happens that gravity
can pull on light? If so, we may have to modify our thinking.

Clearly, there are two possible arguments:

i) No. Light has no mass (mlight = 0). So, gravity cannot exert a force on
light and should not affect it.

ii) Yes. After all, all things fall at the same rate in a gravitational field, even
things with a very small mass. So, light should fall.

Well, we could go back and forth between these two points of view for quite
awhile.... but let’s proceed by introducing a third argument in order to break
the tie. We’ll do it by recalling that there is a certain equivalence between
energy and mass.

In fact, in certain situations, “pure mass” can be converted into “pure energy”
and vice versa. A nice example of this happens all the time in particle acceler-
ators when an electron meets a positron (it’s ‘anti-particle’).

light light

e + e-
light light

e e+ -
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Let us suppose that gravity does not effect light and consider the following
process:

E   > E 01

e
+

e -

e
+ e -

e -

e
+

E   > E 01

4) shine
up

1 03) Makes light w/ Energy E  >  E

1) at rest

2) They fall,

E   = 2 mc0
2 1 0light w/ Energy E  >  E

5)

with 

1) First, we start with an electron (mass m) and a positron (also mass m) at
rest. Thus, we have a total energy of E0 = 2mc2.

2) Now, these particles fall a bit in a gravitational field. They speed up and
gain energy. We have a new larger energy E1 > E0.

3) Suppose that these two particles now interact and turn into some light. By
conservation of energy, this light has the same energy E1 > E0.

4) Let us take this light and shine it upwards, back to where the particles
started. (This is not hard to do – one simply puts enough mirrors around
the region where the light is created.) Since we have assumed that gravity
does not affect the light, it must still have an energy E1 > E0.

5) Finally, let us suppose that this light interacts with itself to make an electron
and a positron again. By energy conservation, these particles must have an
energy of E1 > E0.

Now, at the end of the process, nothing has changed except that we have more
energy than when we started. And, we can keep repeating this to make more
and more energy out of nothing. Just think about what this would do, for
example, to ideas about energy conservation!

We have seen some hard to believe things turn out to be true, but such an
infinite free source of energy seems especially hard to believe. This strongly
suggests that light is in fact affected by gravity in such a way that, when the
light travels upwards though a gravitational field, it loses energy in much the
same way as would a massive object.
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7.2.3 Gravity, Light, Time, and all that

In the previous subsection we argued that light is in fact affected by gravity.
In particular, when light travels upwards though a gravitational field, it looses
just as much energy as would a massive object.

Now, what happens to light when it looses energy? Well, it happens that
light comes in little packages called ‘photons.’ This was only beginning to
be understood when Einstein started thinking about gravity, but it is now well
established and it will be a convenient crutch for us to use in assembling our
own understanding of gravity. The amount of energy in a beam of light depends
on how many photons are in the beam, and on how much energy each photon
has separately.

You can see that there are two ways for a beam of light to loose energy. It can
either actually loose photons, or each photon separately can loose energy.

As the light travels up through the gravitational field, it should loose energy
continuously. Loosing photons would not be a continuous, gradual process – it
would happen in little discrete steps, one step each time a photon was lost. So,
it is more likely that light looses energy in a gravitational field by each photon
separately loosing energy.

How does this work? As we mentioned in section (6.5.1), the energy of a single
photon depends on something called the frequency of the light. The frequency
is just a measure of how fast the wave oscillates. The energy E is in fact
proportional to the frequency f , through something called “Plank’s constant”
(h). In other words, E = hf for a photon.

So, as it travels upwards in our gravitational field, this means that our light
wave must loose energy by changing frequency and oscillating more slowly. It
may please you to know that, long after this effect was suggested by Einstein, it
was measured experimentally. The experiment was done by Pound and Rebke
at Harvard in 1959.

Now, a light wave is a bunch of wave crests and wave troughs that chase each
other around through spacetime. Let’s draw a spacetime diagram showing the
motion of, say, a bunch of the wave crests. Note that, if the wave oscillates more
slowly at the top, then the wave crests must be farther apart at the top than at
the bottom.
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Bottom Top

up

But.... isn’t each wave crest supposed to move at the same speed c in a vacuum?
It looks like the speed of light gets faster and faster as time passes! Perhaps
we have done something wrong? By the way, do you remember any time before
when we saw light doing weird stuff???

Hmmmm.... something is definitely funny in the diagram above. Nothing is
really changing with time, so each crest should act the same as the one before
and move at the same speed, at least when the wave is at the same place. Let’s
choose to draw this speed as a 45o line as usual. In that case, our diagram must
look like the one below.

However, we know both from our argument above and from Pound and Rebke’s
experiment that the time between the wave crests is larger at the top. So, what
looks like the same separation must actually represent a greater proper time at
the top.

up
1 sec

2 sec

Bottom Top

constant distance

This may seem very odd. Should we believe that time passes at a faster rate
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higher up? Note that we are really comparing time as measured by two different
clocks, one far above the other. Also note that these clocks have no relative
motion.

In fact, this does really occur! The Pound and Rebke experiment is an obser-
vation of this kind, but it direct experimental verification was made by precise
atomic clocks maintained by the National Bureau of Standards in the 1960’s.
They kept one clock in Washington D.C. (essentially at sea level) and one clock
in Denver (much higher up). The one in Denver measured more time to pass
(albeit only by a very small amount, one part in 1015!).

7.2.4 Gravity and Accelerating Frames

Hmmmm.... so, we have clocks with no relative motion that run at different
rates. Is this absurd? Well, no, and actually it should sound somewhat fa-
miliar. Do you recall seeing something like this before? (Hint: remember the
accelerating rocket??)

Ah, yes. This sounds very much like the phenomenon that we saw in section
(5.2.3) in which clocks at the front and back of a uniformly rocket ship experi-
enced no relative motion but had clocks that ran at different rates. If one works
out the math based on our discussion of energy and frequency above one finds
that, at least over small distances, a gravitational field is not just qualitatively,
but also quantitatively like an accelerating rocket ship with a = g !!

7.3 The Equivalence Principle

3) Finally, let’s go back to an old issue: inertial frames.

Let’s first see what we can recall. For example, are we in an inertial frame right
now??? Can we estimate our acceleration relative to one?? If we were in a
rocket ship out in space, what experiment could we perform to find out if we
were accelerating?? Can we feel the forces acting on us?

Well, in the end we might say that our acceleration is very small because we
can look over at the Sun and decide our acceleration relative to it is very small
(much less than 10m/s2) ... and surely the Sun is in an inertial frame?

Or, even better, let us consider someone in China, on the opposite side of the
earth from us. If we are accelerating away from the earth’s center at 10m/s2,
then they must be as well! So, why aren’t we getting farther apart???

7.3.1 Gravity and Locality

But, what if we were not allowed to look at the Sun? What if we were only
allowed to make measurements here in this room? [Such measurements are
called local measurements.] What objects in this room are in inertial frames?
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How do we know? Should we drop a sequence of rocks, as we would in a rocket
ship?

If only local measurements are made, then it is the state of free-fall that is
much like being in an inertial frame. In particular, a person in free-fall in a
gravitational field feels just like an inertial observer!

Note how this fits with our observation about clocks higher up running faster
than clocks lower down. We said that this exactly matches the results for an
accelerating rocket with a = g. As a result, things that accelerate relative to the
lab will behave like things that accelerate relative to the rocket. In particular,
it is the freely falling frame that accelerates downward at g relative to the lab,
while it is the inertial frame that accelerates downward at g relative to the
rocket! Thus, clocks in a freely falling frame act like those in an inertial frame,
and it is in the freely falling frame that clocks with no relative motion in fact
run at the same rate!!

Similarly, a lab on the earth and a lab in a rocket (with it’s engine on, and, say,
accelerating at 10m/s2) are very similar. They have the following features in
common:

Earth

Rocket

Lab 1 Lab 2

1) Clocks farther up run faster in both cases, and by the same amount!

2) If the non-gravitational force on an object is zero, the object “falls” relative
to the lab at a certain acceleration that does not depend on what the object
is!

3) If you are standing in such a lab, you feel exactly the same in both cases.

Einstein’s guess (insight?) was that, in fact:

Under local measurements, a gravitational field is completely equivalent to
an acceleration.

This statement is known as The Equivalence Principle.

In particular, gravity has NO local effects in a freely falling reference frame.
This ideas turns out to be useful even in answering non-relativistic problems.
For example, what happens when I drop a hammer held horizontally? Does the
heavy end hit first, or does the light end? Try using the equivalence principle
idea to predict the answer.....

So then, what would be the best way to draw a spacetime diagram for a tower
sitting on the earth? By “best,” what I mean is: in what frame of reference do
we most understand what is going on?
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The answer of course is the frame that acts like an inertial frame. In this
case, this is the freely falling reference frame. We have learned that, in such a
reference frame, we can ignore gravity completely.

Now, how much sense does the above picture really make? Let’s make this easy,
and suppose that the earth were really big.... it turns out that, in this case,
the earth’s gravitational field would be nearly constant, and would weaken only
very slowly as we go upward. Does this mesh with the diagram above?

Not really..... We said that the diagram above is effectively in an inertial frame.
However, in this case we know that, if the distance between the bottom and
top of the tower does not change, then the bottom must accelerate at a faster
rate than the top does! But we just said that we want to consider a constant
gravitational field! So, what’s up?

Side note: No, it does not help to point out that the real earth’s gravita-
tional field is not constant. The point here is that the earth’s gravitational field
changes in a way that has nothing to do with the relationship α = c2/l from
the accelerated rocket.

7.3.2 How Local?

Well, we do have a way out of this: We realized before that the idea of freely
falling frames being like inertial frames was not universally true. After all, freely
falling objects on opposite side of the earth do accelerate towards each other.
In contrast, any two inertial objects experience zero relative acceleration.

However, we did say that inertial and freely falling frames are the same ‘locally.’
Let’s take a minute to refine that statement.

How local is local? Well, this is much like the question of “when is a velocity
small compared to the speed of light?” What we found before was that New-
tonian physics held true in the limit of small velocities. In the same way, our
statement that inertial frames and freely-falling frames are similar is supposed
to be true in the sense of a limit. This comparison becomes more and more
valid the smaller a region of spacetime we use to compare the two.

Nevertheless, it is still meaningful to ask how accurate this comparison is. In
other words, we will need to know exactly which things agree in the above limit.
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To understand Einstein’s answer, let’s consider a tiny box of spacetime from
our diagram above.

ε

εc
This acceleration was
matched to g

For simplicity, consider a ‘square’ box of height ε and width cε. This square
should contain the event at which we matched the “gravitational field g” to the
acceleration of the rocket.

In this context, Einstein’s proposal was that

Errors in dimensionless quantities like angles, v/c, and boost parameters
should be proportional to ε2.

Let us motivate this proposal through the idea that the equivalence principle
should work “as well as it possibly can.” Suppose for example that the grav-
itational field is really constant, meaning that static observers at any position
measure the same gravitational field g. We then have the following issue: when
we match this gravitational field to an accelerating rocket in flat spacetime, do
we choose a rocket with αtop = g or one with αbottom = g? Recall that any rigid
rocket will have a different acceleration at the top than it does at the bottom.
So, what we mean by saying that the equivalence principle should work ‘as well
as it possibly can’ is that it should predict any quantity that does not depend
on whether we match α = g at the top or at the bottom, but it will not directly
predict any quantity that would depend on this choice.

To see how this translates to the ε2 criterion above, let us consider a slightly
simpler setting where we have only two freely falling observers. Again, we
will study such observers inside a small box of spacetime of dimensions δx = cε,
δt = ε. Let’s assume that they are located on opposite sides of the box, separated
by a distance δx.

In general, we have seen that two freely falling observers will accelerate rela-
tive to each other. Let us write a Taylor’s series expansion for this relative
acceleration a as a function of the separation δx. In general, we have

a(δx) = a0 + a1δx+O(δx2). (7.3)

But, we know that this acceleration vanishes in the limit δx→ 0 where the two
observers have zero separation. As a result, a0 = 0 and for small δx we have
the approximation a ≈ a1δx.
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Now, if this were empty space with no gravitational field, everything would be in
a single inertial frame. As a result there would be no relative acceleration and, if
we start the observers at rest relative to each other, their relative velocity would
always remain zero. This is an example of an error we would make if we tried
to use the equivalence principle in too strong of a fashion. What is the correct
answer? Well, the relative acceleration is a1δx = a1cε and they accelerate away
from each other for a time (within our box) δt = ε. As a result, they attain a
relative velocity of v = a1cε

2. But since our inertial frame model would have
predicted v = 0, the error in v/c is also a1ε

2. (See, ε squared!) examples turn
out to work in much the same way, and this is why Einstein made the proposal
above.

• To summarize: what we have found is that locally a freely falling reference
frame is almost the same as an inertial frame. If we think about a freely
falling reference frame as being exactly like an inertial frame, then we make
a small error in computing things. The fractional error is proportional
to ε2, where ε is the size of the spacetime region needed to make the
measurement.

The factor of proportionality is called R after the mathematician Riemann,
about whom we will say more in the next chapter. Note that R is not a radius.
Since the error in an angle θ is Rε2, R has dimensions of (length)−2.

7.4 Going beyond locality

Einstein: Chapters XX-XXII

In section (7.3.1) we talked about the fact that locally a freely falling frame in
a gravitational field acts like an inertial frame does in the absence of gravity.
However, we saw that freely falling frames and inertial frames are not exactly
the same if they are compared over any bit of spacetime of finite size. No
matter how small of a region of spacetime we consider, we always make some
error if we interpret a freely falling frame as an inertial frame. So, since any
real experiment requires a finite piece of spacetime, how can our local principle
be useful in practice?

The answer lies in the fact that we were able to quantify the error that we
make by pretending that a freely falling frame is an inertial frame. We found
that if we consider a bit of spacetime of size ε, then the error in dimensionless
quantities like angle or velocity measurements is ε2. Note that ratios of lengths
(L1/L2) or times (T1/T2) are also dimensionless. In fact, an angle is nothing
but a ratio of an arc length to a radius (θ = s/r)! So, this principle should also
apply to ratios of lengths and/or times:
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ε

εc
This acceleration was
matched to g

δ
T1

T2
∝ ε2, (7.4)

where δ denotes the error.

Let me pause here to say that the conceptual setup with which we have sur-
rounded equation (7.4) is much like what we find in calculus. In calculus, we
learned that locally any curve was essentially the same as a straight line. Of
course, over a region of finite size, curves are generally not straight lines. How-
ever, the error we make by pretending a curve is straight over a small finite
region is small. Calculus is the art of carefully controlling this error to build up
curves out of lots of tiny pieces of straight lines3. Similarly, the main idea of
general relativity is to build up a gravitational field out of lots of tiny pieces of
inertial frames.

Suppose, for example, that we wish to compare clocks at the top and bottom of
a tall tower. We begin by breaking up this tower into a larger number of short
towers, each of size ∆l.

∆ l

g g gg
0 1 3 4

g
2

If the tower is tall enough, the gravitational field may not be the same at the
top and bottom – the top might be enough higher up that the gravitational
field is measurably weaker. So, in general each little tower (0,1,2...) will have
a different value of the gravitational field g (g0, g1, g2....). If l is the distance of
any given tower from the bottom, we might describe this by a function g(l).

3In fact, in calculus we also have a result much like (7.4). When we match a straight line
to a curve at x = x0 we get the slope right, but miss the curvature. Thus, the straight line
deviates from the curve by an amount proportional to (x− x0)2, a quadratic expression.
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7.4.1 A Tiny Tower

Let’s compare the rates at which clocks run at the top and bottom of one of
these tiny towers. We will try to do this by using the fact that a freely falling
frame is much like an inertial frame. Of course, we will have to keep track of
the error we make by doing this.

Recall that, in any accelerating rocket, the front and back actually do agree
about simultaneity. As a result, all of our clocks in the towers will also agree
about simultaneity. Thus, we can summarize all of the interesting information
in a ‘rate function’ ρ(l) which tells us how fast the clock at position l runs
compared to the clock at position zero:

ρ(l) =
∆τl
∆τ0

. (7.5)

We wish to consider a gravitational field that does not change with time, so
that ρ is indeed a function only of l and not of t.

So, let us model our tiny tower as a rigid rocket accelerating through an inertial
frame. A spacetime diagram drawn in the inertial frame is shown below.

α = g

∆ l

τ l τ
l +     l∆

Now, the tiny tower had some acceleration g relative to freely falling frames.
Let us suppose that we match this to the proper acceleration α of the back of the
rocket. In this case, the back of the rocket will follow a worldline that remains
a constant proper distance d = c2/α from some fixed event.

Note that the top of the rocket remains a constant distance d + ∆l from this

event. As a result, the top of the rocket has a proper acceleration αtop = c2

d+∆l .
As we have learned, this means that the clocks at the top and bottom run at
different rates:

∆τtop
∆τbottom

=
αbottom
αtop

=
d+ ∆l

d
= 1 +

∆l

d
. (7.6)

In terms of our rate function, this is just

ρ(l + ∆l)

ρ(l)
=
ρ(l) + ∆ρ

ρ(l)
= 1 +

∆ρ

ρ(l)
. (7.7)
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Thus, we have

∆ρ

ρ(l)
=

∆l

d
=
α∆l

c2
. (7.8)

Now, how much of an error would we make if we use this expression for our tiny
tower in the gravitational field? Well, the above is in fact a fractional change in
a time measurement. So, the error must be of size ∆l2. So, for our tower case,
we have

∆ρ

ρ(l)
=
g(l)∆l

c2
+ k(∆l)2 (7.9)

for some number k. Here, we have replaced α with g, since we matched the
acceleration g(l) of our tower (relative to freely falling frames) to the proper
acceleration α.

Actually, we might have figured out the error directly from expression (7.8)
above. Recall that, after all, the error can be seen in the fact that the accelera-
tion does not change in the same way from the bottom of the tower to the top
of the tower as it did from the bottom of the rocket to the top of the rocket.
The equivalence principle directly predicts only quantities that are independent
of such matching details. So what would is the difference between these two
options? Well, the difference in the accelerations is just ∆α ≈ dα

dl ∆l. Note that
α is already multiplied by ∆l in the expression above. This means that, if we
were to change the value if α by dα

dl ∆l, we would indeed create a term of the
form k(∆l)2! So, we see again that this term really does capture well all of the
errors we might possibly make in matching a freely falling frame to an inertial
frame4.

Let us write our relation above as

∆ρ

∆l
= (

g

c2
+ k∆l)ρ(l). (7.10)

As in calculus, we wish to consider the limit as ∆l → 0. In this case, the left
hand side becomes just the derivative dρ

dl . On the right hand side, the first term
does not depend on ∆l at all, while the second term vanishes in this limit. Thus,
we obtain

dρ

dl
=
g(l)ρ(l)

c2
. (7.11)

Note that the term containing k (which encodes our error) has disappeared
entirely. This means that the relation (7.11) is exact and contains no error at all!

4A more thorough argument is to compare the clock we matched to an arbitrary worldline
which is at rest a distance ∆l away at t = 0. One can show that the result (7.9) holds for
any such worldline and is thus independent of all other details of the matching. This follows
directly from the fact that the line of simultaneity at τ1 slopes upward to the right. Ask me
for more details if you are curious.
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We have managed to use our local matching of freely falling and inertial frames
to make an exact statement not directly about ρ(l), but about the derivative
dρ
dl .

7.4.2 The tall tower

Of course, we have still not answered the question about how the clocks actually
run at different heights in the tower. To do so, we need to solve the equation
(7.11) for ρ(l). We can do this by multiplying both sides by dl and integrating:∫ ρ

ρ(0)

dρ

ρ
=

∫ l

0

g(l)

c2
dl. (7.12)

Now, looking at our definition above we find that ρ0 = 1. Thus, we have∫ ρ

ρ(0)

dρ

ρ
= ln ρ− ln 1 = ln ρ (7.13)

and so

ln ρ =

∫ l

0

g(l)

c2
dl, (7.14)

or,

∆τl
∆τ0

= ρ(l) = exp(

∫ l

0

g(l)

c2
dl). (7.15)

?? Expression (7.15) is the exact relation relating clocks at different heights
l in a gravitational field. One important property of this formula is that the
factor inside the exponential is always positive. As a result, we find that clocks
higher up in a gravitational field always run faster, regardless of whether the
gravitational field is weaker or stronger higher up!

Note that, due to the properties of exponential functions, we can also write this
as:

∆τb
∆τa

= ρ(l) = exp(

∫ b

a

g(l)

c2
dl). (7.16)

7.4.3 Gravitational time dilation near the earth

The effect described in equation (7.15) is known as gravitational time dilation.
There are a couple of interesting special cases of this effect that are worth
investigating in detail. The first is a uniform gravitational field in which g(l) is
constant. Recall that this is not in fact the same as a rigid rocket accelerating
through an inertial frame, as the acceleration is actually different at the top of
the rigid rocket than at the bottom.
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Still, in a uniform gravitational field with g(l) = g the integral in (7.15) is easy
to do and we get just:

∆τl
∆τ0

= egl/c
2

. (7.17)

In this case, the difference in clock rates grows exponentially with distance.

The other interesting case to consider is something that describes (to a good
approximation) the gravitational field near the earth. We have seen that New-
ton’s law of gravity is a pretty good description of gravity near the earth, so we
should be able to use the Newtonian form of the gravitational field:

g =
mEG

r2
, (7.18)

where r is the distance from the center of the earth. This means that we can
use dr in place of dl in (7.15). Let us refer to the radius of the earth as r0.
For this case, it is convenient to compare the rate at which some clock runs at
radius r to the rate at which a clock runs on the earth’s surface (i.e., at r = r0).

Since
∫ r2
r1
r−2dr = r−1

1 − r−1
2 , we have

∆τ(r)

∆τ(r0)
= exp(

∫ r

r0

mEG

c2r2
dr) = exp

[
mEG

c2

(
1

r0
− 1

r

)]
. (7.19)

Here, it is interesting to note that the r dependence drops out as r → ∞, so
that the gravitational time dilation factor between the earth’s surface (at r0)
and infinity is actually finite. The result is

∆τ(∞)

∆τ(r0)
= e

mEG

r0c2 . (7.20)

So, time is passing more slowly for us here on earth than it would be if we were
living far out in space..... By how much? Well, we just need to put in some
numbers for the earth. We have

mE = 6× 1024kg,
G = 6× 10−11Nm2/kg2,
r0 = 6× 106m. (7.21)

Putting all of this into the above formula gives a factor of about e
2
3×10−10

.
Now, how big is this? Well, here it is useful to use the Taylor series expansion
ex = 1 + x+ small corrections for small x. We then have

∆τ(∞)

∆τ(r0)
≈ 1 +

2

3
× 10−10. (7.22)

This means that time passes more slowly for us than it does far away by roughly
one part in 1010, or, one part in ten billion! This is an incredibly small amount
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– one that can easily go unnoticed. However, as mentioned earlier, the national
bureau of standards was in fact able to measure this back in the 1960’s, by
comparing very accurate clocks in Washington, D.C. with very accurate clocks
in Denver! Their results were of just the right size to verify the prediction above.

In fact, there is an even more precise version of this experiment that is going
on right now – constantly verifying Einstein’s prediction every day! It is called
the “Global Positioning System” (GPS). Perhaps you have heard of it?

7.4.4 The Global Positioning System

The Global Positioning System is a setup that allows anyone, with the aid of a
small device, to tell exactly where they are on the earth’s surface. It is made up
of a number of satellites in precise, well-known orbits around the earth. Each of
these satellites contains a very precise clock and a microwave transmitter. Each
time the clock ‘ticks’ (millions of times every second!) it sends out a microwave
pulse which is ‘stamped’ with the time and the ID of that particular satellite.

A hand-held GPS locator then receives these pulses. Because it is closer to some
satellites than to others, the pulses it receives take less time to reach it from
some satellites than from others. The result is that the pulses it receives at a
given instant are not all stamped with the same time. The locator then uses
the differences in these time-stamps to figure out which satellites it is closest
to, and by how much. Since it knows the orbits of the satellites very precisely,
this tells the device exactly where it itself it located. This technology allows
the device to pinpoint its location on the earth’s surface to within a one meter
circle.

To achieve this accuracy, the clocks in the satellites must be very precise, and
the time stamps must be very accurate. In particular, they must be much more
accurate than one part in ten billion. If they were off by that much, then every
second the time stamps would become off by 10−10 seconds. But, in this time,
microwaves (or light) travel a distance (3× 108m/s)(10−10sec) = 3× 10−2m =
3cm and the GPS locator would think it was ‘drifting away’ at 3cm/sec. While
this is not very fast, it would add up over time. This drift rate is 72m/hr,
which would already spoil the accuracy of the GPS system. Over long times,
the distance becomes even greater. The drift rate can also be expressed as
1.5km/day or 500km/year. So, after one year, a GPS device in Syracuse, NY
might think that it is in Philadelphia!

By the way, since the GPS requires this incredible precision, you might ask
if it can measure the effects of regular speed-dependent special relativity time
dilation as well (since the satellites are in orbit and are therefore ‘moving.’)
The answer is that it can. In fact, for the particular satellites used in the GPS
system, these speed-dependent effects turn out to be of a comparable size to the
gravitational time dilation effect. Note that these effects actually go in opposite
directions: the gravity effect makes the higher (satellite) clock run fast while
the special relativity effect makes the faster (satellite) clock run slow.
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The numbers are fun to work out5. Here, I will just report the results. Which
effect is larger turns out to depend on the particular orbit. Low orbits (like that
of the space shuttle) are higher speed, so in this case the special relativity effect
dominates and the orbiting clocks run more slowly than on the earth’s surface.
High orbits (like that of the GPS satellites) are lower speed, so the gravity effect
wins and their clocks run faster than clocks on the earth’s surface. For the case
of GPS clocks, the special relativity effect means that the amount of the actual
time dilation is less than the purely gravitational effect by about a factor of two.

7.5 The moral of the story

OK, we have done a nice calculation and we were able to figure out how clocks
run at different heights in a gravitational field. We have also seen how important
this is for the running of things like GPS. But, what does all of this mean? And,
why is this often considered a new subject (called ‘General Relativity’), different
from our old friend Special Relativity?

7.5.1 Local frames vs. Global frames

Let us briefly retrace our logic. While thinking about various frames of reference
in a gravitational field, we discovered that freely falling reference frames are
useful. In fact, they are really the most useful frames of reference, as they are
similar to inertial frames. This fact is summarized by the equivalence principle
which says “freely falling frames are locally equivalent to inertial frames.”

The concept of these things being locally equivalent is a subtle one, so let me
remind you what it means. The idea is that freely falling reference frames are
indistinguishable from inertial reference frames so long as we are only allowed
to perform experiments in a tiny region of spacetime. More technically, suppose
that we make then mistake of pretending that a freely falling frame actually is an
inertial frame of special relativity, but that we limit ourselves to measurements
within a region of spacetime of size ε. When we then go and predict the results of
experiments, we will make small errors in, say, the position of objects. However,
these errors will be very small when ε is small; in fact, the percent error will go
to zero like ε2.

The same sort of thing happens in calculus. There, the corresponding statement
is that a curved line is locally equivalent to a straight line.

Anyway, the important point is that we would make an error by pretending
that freely falling frames are exactly the same as inertial frames. Physicists say
that the two are locally equivalent, but are not “globally” equivalent. The term
‘global’ (from globe, whole, etc.) is the opposite of local and refers to the frame
everywhere (as opposed to just in a small region).

So, if freely falling frames are not globally inertial frames, then where are the
inertial frames? They cannot be the frames of reference that are attached to

5And we will learn more about how to do so in the next chapter.
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the earth’s surface. After all, if a frame is globally like an inertial frame then it
must also be like an inertial frame locally. However, frames tied to the surface
of the earth are locally like uniformly accelerated frames, not inertial frames.

But, there are really not any other frames left to consider. To match an inertial
frame locally requires free fall, but that will not let us match globally. We are
left with the conclusion that:

In a generic gravitational field, there is no such thing as a global inertial
frame.

What can I mean by this? Well, one can take various perspectives on this, but
the bottom line is that we (following Einstein) merely assumed that the speed
of light was constant in all (globally) inertial frames of reference. However, no
such reference frame will exist in a generic gravitational field6.

And what if we retreat to Newton’s first law, asking about the behavior of
objects on which no forces act? The trouble is that, as we have discussed, to
identify an inertial frame in this way we would need to first identify an object
on which no forces act. But, which object is this? Recall that any freely falling
object seems to pass the ‘no forces’ tests as well (or better than!) an object
sitting on the earth!

However, if freely falling objects are indeed free of force, then Newton’s first
law tells us that they do not accelerate relative to each other ..... in gross con-
tradiction with experiment! (To see this, consider a freely falling rock dropped
above the north pole and also one dropped above the south pole. These clearly
accelerate toward one another.)

This strongly suggests that global inertial frames do not exist and that we should
therefore abandon the concept and move on. In its place, we will now make use
of local inertial frames, a.k.a. freely falling frames. It is just this change that
marks the transition from ‘special’ to ‘general’ relativity. Special relativity is
just the special case in which global inertial frames exist.

Actually, there is another reason why the study of gravity is known as “General
Relativity.” The point is that in special relativity (actually, even before) we
noticed that the concept of velocity is intrinsically a relative one. That is to
say, it does not make sense to talk about whether an object is moving or at rest,
but only whether it is moving or at rest relative to some other object. However,
we did have an absolute notion of acceleration: an object could be said to be
accelerating without stating explicitly what frame was being used to make this
statement. The result would be the same no matter what inertial frame was
used.

However, now even the concept of acceleration becomes relative in a certain
sense. Suppose that you are in a rocket in deep space and that you cannot look
outside to see if the rockets are turned on. You drop an object and it falls. Are
you accelerating, or are you in some monster gravitational field? There is no
right answer to this question as the two are identical. In this sense, the concept

6Of course, the locally measured speed of light is always c in a freely falling frame.
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of acceleration is now relative as well – it is equivalent to being in a gravitational
field.

While this point is related to why the study of gravity historically acquired the
name “General Relativity,” it is not clear that this is an especially useful way
to think about things. In particular, I want to stress that one can still measure
one’s proper acceleration as the acceleration relative to a nearby (i.e., local!)
freely falling frame.

?? Thus, there is an absolute distinction between freely falling and not freely
falling. Whether you wish to identify these terms with non-accelerating and
accelerating is just a question of semantics – though most modern relativists find
it convenient to do so. As a result, I will use a language in which acceleration is
not a relative concept but in which it implicitly means “acceleration measured
locally with respect to freely falling frames.”

7.5.2 And what about the speed of light?

There is a question that you probably wanted to ask a few paragraphs back,
but then I went on to other things.... I said that in a general gravitational field
there are no frames of reference in which light rays always travel in straight lines
at constant speed. So, after all of our struggles, have we finally thrown out the
constancy of the speed of light?

No, not completely. There is one very important statement left. Suppose that
we measure the speed of light at some event (E) in a frame of reference that
falls freely at event E. Then, near event E things in this frame work just like
they do in inertial frames – so, light moves at speed c and in a straight line.
Said in our new language:

As measured locally in a freely falling frame, light always moves in straight
lines at speed c.

7.6 Homework Problems

7-1. This first problem is an exercise in thinking about things from the per-
spective of a freely falling object. Remember that Newton’s law of gravity
tells us that (i) objects near the earth are attracted to the center of the
earth and (ii) objects closer to the earth are attracted more strongly than
are objects farther away. You should include both of these effects
as you work this problem.

(a) Suppose that three small stones are released from high above the
earth as shown below. Sketch their worldlines on a spacetime di-
agram drawn in the reference frame of the middle stone. Use the
x direction (shown below) for the spatial direction of your diagram.
(That is, sketch the motion in the x, t plane.) [Hint: In the case
shown below, the three stones are nearly the same distance
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from the center of the earth. As a result, their accelerations
have nearly the same magnitude. However, the direction of
the acceleration varies from stone to stone.] How would the
spacetime diagram be different if the stones have an initial velocity
relative to the earth? Take this initial velocity to be the same for all
stones.

Earth

Stones
x

(b) Suppose that three small stones are released from high above the
earth as shown below. Sketch their worldlines on a spacetime diagram
drawn in the reference frame of the middle stone. Use the y direction
(shown below) for the space direction of your diagram. (That is,
sketch the motion in the y, t plane.) How would the diagram be
different if the stones have an initial velocity relative to the earth?
In all cases, assume that the stones pass smoothly through
the earth’s surface – don’t worry about them hitting the
earth.

Earth

Stones

y
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(c) Suppose that a set of small stones are released from high above the
earth as shown below. Describe what happens to the configuration of
stones as time passes, and describe the relative acceleration between
the outer stones and the central stone. Are the stones close enough
together that we can describe them by ‘local measurements’ (in the
sense of the equivalence principle) with respect to the central stone?
That is, are they close enough together that these freely falling objects
are indistinguishable from inertial objects in a global inertial frame?

y

Earth

x

7-2. The earth falls freely in a gravitational field that is largely due to the
moon7. Moreover, the earth is surrounded by a sphere of liquid called the
ocean. Based on your answers to problem 1, do you expect the ocean to
be perfectly round? Draw a picture of its shape.

7-3. The spacetime diagram below is drawn in the reference frame of a small
lab sitting on the earth (which experiences a Newtonian gravitational field
of g = 10m/s2). Which of the worldlines shown below has the greatest
proper time? Explain why the answer you chose is correct.

7For the purposes of this problem, the moon is more important than the Sun. Can you see
why? Hint: Think back to problem 1.
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A

x=0 x=5m x=10m

t=1s

t=3s

Down

B C

D

7-4. Due to the effects of General Relativity (and also due to the fact that
the earth is not completely round) the effective Newtonian gravitational
field of the earth is not exactly GM/r2. Other terms contribute, and these
must be considered by the designers of the Global Positioning System, as
they effect the rate at which the clocks run on the GPS satellites. A more
accurate model of the earth’s gravitational field is

g = GM/r2 + a/r3 + b/r4 (7.23)

in terms of the distance r away from the center of the earth. Here, a and
b are certain constants having to do with the exact shape of the earth.

Using this model, compute the ratio between the rate of ticking of a clock
(A) at distance rA from the center and a clock (B) at a distance rB from
the center. Express the answer in terms of the constants G,M, rA, rB , a
and b.

Note: This problem is really just a calculus problem. In section 7.4 we
discussed equation (7.16) which tells us the relationship between the rates
at which clocks run at different places l in a gravitational field. When this
gravitational field is produced by a round object like the earth, it is natural
to use the radial distance r from the center of the earth as our coordinate
l. So, the problem above just consists of performing the corresponding
integral for the specified function g(r). Note: In (7.16) we used l as
the distance variable. In this problem I have used r. Just replace
l in (7.16) by r to use that formula here.

7-5. Use the mass and radius of the earth as given in section 7.4 to calculate
how much faster a clock in Denver runs than does a clock in Washington,
D.C. Denver is 1600m higher than Washington, D.C.

7-6. Of course, the earth also spins on its axis, so that neither city in 7-5 is
standing still... Estimate the relative velocity between the two cities, and
use this to estimate the size of the time dilation effect you would expect
from special relativity. Do we need to consider this effect as well?



Chapter 8

General Relativity and
Curved Spacetime

Read Einstein, ch. 23-29, Appendices 3-5

In chapter 7 we saw that we could use the equivalence principle to calculate
the effects of a gravitational field over a finite distance by carefully patching
together local inertial frames. If we are very, very careful, we can calculate the
effects of any gravitational field in this way. However, this approach turns out
to be a real mess.

Consider for example the case where the gravitational field changes with time.
Then, it is not enough just to patch together local inertial frames at different
positions. One must make a quilt of them at different places as well as at
different times!

ff11 ff12 ff13

ff21 ff22 ff23

ff31 ff32 ff33

x

y

As you might guess, this process becomes even more complicated if we consider
all 3+1 dimensions. One then finds that clocks at different locations in the
gravitational field may not agree about simultaneity even if the gravitational

193
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field does not change with time.... but that is a story that we need not go into
here1.

What Einstein needed was a new way of looking at things – a new language in
which to discuss gravity that would organize all of this into something relatively
simple. Another way to say this is that he needed a better conception of what
a gravitational field actually is. This next step was very hard for Albert. It
took him several years to learn the appropriate mathematics and to make that
mathematics into useful physics. Instead of going through all of the twists and
turns in the development of the subject, I’ll try to give you the rough, boiled
down version, of how all it all works out.

8.1 A return to geometry

You see, Einstein kept coming back to the idea that freely falling observers
are like inertial observers – or at least as close as we can get. Recall that, in
the presence of a general gravitational field, there really are no global inertial
frames. When we talked about our ‘error’ in thinking of a freely falling frame
as inertial, it is not the case that there is a better frame which is more inertial
than is a freely falling frame. Instead, when gravity is present there are simply
no frames of reference that act precisely in the way that global inertial frames
act.

Anyway, Einstein focussed on the fact that freely falling frames are locally the
same as inertial frames. However, he knew that things were tricky for measure-
ments across a finite distance. Consider, for example, the reference frame of a
freely falling person. Suppose that this person holds out a rock and releases it.
The rock is then also a freely falling object, and the rock is initially at rest with
respect to the person.

However, the rock need not remain exactly at rest with respect to the person.
Suppose, for example, that the rock is released from slightly higher up in the
gravitational field. Then, Newton would have said that the gravitational field
was weaker higher up, so that the person should accelerate toward the earth
faster than does the rock. This means that there is a relative acceleration
between the person and the rock, and that the person finds the rock to accelerate
away! A spacetime diagram in the person’s reference frame looks like this:

1If you’re interested, you might look up the difference between ‘stationary’ and ‘static’
spacetimes in a more technical book on General Relativity.
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Suppose, on the other hand, that the rock is released to the person’s side. Then,
Newton would say that both person and rock accelerate toward the center of
the earth. However, this is not in quite the same direction for the person as for
the rock:

So, again there is a relative acceleration. This time, however, the person finds
the rock to accelerate toward her. So, she would draw a spacetime diagram for
this experiment as follows:

The issue is that we would like to think of the freely falling worldlines as inertial
worldlines. That is, we would like to think of them as being ‘straight lines in
spacetime.’ However, we see that we are forced to draw them on a spacetime
diagram as curved. Now, we can straighten out any one of them by using the
reference frame of an observer moving along that worldline. However, this makes
the other freely falling worldlines appear curved. How are we to understand this?
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8.1.1 Straight Lines in Curved Space

Eventually Einstein found a useful analogy with something that at first sight
appears quite different – a curved surface. The idea is captured by the question
“What is a straight line on a curved surface?”

To avoid language games, mathematicians made up a new word for this idea:
“geodesic.” A geodesic can be thought of as the “straightest possible line on a
curved surface.” More precisely, we can define a geodesic as a line of minimal
distance – the shortest line between two points2. The idea is that we can define
a straight line to be the shortest line between two points.

Actually, there is another definition of geodesic that is even better, but requires
more mathematical machinery to state precisely. Intuitively, it just captures
the idea that the geodesic is ‘straight.’ It tells us that a geodesic is the path on
a curved surface that would be traveled, for example, by an ant (or a person)
walking on the surface who always walks straight ahead and does not turn to
the right or left.

As an example, suppose you stand on the equator of the earth, face north, and
then walk forward. Where do you go? If you walk far enough (over the ocean,
etc.) you will eventually arrive at the north pole. The path that you have
followed is a geodesic on the sphere.

Alice Bob

Note that this is true no matter where you start on the equator. So, suppose
there are in fact two people walking from the equator to the north pole, Alice
and Bob. As you can see, Alice and Bob end up moving toward each other. So,
if we drew a diagram of this process using Alice’s frame of reference (so that
her own path is straight), it would look like this:

BobAlice

2Technically a geodesic is a line of locally minimal distance, meaning that the line is shorter
than any nearby line.
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By the way, the above picture is not supposed to be a spacetime diagram. It is
simply supposed to be a map of part of the (two dimensional) earth’s surface,
on which both paths have been drawn. This particular map is drawn in such a
way that Alice’s path appears as a straight line. As you probably know from
looking at maps of the earth’s surface, no flat map will be an accurate description
globally, over the whole earth. There will always be some distortion somewhere.
However, a flat map is perfectly fine locally, say in a region the size of the city
of Syracuse (if we ignore the hills).

Now, does this look or sound at all familiar?

What if we think about a similar experiment involving Alice and Bob walking
on a funnel-shaped surface:

BobAlice

In this case they begin to drift apart as they walk so that Alice’s map would
look like this:

BobAlice

So, we see that straight lines (geodesics) on a curved surface act much like
freely falling worldlines in a gravitational field. It is useful to think through
this analogy at one more level: Consider two people standing on the surface of
the earth. We know that these two people remain the same distance apart as
time passes. Why do they do so? Because the earth itself holds them apart and
prevents gravity from bringing them together. The earth exerts a force on each
person, keeping them from falling freely.

Now, what is the analogy in terms of Alice and Bob’s walk across the sphere
or the funnel? Suppose that Alice and Bob do not simply walk independently,
but that they are actually connected by a stiff bar. This bar will force them to
always remain the same distance apart as they walk toward the north pole. The
point is that, in doing so, Alice and Bob will be unable to follow their natural
(geodesic) paths. As a result, Alice and Bob will each feel some push or pull
from the bar that keeps them a constant distance apart. This is much like our
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two people standing on the earth who each feel the earth pushing on their feet
to hold them in place.

8.1.2 Curved Surfaces are Locally Flat

Note that straight lines (geodesics) on a curved surface act much like freely
falling worldlines in a gravitational field. In particular, exactly the same prob-
lems arise in trying to draw a flat map of a curved surface as in trying to
represent a freely falling frame as an inertial frame. A quick overview of the
errors made in trying to draw a flat map of a curved surface are shown below:

Alice
Bob’s geodesic eventually curves away

Locally, geodesics remain parallel

Naive straight line

x ∆
x 

ε 2

ε

ε

We see that something like the equivalence principle holds for curved surfaces:
flat maps are very accurate in small regions, but not over large ones.

In fact, we know that we can in fact build up a curved surface from a bunch
of flat ones. One example of this happens in an atlas. An atlas of the earth
contains many flat maps of small areas of the earth’s surface (the size of states,
say). Each map is quite accurate and together they describe the round earth,
even though a single flat map could not possibly describe the earth accurately.

Computer graphics people do much the same thing all of the time. They draw
little flat surfaces and stick them together to make a curved surface.
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This is much like the usual calculus trick of building up a curved line from little
pieces of straight lines. In the present context with more than one dimension,
this process has the technical name of “differential geometry.”

8.1.3 From curved space to curved spacetime

The point is that this process of building a curved surface from flat ones is just
exactly what we want to do with gravity! We want to build up the gravitational
field out of little pieces of “flat” inertial frames. Thus, we might say that gravity
is the curvature of spacetime. This gives us the new language that Einstein was
looking for:

1) (Global) Inertial Frames ⇔ Minkowskian Geometry ⇔ Flat Spacetime: We
can draw it on our flat paper or chalk board and geodesics behave like straight
lines.

2) Worldlines of Freely Falling Observers ⇔ Straight lines in Spacetime

3) Gravity ⇔ The Curvature of Spacetime

Similarly, we might refer to the relation between a worldline and a line of simul-
taneity as the two lines being at a “right angle in spacetime3.” It is often nice
to use the more technical term “orthogonal” for this relationship.

By the way, the examples (spheres, funnels, etc.) that we have discussed so
far are all curved spaces. A curved spacetime is much the same concept. How-
ever, we can’t really put a curved spacetime in our 3-D Euclidean space. This
is because the geometry of spacetime is fundamentally Minkowskian, and not
Euclidean. Remember the minus sign in the interval? Anyway, what we can
do is to once again think about a spacetime diagram for 2+1 Minkowski space
– time will run straight up, and the two space directions (x and y) will run to
the sides. Light rays will move at 45 degree angles to the (vertical) t-axis as
usual. With this understanding, we can draw a (1+1) curved spacetime inside
this 2+1 spacetime diagram. An example is shown below:

3As opposed to a right angle on a spacetime diagram drawn in a given frame.
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Note that one can move along the surface in either a timelike manner (going
up the surface) or a spacelike manner (going across the surface), so that this
surface does indeed represent a (1+1) spacetime. The picture above turns out
to represent a particular kind of gravitational field that we will be discussing
more in a few weeks. To see the similarity to the gravitational field around
the earth, think about two freely falling worldlines (a.k.a. “geodesics,” the
straightest possible lines) that begin near the middle of the diagram and start
out moving straight upward. Suppose for simplicity that one geodesic is on one
side of the fold while the second is on the other side. You will see that the two
worldlines separate, just as two freely falling objects do at different heights in
the earth’s gravitational field. Thus, if we drew a two-dimensional map of this
curved spacetime using the reference frame of one of these observers, the results
would be just like the spacetime diagram we drew for freely falling stones at
different heights! This is a concrete picture of what it means to say that gravity
is the curvature of spacetime.

Well, there is one more subtlety that we should mention...... it is important to
realize that the extra dimension we used to draw the picture above was just a
crutch that we needed because we think best in flat spaces. One can in fact talk
about curved spacetimes without thinking about a “bigger space” that contains
points “outside the spacetime.” This minimalist view is generally a good idea,
as we will discuss more in the sections below.

8.2 More on Curved Space

Let us remember that the spacetime in which we live is fundamentally four
(=3+1) dimensional and ask if this will cause any new wrinkles in our story. It



8.2. MORE ON CURVED SPACE 201

turns out to create only a few. The point is that curvature is fundamentally
associated with two-dimensional surfaces. Roughly speaking, the curvature of
a four-dimensional spacetime (labelled by x, y, z, t) can be described in terms
of xt curvature, yt curvature, etc. associated with two-dimensional bits of the
spacetime. However, this is relativity, in which space and time act pretty much
the same. So, if there is xt, yt, and zt curvature, there should also be xy,
yz, and xz curvature! This means that the curvature can show up even if we
consider only straight lines in space (determined, for example, by stretching out
a string) in addition to the effects on the motion of objects that we have already
discussed. For example, if we draw a picture showing spacelike straight lines
(spacelike geodesics), it might look like this:

X

Y

Two geodesics

So, curved space is as much a part of gravity as is curved spacetime. This is nice,
as curved spaces are easier to visualize. Let us now take a moment to explore
these in more depth and build some intuition about curvature in general.

Curved spaces have a number of fun properties. Some of my favorites are:

C 6= 2πR: The circumference of a circle is typically not 2π times its radius. Let
us take an example: the equator is a circle on a sphere. What is it’s
center? We are only supposed to consider the two-dimensional surface of
the sphere itself as the third dimension was just a crutch to let us visualize
the curved two-dimensional surface. So this question is really ‘what point
on the sphere is equidistant from all points on the equator?’ In fact, there
are two answers: the north pole and the south pole. Either may be called
the center of the sphere.

Now, how does the distance around the equator compare to the distance
(measured along the sphere) from the north pole to the equator? The arc
running from the north pole to the equator goes 1/4 of the way around
the sphere. This is the radius of the equator in the relevant sense. Of
course, the equator goes once around the sphere. Thus, its circumference
is exactly four times its radius.

A 6= πR2: The area of a circle is typically not π times the square of its radius.
Again, the equator on the sphere makes a good example. With the radius
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defined as above, the area of this circle is much less than πR2. I’ll let you
work out the math for yourself.

R
R

C

R’

Σ(angles) 6= 180o: The angles in a triangle do not in general add up to 180o.
An example on a sphere is shown below.

α

β γ

α + β + γ < 180?
α + β + γ > 180?

90

?

ο 90
ο

Squares do not close: A polygon with four sides of equal length and four
right angles (a.k.a., a square) in general does not close.

90
ο 90

ο
90

ο

Vectors (arrows) “parallel transported” around closed curves are rotated:
This one is a bit more complicated to explain. Unfortunately, to describe
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this property as precisely as the ones above would require the introduc-
tion of more complicated mathematics. Nevertheless, the discussion below
should provide you with both the flavor of the idea and an operational way
to go about checking this property.

In a flat space (like the 3-D space that most people think we live in until
they learn about relativity....), we know what it means to draw an arrow,
and then to pick up this arrow and carry it around without turning it.
The arrow can be carried around so that it always remains parallel to its
original direction.

Now, on a curved surface, this is not possible. Suppose, for example,
that we want to try to carry an arrow around a triangular path on the
sphere much like the one that we discussed a few examples back. For
concreteness, let’s suppose that we start on the equator, with the arrow
also pointing along the equator as shown below:

We now wish to carry this vector to the north pole, keeping it always
pointing in the same direction as much as we can. Well, if we walk along
the path shown, we are going in a straight line and never turning. So,
since we start with the arrow pointing to our left, we should keep the
arrow pointing to our left at all times. This is certainly what we would
do in a flat space.

When we get to the north pole, the arrow looks like this:
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Now we want to turn and walk toward the equator along a different side
of the triangle. We turn (say, to the right) , but we are trying to keep
the arrow always pointing in the same direction. So the arrow should not
turn with us. As a result, it points straight behind us. We carry it down
to the equator so that it points straight behind us at every step:

Finally, we wish to bring the arrow back to where it started. We see that
the arrow has rotated 90o relative to the original direction:

Final

Original

All of these features will be present in any space (say, a surface of simultaneity)
in a curved spacetime. Now, since we identify the gravitational field with the
curvature of spacetime then the above features must also be encoded in the
gravitational field. But there is a lot of information in these features. In partic-
ular there are independent curvatures in the xy, yz, and xz planes that control,
say, the ratio of circumference to radius of circles in these various planes.
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R

C

But wait! Doesn’t this seem to mean that the full spacetime curvature (gravita-
tional field) contains a lot more information than just specifying an acceleration
g at each point? After all, acceleration is related to how thing behave in time,
but we have just realized that at least parts of the spacetime curvature are asso-
ciated only with space. How are we to deal with this? For the answer, proceed
on to the next section below.

8.3 Gravity and the Metric

Einstein: XXIII-XXVII

Let’s recall where we are. A while back we discovered the equivalence principle:
that locally a gravitational field is equivalent to an acceleration in special rela-
tivity. Another way of stating this is to say that, locally, a freely falling frame is
equivalent to an inertial frame in special relativity. We noticed the parallel be-
tween this principle and the underlying ideas being calculus: that locally every
curve is a straight line.

What we found in the current chapter is that this parallel with calculus is
actually very direct. A global inertial frame describes a flat spacetime – one in
which, for example, geodesics follow straight lines and do not accelerate relative
to one another. A general spacetime with a gravitational field can be thought of
as being curved. Just as a general curved line can be thought of as being made
up of tiny bits of straight lines, a general curved spacetime can be thought of
as being made of of tiny bits of flat spacetime – the local inertial frames of the
equivalence principle.

This gives a powerful geometric picture of a gravitational field. It is nothing
else than a curvature of spacetime itself
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Now, there are several ways to discuss curvature. We are used to looking at
curved spaces inside of some larger (flat) space. Einstein’s idea was that the
only relevant things are those that can be measured in terms of the curved
surface itself and which have nothing to do with it (perhaps) being part of some
larger flat space. As a result, one would gain nothing by assuming that there is
such a larger flat space. In Einstein’s theory, there is no reason to suppose that
one exists.

Our task for this section is to learn how to describe this in a useful way. For
example, we noticed above that this new understanding of gravity means that
the gravitational field contains more information than just giving an accelera-
tion at various points in spacetime. The acceleration is related to curvature in
spacetime associated with a time direction (say, in the xt plane), but there are
also parts of the gravitational field associated with the (purely spatial) xy, xz,
and yz planes.

Let’s begin by thinking back to the flat spacetime case (special relativity). What
was the object which encoded the flat Minkowskian geometry? It was the in-
terval: (interval)2 = −c2∆t2 + ∆x2. This is a special case of something known
as a ‘metric,’ which we will explore further in the rest of this section.

8.3.1 Building Intuition in flat space

To understand fully what information is contained in the interval, it is perhaps
even better to think first about flat space, for which the analogous quantity is
the distance ∆s between two points: ∆s2 = ∆x2 + ∆y2.

Much of the important information in geometry is not the distance between two
points per se, but the closely related concept of length. For example, one of
the properties of flat space is that the length of the circumference of a circle is
equal to 2π times the length of its radius. Now, in flat space, distance is most
directly related to length for straight lines: the distance between two points is
the length of the straight line connecting them. To link this to the length of a
curve, we need only recall that locally every curve is a straight line.

ds

ds

1

2

ds 3

In particular, what we need to do is to approximate any curve by a set of tiny
(infinitesimal) straight lines. Because we wish to consider the limit in which
these straight lines are of zero size, let us denote the length of one such line
by ds. The relation of Pythagoras then tells us that ds2 = dx2 + dy2 for that
straight line, where dx and dy are the infinitesimal changes in the x and y
coordinates between the two ends of the infinitesimal line segment. To find the
length of a curve, we need only add up these lengths over all of the straight line
segments. In the language of calculus, we need only perform the integral:
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Length =

∫
curve

ds =

∫
curve

√
dx2 + dy2. (8.1)

You may not be used to seeing integrals written in a form like the one above.
Let me just pause for a moment to note that this can be written in a more
familiar form by, say, taking out a factor of dx from the square root. We have

Length =

∫
curve

dx

√
1 +

(
dy

dx

)2

. (8.2)

So, if the curve is given as a function y = y(x), the above formula does indeed
allow you to calculate the length of the curve.

?? Now, what does this all really mean? What is the ‘take home’ lesson from
this discussion? The point is that the length of every curve is governed by the
formula

ds2 = dx2 + dy2. (8.3)

Thus, this formula encodes lots of geometric information, such that the fact that
the circumference of a circle is 2π times its radius. As a result, 8.3 will be false
on a curved surface like a sphere. A formula of the form ds2 = stuff is known
as a metric, as it tells us how to measure things (in particular, it tells us how to
measure lengths). What we are saying is that this formula will take a different
form on a curved surface and will not match with (8.3).

8.3.2 On to Angles

What other geometric information is there aside from lengths? Here, you might
consider the examples we talked about last time during class: that flat spaces are
characterized by having 180o in every triangle, and by squares behaving nicely.
So, one would also like to know about angles. Now, the important question is:
“Is information about angles also contained in the metric?”

It turns out that it is. You might suspect that this is true on the basis of
trigonometry, which relates angles to (ratios of) distances. Of course, trigonom-
etry is based on flat space, but recall that any space is locally flat, and notice
that an angle is something that happens at a point (and so is intrinsically a
local notion).

To see just how angular information is encoded in the metric, let’s look at an
example. The standard (Cartesian) metric on flat space ds2 = dx2 + dy2 is
based on an ‘orthogonal’ coordinate system – one in which the constant x lines
intersect the constant y lines at right angles. What if we wish to express the
metric in terms of x and, say, some other coordinate z which is not orthogonal
to x?
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x

y

z

θ

∆ x
∆ z

∆ s

In this case, the distances ∆x, ∆z, and ∆s are related in a slightly more com-
plicated way. If you have studied much vector mathematics, you will have seen
the relation:

∆s2 = ∆x2 + ∆z2 + 2∆x∆z cos θ. (8.4)

In vector notation, this is just |~x+ ~z|2 = |~x|2 + |~z|2 + 2~x · ~z.
Even if you have not seen this relation before, it should make some sense to
you. Note, for example, that if θ = 0 we get ∆s = 2∆x (since x and z are
parallel and our ‘triangle’ is just a long straight line), while for θ = 180o we get
∆s = 0 (since x and z now point in opposite directions and, in walking along the
two sides of our triangle, we cover the same path twice in opposite directions,
returning to our starting point.).

For an infinitesimal triangle, we would write this as:

ds2 = dx2 + dz2 − 2dxdz cos θ. (8.5)

So, the angular information lies in the “cross term” with a dxdz. The coefficient
of this term tells us the angle between the x and z directions.

8.3.3 Metrics on Curved space

This gives us an idea of what a metric on a general curved space should look
like. After all, locally (i.e., infinitesimally) it should looks like one of the flat
cases above! Thus, a general metric should have a part proportional to dx2, a
part proportional to dy2, and a part proportional to dxdy. In general, we write
this as:

ds2 = gxxdx
2 + 2gxydxdy + gyydy

2. (8.6)

What makes this metric different from the ones above (and therefore not neces-
sarily flat) is that gxx, gxy, and gyy are in general functions of the coordinates
x, y. In contrast, the functions were constants for the flat metrics above. Note
that this fits with our idea that curved spaces are locally flat since, close to
any particular point (x, y) the functions gxx, gxy, gyy will not deviate too much
from the values at that point. In other words, any smooth function is locally
constant.
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Now, why is there a 2 with the dxdy term? Note that since dxdy = dydx, there
is no need to have a separate gyx term. The metric is always symmetric, with
gyx = gxy. So, gxydxdy + gyxdydx = 2gxydxdy.

If you are familiar with vectors, then I can tell you a bit more about how lengths
and angles are encoded. Consider the ‘unit’ vectors x̂ and ŷ. By ‘unit’ vectors,
I mean the vectors that go from x = 0 to x = 1 and from y = 0 to y = 1. As
a result, their length is one in terms of the coordinates. This may or may not
be the physical length of the vectors. For example, I might have decided to use
coordinates with a tiny spacing (so that x̂ is very short) or coordinates with a
huge spacing (so that x̂ is large). What the metric tells us directly are the dot
products of these vectors:

x̂ · x̂ = gxx,
x̂ · ŷ = gxy,
ŷ · ŷ = gyy. (8.7)

Anyway, this object (gαβ) is called the metric (or, the metric tensor) for the
space. It tells us how to measure all lengths and angles. The corresponding
object for a spacetime will tell us how to measure all proper lengths, proper
times, angles, etc. It will be much the same except that it will have a time part
with gtt negative4 instead of positive, as did the flat Minkowski space.

Rather than write out the entire expression (8.6) all of the time (especially when
working in, say, four dimensions rather than just two) physicists use a condensed
notation called the ‘Einstein summation convention’. To see how this works, let
us first relabel our coordinates. Instead of using x and y, let’s use x1, x2 with
x1 = x and x2 = y. Then we have:

ds2 =

2∑
α=1

2∑
β=1

gαβdx
αdxβ = gαβdx

αdxβ . (8.8)

It is in the last equality that we have used the Einstein summation convention –
instead of writing out the summation signs, the convention is that we implicitly
sum over any repeated index.

8.3.4 A first example

To get a better feel for how the metric works, let’s look at the metric for a flat
plane in polar coordinates (r, θ). It is useful to think about this in terms of the

unit vectors r̂, θ̂.

4More technically, g should have one negative and three positive eigenvalues at each point
in spacetime.



210 CHAPTER 8. GENERAL RELATIVITY AND CURVED SPACETIME

r

θ

From the picture above, we see that these two vectors are perpendicular:
r̂ · θ̂ = 0. Normally, we measure the radius in terms of length, so that r̂ has
length one and r̂ · r̂ = 1. The same is not true for θ: one radian of angle at large
r corresponds to a much longer arc than does one radian of angle at small r. In
fact, one radian of angle corresponds to an arc of length r. The result is that θ̂
has length r and θ̂ · θ̂ = r2. So, for theta measured in radians and running from
0 to 2π, the metric turns out to be:

ds2 = dr2 + r2dθ2. (8.9)

Now, let’s look at a circle located at some constant value of r.

r = const

To find the circumference of the circle, we need to compute the length of a curve
along the circle. Now, along the circle, r does not change, so we have dr = 0.
(Recall that dr is just the infinitesimal version of ∆r.) So, we have ds = rdθ.
Thus, the length is:

C =

∫ 2π

0

ds =

∫ 2π

0

rdθ = 2πr. (8.10)

Let’s check something that may seem trivial: What is the radius of this circle?
The radius (R) is the length of the curve that runs from the origin out to the
circle along a line of constant θ. Along this line, we have dθ = 0. So, along this
curve, we have ds = dr. The line runs from r = 0 to r = r, so we have

R =

∫ r

0

dr = r. (8.11)

So, we do indeed have C = 2πR. Note that while the result R = r may seem
obvious it is true only because we used an r coordinate which was marked off
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in terms of radial distance. In general, this may not be the case. There are
times when it is convenient to use a radial coordinate which directly measures
something other than distance from the origin and, in such cases, it is very
important to remember to calculate the actual ‘Radius’ (the distance from the
origin to the circle) using the metric.

8.3.5 A second example

Now let’s look at a less trivial example. Suppose I tell you that the metric of
some surface is given by:

ds2 =
dr2 + r2dθ2

(1 + r2)
. (8.12)

Is this space flat? Well, let’s compare the circumference (C) of a circle at
constant r to the radius (R) of that circle.

Again, the circumference is a line of constant r, so we have dr = 0 for this line
and ds = r√

1+r2
dθ. The circle as usual runs from θ = 0 to θ = 2π. So, we have

C =

∫ 2π

0

r√
1 + r2

dθ =
2πr√
1 + r2

. (8.13)

Now, how about the radius? Well, the radius R is the length of a line at, say,
θ = 0 that connects r = 0 with r = r. So, we have

R =

∫ r

0

dr√
1 + r2

= sinh−1 r. (8.14)

(This is yet another neat use of hyperbolic trigonometry .... it allows us to
explicitly evaluate certain integrals that would otherwise be a real mess.)

Clearly, C 6= 2πR. In fact, studying the large r limit of the circumference shows
that the circumference becomes constant at large r. This is certainly not true
of the radius: R→∞ as r →∞.

Thus, C is much less than 2πR for large R.

8.3.6 Some parting comments on metrics

This is perhaps the right place to make a point: We often think about curved
spaces as being curved inside some larger space. For example, the two-dimensional
surface of a globe can be thought of as a curved surface that sits inside some
larger (flat) three-dimensional space. However, there is a notion of curvature
(associated with the geometry of the surface – the measurements of circles, tri-
angles, and rectangles drawn in that surface – and encoded by the metric) that
does not refer in any way to anything outside the surface itself. So, in order
for a four dimensional spacetime to be curved, there does not need to be any
‘fifth dimension’ for the universe to be ‘curved into.’ The point is that what
physicists mean by saying that spacetime is curved is not that it is ‘bent’ in
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some new dimension, but rather they mean that the geometry on the spacetime
is more complicated than that of Minkowski space. For example, they mean
that not every circle has circumference 2πR.

Another comment that should be made involves the relationship between the
metric and the geometry. We have seen that the metric determines the geometry:
it allows us to compute, for example, the ratio of the circumference of a circle to
its radius. One might ask if the converse is true: Does the geometry determine
the metric?

The answer is a resounding “no.” We have, in fact, already seen three metrics
for flat space: We had one metric in (orthogonal) Cartesian coordinates, one
in ‘tilted’ Cartesian coordinates where the axes were at some arbitrary angle θ,
and one in polar coordinates. Actually, we have seen infinitely many different
metrics since the metric was different for each value of the tilt angle θ for the
tilted Cartesian coordinates. So, the metric carries information not only about
the geometry itself, but also about the coordinates you happen to be using to
describe it.

The idea in general relativity is that the real physical effects depend only on the
geometry and not upon the choice of coordinates5. After all, the circumference
of a circle does not depend on whether you calculate it in polar or in Cartesian
coordinates. As a result, one must be careful in using the metric to make
physical predictions – some of the information in the metric is directly physical,
but some is an artifact of the coordinate system and disentangling the two can
sometimes be subtle.

The choice of coordinates is much like the choice of a reference frame. We
saw this to some extent in special relativity. For a given observer (say, Alice)
in a given reference frame, we would introduce a notion of position (xAlice)
as measured by Alice, and we would introduce a notion of time (tAlice) as
measured by Alice. In a different reference frame (say, Bob’s) we would use
different coordinates (xBob and tBob). Coordinates describing inertial reference
frames were related in a relatively simple way, while coordinates describing
an accelerated reference frame were related to inertial coordinates in a more
complicated way.

However, whatever reference frame we used and whatever coordinate system we
chose, the physical events are always the same. Either a given clock ticks 2 at
the event where two light rays cross or it does not. Either a blue paintbrush
leaves a mark on a meter stick or it does not. Either an observer writes “I saw
the light!” on a piece of paper or she does not. As a result, the true physical
predictions do not depend on the choice of reference frame or coordinate system
at all.

So long as we understand how to deal with physics in funny (say, accelerating)
coordinate systems, such coordinate systems will still lead to the correct physical
results. The idea that physics should not depend on the choice of coordinates

5The idea is similar to the principle in special relativity that physical effects are the same
no matter which reference frame you use to compute them.
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is called General Coordinate Invariance. Invariance is a term that captures
the idea that the physics itself does not change when we change coordinates.
This turns out to be an important principle for the mathematical formulation
of General Relativity as we will discuss further in section 8.4.

8.4 What is the metric of spacetime?

We have now come to understand that the gravitational field is encoded in the
metric. Once a metric has been given to us, we have also learned how to use
it to compute various objects of interest. In particular, we have learned how
to test a space to see if it is flat by computing the ratio of circumference to
radius for a circle. However, all of this still leaves open what is perhaps the
most important question: just which metric is it that describes the spacetime
in which we live?

First, let’s again recall that there really is no one ‘right’ metric, since the metric
will depend on the choice of coordinates and there is no one ‘right’ choice of
coordinates. But there is a certain part of the metric that is in fact independent
of the choice of coordinates. That part is called the ‘geometry’ of the spacetime.
It is mathematically very complicated to write this part down by itself. So, in
practice, physicists work with the metric and then make sure that the things
they calculate do not depend on the choice of coordinates.

OK then, what determines the right geometry? Recall that the geometry is
nothing other than the gravitational field. So, we expect that the geometry
should in some way be tied to the matter in the universe: the mass, energy,
and so on should control the geometry. Figuring out the exact form of this
relationship is a difficult task, and Einstein worked on it for a long time. We will
not reproduce his thoughts in any detail here. However, in the end he realized
that there were actually not many possible choices for how the geometry and
the mass, energy, etc. should be related.

8.4.1 The Einstein equations

It turns out that, if we make five assumptions, then there is really just one
family of possible relationships. These assumptions are:

1) Gravity is spacetime curvature, and so can be encoded in a metric.

2) General Coordinate Invariance: Real physics is independent of the choice of
coordinates used to describe it.

3) The basic equations of general relativity should give the dynamics of the
metric, telling how the metric changes in time.

4) Energy (including the energy in the gravitational field) is conserved.

5) The (local) equivalence principle.
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Making these five assumptions, one is led to a relation between an object Gαβ
(called the Einstein Tensor) which encodes part of the spacetime curvature and
an object Tαβ (called the Stress-Energy or Energy-Momentum Tensor) which
encodes all of the energy, momentum, and stresses in everything else (“matter,”
electric and magnetic fields, etc.). Here, α, β run over the various coordinates
(t, x, y, z). What is a stress? One example of a stress is pressure. It turns
out that, in general relativity, pressure contributes to the gravitational field
directly6, as do mass, energy, and momentum. The relationship can be written:

Gαβ = κTαβ + Λgαβ (8.15)

The gαβ in the equation above is just the metric itself. This relation is known
as The Einstein equations. Note that (8.15) actually represents one equation
for each value of α and β. This is 16 equations in all7.

We see that κ controls just the overall strength of gravity. Making κ larger is
the same thing as making Tαβ bigger, which is the same as adding more mass
and energy. On the other hand, Λ is something different. Note that it controls
a term which relates just to the geometry and not to the energy and mass of the
matter. However, this term is added to the side of the equation that contains
the energy-momentum tensor. As a result, Λ can be said to control the amount
of energy that is present in spacetime that has no matter in it at all. Partially
for this reason, Λ is known as the Cosmological constant.

6It turns out that pressure is intimately linked to energy and momentum even in special
relativity. To understand this properly requires an argument that is more technical than the
usual level of these notes. However, for the curious I will outline it here. See e.g. B. Shutz, A
first course in general relativity (Cambridge, 1985), Chapter 4 for more details. The point is
that we will need to discuss energy density, just as the Newtonian gravitational field is related
to the mass distribution (and therefore the mass density) and as the electric field is related

to the density of charge through ∇ · ~E = ρ. Now, this is a density in space (energy per 3-d
volume) as opposed to a density in spacetime (energy per 4-d volume). This involves some
split of spacetime into space and time, such as occurs on a surface of simultaneity. As a result,
the energy density can best be thought of a the flux of energy through some spacelike surface
which may think of as being ‘purely spatial.’ Similarly, the momentum density is the flux of
momentum through a spacelike surface which we might consider ‘purely spatial.’ However, if
we change frames then our purely spatial surface will point a bit in the time direction. As a
result we could consider it to be a piece of a spacelike surface plus a bit of a timelike surface.
This means that the flux of energy and momentum through timelike surfaces will also be
important. It turns out that the flux of energy through a timelike surface (the transfer of
energy from one place to another) is just another way to look at the momentum density that
we have already discussed. But what about the flux of momentum across a timelike surface?
Momentum is transferred from object to object and from place to place by forces. Thus, a
momentum flux across a timelike surface is a force density, otherwise known as a pressure or
a tension.

7However, there is some redundancy. Just as gxy = gyx, so Gαβ and Tαβ are similarly
‘symmetric’. This means that 6 of the Einstein equations merely repeat other equations and
that there are really only 10 equations to be solved.
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8.4.2 The Newtonian Approximation

As we said (but did not explicitly derive), equation (8.15) can be deduced from
the five above assumptions on purely mathematical grounds. It is not necessary
to use Isaac Newton’s theory of gravity here as even partial input. So, what is
the connection to Newton’s ideas about gravity?

Recall that we argued before that Newton’s law of gravity can only be correct
when the objects are slowly moving – otherwise special relativity would be rele-
vant and all sorts of things would go wrong. There is in fact another restriction
on when Newtonian gravity is valid. The point is that, in Newtonian gravity,
mass creates a gravitational field. But, we know now that energy and mass are
very closely related. So, all energy should create some kind of gravity. How-
ever, we have also seen that a field (like the gravitational field itself) can carry
energy. As a result, the gravitational field must also act as a source of further
gravity. That is, once relativity is taken into account, gravitational fields should
be stronger than Newton would have expected. For a very weak field (where
the field itself would store little energy), this effect should be small. But, for a
strong gravitational field, this effect should be large. So, Newton’s law of grav-
ity should only be correct for slowly moving objects in fairly weak gravitational
fields.

If one does study the Einstein equations for the case of slowly moving objects
and weak gravitational fields, one indeed obtains the Newtonian law of gravity
for the case Λ = 0, κ = 8πG, where G = 6.67 × 10−11Nm2/kg2 is Newton’s
gravitational constant. So, to the extent that these numbers are determined by
experimental data, they must be the correct values.

In summary, given a lot of thought, Einstein came up with the above five as-
sumptions about the nature of gravity. Then, by mathematics alone he was able
to show that these assumptions lead to equation (8.15). For weak gravitational
fields and slowly moving objects something like Newton’s law of gravity also
follows, but with two arbitrary parameters κ and Λ. One of these (κ) is just 8π
times Newton’s own arbitrary parameter G. As a result, except for one constant
(Λ) Newton’s law of gravity has also followed from the five assumptions using
only mathematics. Finally, by making use of experimental data (the same data
that Newton used originally!) Einstein was able to determine the values of κ
and Λ. The Einstein equations then take on the pleasing form:

Gαβ = 8πGTαβ . (8.16)

8.4.3 The Schwarzschild Metric

Of course, the natural (and interesting!) question to ask is “What happens
when the gravitational field is strong and Newton’s law of gravity does NOT
hold?” We’re not actually going to solve the Einstein equations ourselves –
they’re pretty complicated even for the simplest of cases. However, I will tell
you the answer for the interesting special case of round objects.
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When an object is perfectly round (spherical), the high symmetry of the situation
simplifies the mathematics. The point is that if the object is round, and if the
object completely determines the gravitational field, then the gravitational field
must be round as well. So, the first simplification we will perform is to assume
that our gravitational field (i.e., our spacetime) is spherically symmetric.

The second simplification we will impose is to assume that there is no matter
(just empty spacetime), at least in the region of spacetime that we are studying.
In particular, the energy, momentum, etc., of matter are equal to zero in this
region. As a result, we will be describing the gravitational field of an object
(the earth, a star, etc.) only in the region outside of the object. This would
describe the gravitational field well above the earth’s surface, but not down in
the interior.

For this case, the Einstein equations were solved by a young German mathemati-
cian named Schwarzschild. There is an interesting story here, as Schwarzschild
solved these equations during his spare time while he was in the trenches fighting
(on the German side) in World War I. I believe the story is that Schwarzschild
got his calculations published but, by the time this happened, he had been killed
in the war.

Because of the spherical symmetry, it was simplest for Schwarzschild to use what
are called spherical coordinates (r, θ, φ) as opposed to Cartesian Coordinates
(x, y, z). Here, r tells us how far out we are, and θ, φ are latitude and longitude
coordinates on the sphere at any value of r.

Object

r = 20

r=10

Schwarzschild found that, for any spherically symmetric spacetime and outside
of the matter, the metric takes the form:

ds2 = −
(

1− Rs
r

)
dt2 +

dr2

1− Rs

r

+ r2(dθ2 + sin2 θdφ2). (8.17)

Here, the parameter Rs depends on the total mass of the matter inside. In
particular, it turns out that Rs = 2MG/c2.

The last part of the metric, r2(dθ2 + sin2 θdφ2), is just the metric on a standard
sphere of radius r. This part follows just from the spherical symmetry itself.
Recall that θ is a latitude coordinate and φ is a longitude coordinate. The factor
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of sin2 θ encodes the fact that circles at constant θ (i.e., with dθ = 0) are smaller
near the poles (θ = 0, π) than at the equator (θ = π/2).

North Pole

p

θ

φ

8.5 The experimental verification of General Rel-
ativity

Now that the Schwarzschild metric (8.17) is in hand, we know what is the
spacetime geometry around any round object. Now, what can we do with it?
Well, in principle, one can do just about anything. The metric encodes all
of the information about the geometry, and thus all of the information about
geodesics. Recall that any freely falling worldline (like, say, that of an orbiting
planet) is a geodesic. So, one thing that can be done is to compute the orbits of
the planets. Another would be to compute various gravitational time dilation
effects.

Having arrived at the Schwarzschild solution, we are finally at the point where
Einstein’s ideas have a lot of power. They now predict the curvature around
any massive object (the sun, the earth, the moon, etc.). So, Einstein started
looking for predictions that could be directly tested by experiment to check that
he was actually right. This makes an interesting contrast with special relativity,
in which quite a bit of experimental data was already available before Einstein
constructed the theory. In the case of GR, Einstein was guided for a long time by
a lot of intuition (i.e., guesswork) and, for the most part, the experiments would
only be done later, after he had constructed the theory. Recall that although
we have mentioned a few pieces of experimental evidence already (such as the
Pound-Rebke and GPS experiments) these occurred only in 1959 and in the
1990’s! Einstein finished developing General Relativity in 1916 and certainly
wanted to find an experiment that could be done soon after.

8.5.1 The planet Mercury

We have seen that Einstein’s theory of gravity agrees with Newton’s when the
gravitational fields are weak (i.e., far away from any massive object). But,
the discrepancy increases as the field gets stronger. So, the best place (around
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here) to look for new effects is close to the sun. One might therefore start by
considering the orbit of Mercury.

Actually, there is an interesting story about Mercury and its orbit. Astronomers
had been tracking the motion of the planets for hundreds of years. Ever since
Newton, they had been comparing these motions to what Newton’s law of grav-
ity predicted.

The agreement was incredible. In the early 1800’s, they had found small dis-
crepancies (30 seconds of arc in 10 years) in the motion of Uranus. For awhile
people thought that Newton’s law of gravity might not be exactly right. How-
ever, someone then had the idea that maybe there were other objects out there
whose gravity affected Uranus. They used Newton’s law of gravity to predict
the existence of new planets: Neptune, and later Pluto. They could even tell
astronomers where to look for Neptune within about a degree of angle on the
sky.

However, there was one discrepancy with Newton’s laws that the astronomers
could not explain. This was the ‘precession’ of Mercury’s orbit. The point is
that, if there were nothing else around, Newton’s law of gravity would say that
Mercury would move in a perfect ellipse around the sun, retracing its path over,
and over, and over...

Sun

Mercury
Of course, there are small tugs on Mercury by the other planets that modify
this behavior. However, the astronomers knew how to account for these effects.
Their results seemed to say that, even if the other planets and such were not
around, Mercury would do a sort of spiral dance around the sun, following a
path that looks more like this:

Sun

Mercury

Ellipse 
does
not close

Here, I have drawn the ellipse itself as rotating (a.k.a. ‘precessing’) about the
sun. After all known effects had been taken into account, astronomers found
that Mercury’s orbit precessed by an extra 43 seconds of arc per century. This is
certainly not very much, but the astronomers already understood all of the other
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planets to a much higher accuracy. So, what was going wrong with Mercury?
Most astronomers thought that it must be due to some sort of gas or dust
surrounding the Sun (a big ‘solar atmosphere’) that was somehow affecting
Mercury’s orbit.

However, Einstein knew that his new theory of gravity would predict a preces-
sion of Mercury’s orbit for two reasons. First, he predicted a slightly stronger
gravitational field (since the energy in the gravitational field itself acts as a
source of gravity). Second, in Einstein’s theory, space itself is curved and this
effect will also make the ellipse precess (though, since the velocity of mercury is
small, this effect turns out to be much smaller than the one due to the stronger
gravitational field).

The number that Einstein calculated from his theory was 43 seconds of arc per
century. That is, his prediction agreed with the experimental data to better
than 1%! Clearly, Einstein was thrilled.

This was big news. However, it would have been even bigger news if Einstein had
predicted this result before it had been measured. Physicists are always skeptical
of just explaining known effects. After all, maybe the scientist (intentionally or
not) fudged the numbers or the theory to get the desired result? So, physicists
tend not to really believe a theory until it predicts something new that is then
verified by experiments. This is the same sort of idea as in double blind medical
trials, where even the researchers don’t know what effect they want a given pill
to have on a patient!

8.5.2 The Bending of Starlight

Luckily, Einstein had an idea for such an effect and now had enough confidence
in his theory to push it through. The point is that, as we have discussed, light
will fall in a gravitational field. For example, a laser beam fired horizontally
across the classroom will be closer to the ground on the side where it hits the
far wall it was when it left the laser.

Similarly, a ray of light that goes skimming past a massive object (like the sun)
will fall a bit toward the sun. The net effect is that this light ray is bent.
Suppose that the ray of light comes from a star. What this means in the end
is that, when the Sun is close to the line connecting us with the star, the star
appears to be in a slightly different place than when the Sun is not close to that
light ray. For a light ray that just skims the surface of the Sun, the effect is
about .875 seconds of arc.

Sun actual path ‘falls’ toward the Sun

star appears to be
here

earthactual star



220 CHAPTER 8. GENERAL RELATIVITY AND CURVED SPACETIME

However, this is not the end of the story. It turns out that there is also another
effect which causes the ray to bend. This is due to the effect of the curvature
of space on the light ray. This effect turns out to be exactly the same size as
the first effect, and with the same sign. As a result, Einstein predicted a total
bending angle of 1.75 seconds of arc – twice what would come just from the
observation that light falls in a gravitational field.

This is a tricky experiment to perform, because the Sun is bright enough that
any star that close to the sun is very hard to see. One solution is to wait for
a solar eclipse (when the moon pretty much blocks out the light from the sun
itself) and then one can look at the stars nearby. Just such an observation was
performed by the British physicist Sir Arthur Eddington in 1919. The result
indicated a bending angle of right around 2 seconds of arc. More recently, much
more accurate versions of this experiment have been performed which verify
Einstein’s theory to high precision. See Theory and experiment in gravitational
physics by Clifford M. Will, (Cambridge University Press, New York, 1993)
QC178.W47 1993 for a modern discussion of these issues.

8.5.3 Other experiments: Radar Time Delay

The bending of starlight was the really big victory for Einstein’s theory. How-
ever, there are two other classic experimental tests of general relativity that
should be mentioned. One of these is just the effect of gravity on the frequency
of light that we have already discussed. As we said before, this had to wait
quite a long time (until 1959) before technology progressed to the stage where
it could be performed.

The last major class of experiments is called ‘Radar Time delay.’ These turn
out to be the most accurate tests of Einstein’s theory, but they had to wait
until even more modern times. The point is that the gravitational field effects
not only the path through space taken by a light ray, but that it also effects
the time that the light ray takes to trace out that path. As we have discussed
once or twice before, time measurements can be made extremely accurately. So,
these experiments can be done to very high precision.

The idea behind these experiments is that you then send a microwave (a.k.a.
radar) signal (which is basically a long wavelength light wave) over to the other
side of the sun and back. You can either bounce it off a planet (say, Venus) or a
space probe that you have sent over there for just this purpose. If you measure
the time it takes for the signal to go over and then return, this time is always
longer than it would have been in flat spacetime. In this way, you can carefully
test Einstein’s theory. For more details, see fig. 7.3 of Theory and experiment
in gravitational physics by Clifford M. Will, (Cambridge University Press, New
York, 1993) QC178.W47 1993. There is a copy in the Physics Library. A less
technical version of this book is Was Einstein Right? putting General Relativity
to the test by Clifford M. Will (Basic Books, New York, 1993), also available in
the Physics Library. You can also order a copy of this book from Amazon.com
for about $15.
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8.6 Homework Problems

The following problems provides practice in working with curved spaces (i.e.,
not space-times) and the corresponding metrics.

8-1. In this problem, you will explore four effects associated with curvature on
each of 5 different spaces. The effects are subtle, so think about them
thoroughly, and be sure to read the instructions carefully at each stage.
The best way to work these problems is to actually build paper models
(say, for the cone and cylinder) and to try to hold a sphere and a funnel
shape in your hand while you work on those parts of this problem. I also
suggest that you review the discussion in section 8.2 before beginning this
problem.

The five spaces are:

i) Sphere ii) Cylinder iii) Cone iv) Double Funnel

and

v) This last one (see below) is a drawing by M.C. Escher. It is intended
to represent a mathematical space first constructed by Lobachevski. The
idea is that this is a ‘map’ of the space, and that all of the white fish
below (and, similarly, all of the black fish) are really the same size and
shape. They only look different because the geometry of the space being
described does not match the (flat) geometry of the paper. This is just
the phenomenon that we see all the time when we try to draw a flat map
of the round earth. Inevitably, the continents get distorted – Greenland
for example looks enormous on most maps of North America even though
it is actually rather small.
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A careful study of the map below shows that the Lobachevskian space is
homogeneous, meaning that every small region of this space is the same as
every other small region of this space even even if it looks different on the
map. This is just the statement that all of the fish are really the same size
and shape even if some of them look shrunken and twisted. The sphere
is also a homogeneous space, although the Lobachevskian space is not a
sphere.

In particular, note the following properties:

I) As you can see in the middle, each fish is bordered by a set of straight
(geodesic) line segments. The ‘spine’ of each fish is also a geodesic. You
can find longer geodesics in the Lobachevskian space by tracing through a
series of these short geodesics (spines and edges). Remember though not
to insert any corners when you connect one short geodesic to the next.

II) Since the fish are all the same (real) size, you can use them as rulers to
measure lengths. Give all lengths below in terms of ‘fish.’ As an example,
you might work with a circle of radius three fish.

III) Since, for example, the nose of every black fish is the same shape, it
represents the same (actual) angle everywhere you see a black fish nose
on the diagram. Use the center part of the diagram (where there is no
distortion to figure out how much this angle actually is). Then you can
use the fish as protractors to measure angles in other parts of the diagram.

For each of the spaces above, answer the following questions:

a) Do circles satisfy C > 2πR, C < 2πR, or C = 2πR? Important
note: What I mean here by a circle (at least for i- iv) is the following:
suppose you cut a piece of string of length R, tying one end to a pencil
and another end to a thumbtack. A circle is what you get when you use
the tack to attach the string to the surface and then move the pencil
around in such a way that the string always remains in full contact
with the surface. The radius R of this circle is the length of the string
(again, assuming that the string always remains in full contact with
the surface), and the circumference C is the length of the curve traced
out by the pencil. You may want to use pieces of string to measure the
radius and circumference.

?? Note that circles drawn in this way cannot go “all the way around”
the hole in the cone, cylinder, or double funnel.

For the Lobachevskian space (v), the idea is the same. A circle consists
of a set of point for whom the real distance to the center is the same.
So, in this context, it is the set of points that are, say, 2 fish lengths
away from some center point.

b) Do the (interior) angles of triangles add up to more than 180 degrees,
less than 180 degrees, or exactly 180 degrees? Important note: Let us
define a triangle to be a closed figure with three sides, each of which is
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a geodesic. For this part, consider only triangles which can be shrunk
down to zero size without taking the triangle out of the surface. (For
example, the triangle should not loop all the way around the hole in
the cylinder, cone, or double funnel below.)

c) Do initially parallel ‘geodesics’ bend toward each other, bend away from
each other, or remain parallel? Important note: The phrase initially
parallel is important here. Certainly, two geodesics that start out point-
ing toward each other will move toward each other, and similarly for
geodesics that initially point apart. What exactly do I mean by initially
parallel, you may ask? Suppose that two geodesics are both orthogonal
to a third geodesic A as shown below:

Geodesic A

Other two geodesics,
‘initially’ parallel at geodesic A

Then, we will say that, at A, the two geodesics are parallel. For ex-
ample, if geodesics on our surface looked like the ones above, we would
say that initially parallel geodesics diverge from each other. Note that
this is true whether we follow the geodesics up the digram, or down.
Note that the geodesics are parallel only at A so that (since we wish
to consider only ‘initially parallel’ geodesics) we may talk about them
curving toward or away from each other only relative to what they are
doing at A.

d) Suppose that you ‘parallel transport’ an arrow (vector) around a triangle
in the surface, does the arrow rotate? If you trace the loop clockwise on
the surface, does the arrow rotate clockwise or counter-clockwise? The
full discussion of parallel transport was in section 8.2. Briefly, though,
let us recall that to parallel transport a vector along a geodesic (such as
along one side of a triangle) means to carry the vector with you without
rotating it (relative to you). This is because a geodesic is a straight line.
Thus, if your vector starts off pointing straight ahead, it will always
point straight ahead. Similarly, if the arrow starts off pointing 30o to
your right, it will always point 30o to your right. Note, however, that
the angle between your arrow and the path you are following will change
when you go around a corner since the path is not straight there: the
path turns although the arrow does not. For the Lobachevskian space,
you will need to use the fish as protractors to keep track of the angle
between the arrow being carried and the path being followed.

8-2. This problem will give you some practice with the mathematical descrip-
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tion of curved surfaces. Remember that if r is constant along a curve, then
the change dr in r is zero: dr = 0 for that curve. Similarly, if θ is constant
along a curve, then we have dθ = 0. The length of a curve is given by
L =

∫
ds.

What this means is that, for each curve below where you want to find the
length, you should first find ds in terms of dr or dθ (whichever one is not
zero) and then do the appropriate (definite) integral. You may also need
to think carefully about the limits of integration.

a) Consider the following two-dimensional geometries:

i) ds2 = dr2 + a2 sin2(r/a)dθ2

and

ii) ds2 = dr2 + a2 sinh2(r/a)dθ2.

Here, a is some fixed constant; i.e., a is some given number for each
geometry. The above expressions refer to ‘polar’ coordinate systems in
which the ‘radius’ r starts at zero and the ‘angle’ θ runs from 0 to 2π.
That is to say, we could draw a flat picture of each geometry that looks
like:

r=1

r=2

r=3
r=4

θ =0
θ = 2π

θ = π/4

θ = π/2

θ = 3π/2

θ = π

θ = 5π/4

θ = 3π/2

θ = 7π/4

However we should remember that, as with the Escher picture for prob-
lem (1), we will not be able to measure distances and angles off of this
picture with a ruler and protractor. This picture is only a very qual-
itative one and does in any way represent the actual distances in the
surface.

The Question: For each geometry above, what is the circumference
of a circle of radius R around the origin? Note: I would like an
expression C(R) valid for any R, not just for the case r = 4
shown above. For which geometry is the relation between C and R
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more like a sphere, and for which is it more like the Lobachevskian
geometry?

b) By using a different set of coordinates (ρ, θ), instead of (r, θ), I can
write these geometries in a different way. The angle θ still goes from 0
to 2π when you go around the circle once.

The two metrics below represent the same two geometries as the two
metrics in part A. Which is which? Hint: Compute the radius R of a
circle with ρ = constant around the origin. Remember that the radius
is the actual distance of the circle from the center, not just the value of
the radial coordinate. This means that it is given by the actual length
of an appropriate line. If the circumference is C, what is the radius R?

i) ds2 = a2 dρ2

a2−ρ2 + ρ2dθ2.

ii) ds2 = a2 dρ2

a2+ρ2 + ρ2dθ2.

c) Show that the geometries in (2b) are the same as the geometries in
(2a), but just expressed in terms of different coordinates. To do so,
rewrite metrics (2(b)i) and (2(b)ii)) in terms of the distance R from
the origin to the circle at constant ρ and then compare them with

(2(a)i) and (2(a)ii). Remember that dρ =
(
dρ
dR

)
dR =

(
dR
dρ

)−1

dR.



Chapter 9

Black Holes

Einstein: XXVIII and XXIX
In the last two chapters we have come to understand many features of General
Relativity. We have grown used to gravitational time dilation and curved space-
time and we have seen how these are described through the spacetime metric.
We have also learned something about the dynamics of the gravitational field
and how spacetime curvature is tied to mass and energy. We have even begun
to study the so-called ‘Schwarzschild metric’ which gives the exact description
of curved spacetime outside of a round object.

In this chapter we will take the time to explore the Schwarzschild metric in
more detail. We will discover an intriguing feature of this metric known as the
horizon and, in this way, we will be led into a study of black holes. Although
black holes are one of the most surprising objects in general relativity, it turns
out that all of the features of the simplest round black holes can be extracted
directly from the Schwarzschild metric. We will follow this approach for most of
the chapter, with a few extra comments at the end on some more complicated
sorts of black holes.

9.1 Investigating the Schwarzschild Metric

Let’s take a look at the Schwarzschild metric in more detail. We computed
the gravitational effect on time dilation back in section 7.4.2. However, in
this computation we needed to know the gravitational acceleration g(l). We
could of course use Newton’s prediction for g(l), which experiments tell us is
approximately correct near the earth. However, in general we expect this to be
the correct answer only for weak gravitational fields. On the other hand, we
know that the Schwarzschild metric describes the gravitational field around a
spherical object even when the field is strong. So, what we will do is to first
use the Schwarzschild metric to compute the gravitational time dilation effect
directly. We will then be able to use the relation between this time dilation
and the gravitational acceleration to compute the corrections to Newton’s law
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of gravity.

9.1.1 Gravitational Time Dilation from the Metric

Suppose we want to calculate how clocks run in this gravitational field. This
has to do with proper time dτ , so we should remember that dτ2 = −ds2. For
the Schwarzschild metric we have:

dτ2 = −ds2 =

(
1− Rs

r

)
dt2 − dr2

1− Rs

r

− r2(dθ2 + sin2 θdφ2). (9.1)

The Schwarzschild metric describes any spherically symmetric gravitational field
in the region outside of all the matter. So, for example, it gives the gravitational
field outside of the earth. In using the Schwarzschild metric, remember that
Rs = 2MG/c2.

Let’s think about a clock that just sits in one place above the earth. It does not
move toward or away from the earth, and it does not go around the earth. It
just ‘hovers.’ Perhaps it sits in a tower, or is in some rocket ship whose engine
is tuned in just the right way to keep it from going either up or down. Such a
clock is called a static clock since, from it’s point of view, the gravitational field
does not change with time.

Consider the worldline of this clock through spacetime. Along this worldline,
what is dr? How about dθ and dφ?

Since r, θ, and φ do not change, we have dr = dθ = dφ = 0. So, on our clock’s
worldline we have just: dτ2 =

(
1− Rs

r

)
dt2. That is,

dτ =

√
1− Rs

r
dt. (9.2)

Note that if the clock is at r =∞ then the square root factor is equal to 1. So,

we might write dτ∞ = dt. In other words, dτ =
√

1− Rs

r dτ∞, or,

∆τ

∆τ∞
=

√
1− Rs

r
. (9.3)

As saw before, clocks higher up run faster. Now, however, the answer seems to
take a somewhat simpler form than it did back in section 7.4.2, when we were
using only the Newtonian approximation.

9.1.2 Corrections to Newton’s Law

Note that the Schwarzschild geometry is a time independent gravitational field.
This means that we can use our results from section 7.4.2 to relate the rate at
which various clocks run to the acceleration of freely falling observers. In other
words, we can use this to compute the corrections to Newton’s law of gravity.
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Recall the relation (equation 7.16) is

∆τb
∆τa

= exp

(∫ b

a

α(s)

c2
ds

)
. (9.4)

Here, α(s) is the acceleration of a static clock relative to a freely falling clock at
s, and s measures distance. To compare this with our formula above, we want
to take a = s and b =∞. Taking the ln of both sides gives us

ln

(
τ(s)

τ∞

)
=

∫ s

∞

α(s)

c2
ds. (9.5)

Now, taking a derivative with respect to s we find:

α(s)

c2
= − d

ds
ln

(
τ(s)

τ∞

)
. (9.6)

Now, it is important to know what exactly s measures in this formula. Recall
that when we derived this result we were interested in the actual physical height
of a tower. As a result, this s describes proper distance, say, above the surface
of the earth.

On the other hand, equation (9.3) is given in terms of r which, it turns out,
does not describe proper distance. To see this, let’s think about the proper
distance ds along a radial line with dt = dθ = dφ = 0. In this case, we have

ds2 = dr2

1−Rs/r
, or ds = dr√

1−Rs/r
, and

dr

ds
=
√

1−Rs/r. (9.7)

However we can deal with this by using the chain rule:

α = c2
d

ds
ln

(
τ(s)

τ∞

)
= c2

(
dr

ds

)
d

dr
ln

(
τ(r)

τ∞

)
. (9.8)

Going through the calculation yields:

α = c2
√

1−Rs/r
d

dr
ln
√

1−Rs/r

= c2
√

1−Rs/r
1

2

d

dr
ln(1−Rs/r)

=
c2

2

√
1−Rs/r

1

1−Rs/r
+Rs
r2

=
c2

2
√

1−Rs/r
Rs
r2
. (9.9)

Note that for r � Rs, we have α ∼ c2

2
Rs

r2 = MG
r2 . This is exactly Newton’s

result.
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However, for small r, α is much bigger. In particular, look at what happens
when r = RS . There we have α(Rs) = ∞! So, at r = Rs, it takes an infinite
proper acceleration for a clock to remain static. A static person at r = Rs
would therefore feel infinitely heavy. This is clearly a various special value of
the radius coordinate, r. This value is known as the Schwarzschild radius.

Now, let’s remember that the Schwarzschild metric only gives the right answer
outside of all of the matter. Suppose then that the actual physical radius of
the matter is bigger than the associated Schwarzschild radius (as is the case for
the earth and the Sun). In this case, you will not see the effect described above
since the place where it would have occurred (r = Rs) in inside the earth where
the matter is non-zero and the Schwarzschild metric does not apply.

But what if the matter source is very small so that its physical radius is less
than Rs? Then the Schwarzschild radius Rs will lie outside the matter at a
place you could actually visit. In this case, we call the object a “black hole.”
You will see why in a moment.

9.2 On Black Holes

Objects that are smaller than their Schwarzschild radius (i.e., black holes) are
one of the most intriguing features of general relativity. We now proceed to
explore them in some detail, discussing both the formation of such objects and
a number of their interesting properties. Although black holes may seem very
strange at first, we will soon find that many of their properties are in quite
similar to features that we encountered in our development of special relativity
some time ago.

9.2.1 Forming a black hole

A question that often arises when discussing black holes is whether such objects
actually exist or even whether they could be formed in principle. After all, to
get Rs = 2MG/c2 to be bigger than the actual radius of the matter, you’ve
got to put a lot of matter in a very small space, right? So, maybe matter just
can’t be compactified that much. In fact, it turns out that making black holes
(at least big ones) is actually very easy. In order to stress the importance of
understanding black holes and the Schwarzschild radius in detail, we’ll first talk
about just why making a black hole is so easy before going on to investigate the
properties of black holes in more detail in section 9.2.2.

Suppose we want to make a black hole out of, say, normal rock. What would
be the associated Schwarzschild radius? We know that Rs = 2MG/c2. Suppose
we have a big ball of rock or radius r. How much mass in in that ball? Well,
our experience is that rock does not curve spacetime so much, so let’s use the
flat space formula for the volume of a sphere: V = 4

3πr
3. The mass of the ball
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of rock is determined by its density, ρ, which is just some number1. The mass
of the ball of rock is therefore M = ρV = 4π

3 ρr
3. The associated Schwarzschild

radius is then Rs = 8πG
3c2 ρr

3.

Now, for large enough r, any cubic function is bigger than r. In particular, we

get r = Rs at r =
(

3c2

8πGρ

)1/2

and there is a solution no matter what the value

of ρ! So, a black hole can be made out of rock, without even working hard to
compress it more than normal, so long as we just have enough rock. Similarly,
a black hole could be made out of people, so long as we had enough of them –
just insert the average density of a person in the formula above. A black hole
could even be made out of very diffuse air or gas, so long so as we had enough
of it. For air at normal density2, we would need a ball of air 1013 meters across.
For comparison, the Sun is 109 meters across, so we would need a ball of gas
10, 000 times larger than the Sun (in terms of radius).

Black holes in nature seem to come come in two basic kinds. The first kind
consists of small black holes whose mass is a few times the mass of the Sun.
These form at the end of a stars life cycle when nuclear fusion no longer produces
enough heat (and thus pressure) to hold up the star. The star then collapses and
compresses to enormous densities. Such collapses are accompanied by extremely
violent processes called supernovae. The second kind consists of huge black
holes, whose mass is 106 (a million) to 1010 (ten billion) times the mass of the
sun. Some black holes may be even larger.

Astronomers tell us that there seems to be a large black hole at the center of
every galaxy, or almost every galaxy – we’ll talk about this more in section
9.5.1. These large black holes are much easier to form than are small ones and
do not require especially high densities. To pack the mass of 106 suns within
the corresponding Schwarzschild radius does not require a density much higher
than that of the Sun itself (which is comparable to the density of water or rock).
One can imagine such a black hole forming in the center of a galaxy, where the
stars are densely packed, just by having a few million stars wander in very close
together. The larger black holes are even easier to make: to pack a mass of ten
billion suns within the corresponding Schwarzschild radius requires a density of
only 10−5 times the density of air! It could form from just a very large cloud of
very thin gas.

9.2.2 Matter within the Schwarzschild radius

Since black holes exist (or at least could easily be made) we’re going to have to
think more about what is going on at the Schwarzschild radius. At first, the
Schwarzschild radius seems like a very strange place. There, a rocket would

1More precisely, the density is a function of the pressure that the rock is under, and this
pressure does increase as we pile rocks on top of each other. Nevertheless, for this discussion
let us assume that we have a very tough rock that does not compress under pressure. Using
compressible rock would only make it easier to form a black hole since this would put more
rock inside a smaller radius.

2Say, at STP.
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require an infinite proper acceleration to keep from falling in. So what about
the matter that first formed the black hole itself? Where is that matter and
what is it doing?

Let’s go through this step by step. Let us first ask if there can be matter sitting
at the Schwarzschild radius (as part of a static star or ball or gas). Clearly
not, since the star or ball of gas cannot produce the infinite force that would
be needed to keep its atoms from falling inward. The star or ball of gas must
contract. Even more than this, the star will be already be contracting when it
reaches the Schwarzschild radius and, since gravitation produces accelerations,
it must cause this rate of contraction to increase.

Now, what happens when the star becomes smaller than its Schwarzschild ra-
dius? The infinite acceleration of static observers at the Schwarzschild radius
suggests that the Schwarzschild metric may not be valid inside Rs. As a result
we cannot yet say for sure what happens to objects that have contracted within
Rs. However, we would certainly find it odd if the effects of gravity became
weaker when the object was compressed. Thus, since the object has no choice
but to contract (faster and faster) when it is of size Rs, one would expect smaller
objects also to have no choice but accelerated contraction!

It now seems that in a finite amount of time the star must shrink to an object
of zero size, a mathematical point. This most ‘singular’ occurrence (to quote
Sherlock Holmes) is called a ‘singularity.’ But, once it reaches zero size, what
happens then? This is an excellent question, but we are getting ahead of our-
selves. For the moment, let’s go back out to the Schwarzschild radius and find
out what is really going on there.

9.2.3 The Schwarzschild radius and the Horizon

Not only does a clock require an infinite acceleration to remain static at the
Schwarzschild radius, but something else interesting happens there as well. Let’s
look back at the formula we had for the time measured by a static clock:

∆τ(r)

∆τ∞
=
√

1−Rs/r. (9.10)

Notice what happens at at the Schwarzschild radius. Since r = Rs, we have
∆τ = 0. Our clock stops, and no time passes at all.

Now, this is certainly very weird, but perhaps it rings a few bells? It should
sound vaguely familiar.... clocks running infinitely slow at a place where the
acceleration required to keep from falling becomes infinite.... You may recall that
the same thing occurred for the acceleration horizons back in special relativity.

This gives us a natural guess for what is going on near the Schwarzschild radius.
In fact, let us recall that any curved spacetime is locally flat. So, if our frame-
work holds together at the Schwarzschild radius we should be able to match the
region near r = Rs to some part of Minkowski space. Perhaps we should match
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it to the part of Minkowski space near an acceleration horizon? Let us guess
that this is correct and then proceed to check our answer.

Z

s

c  /sα = 2

We will check our answer using the equivalence principle. The point is that an
accelerating coordinate system in flat spacetime contains an apparent gravita-
tional field. There is some nontrivial proper acceleration α that is required to
remain static at each position. Furthermore, this proper acceleration is not the
same at all locations, but instead becomes infinitely large as one approaches the
horizon. What we want to do is to compare this apparent gravitational field
(the proper acceleration α(s), where s is the proper distance from the horizon)
near the acceleration horizon with the corresponding proper acceleration α(s)
required to remain static a small proper distance s away from the Schwarzschild
radius.

If the two turn out to be the same then this will mean that static observers have
identical experiences in both cases. But, the experiences of static observers are
related to the experiences of freely falling observers. Thus, if we then consider
freely falling observers in both cases, they will also describe both situations in
the same way. It will then follow that physics near the event horizon is identical
to physics near an acceleration horizon – something that we understand well
from special relativity.

Recall that in flat spacetime the proper acceleration required to maintain a
constant proper distance s from the acceleration horizon (e.g., from event Z) is
given (see section 5.1.3) by

α = c2/s. (9.11)

Now, so far this does not look much like our result (9.9) for the black hole.
However, we should again recall that r and s represent different quantities.
That is, r does not measure proper distance. Instead, we have
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ds =
dr√

1−Rs/r
=

√
r

r −Rs
dr. (9.12)

I have rewritten this formula in this way because we only want to study what
happens near the Schwarzschild radius. In other words, we are interested in the
behavior when r − Rs is small. To examine this, it is useful to introduce the
quantity ∆ = r − Rs. We can then write the above formula as: ds =

√
r
∆d∆.

Integrating, we get

s =

∫ ∆

0

√
r

∆
d∆. (9.13)

This integral is hard to perform exactly since r = Rs + ∆ is a function of ∆.
However, since we are only interested in small ∆ (for our local comparison), r
doesn’t differ much from Rs. So, we can simplify our work and still maintain
sufficient accuracy by replacing r in the above integral by Rs. The result is:

s ≈
√
Rs

∫ ∆

0

d∆√
∆

= 2
√
Rs∆. (9.14)

Let us use this to write α for the black hole (let’s call this αBH) in terms of the
proper distance s. From above, we have

αBH =
c2

2
√

1−Rs/r
Rs
r2

=
c2

2

√
r

r −Rs
Rs
r2

=
c2

2

1√
∆

r√
r

Rs
r2

≈ c2

2
√

∆Rs
=
c2

s
. (9.15)

Note that this is identical to the expression for α near an acceleration horizon.
It worked! Thus we can conclude:

Near the Schwarzschild radius, the black hole spacetime is just the same as
flat spacetime near an acceleration horizon.

The part of the black hole spacetime at the Schwarzschild radius is known as
the horizon of the black hole.

9.2.4 Going Beyond the Horizon

We are of course interested in what happens when we go below the horizon of
a black hole. However, the connection with acceleration horizons tells us that
we will need to be careful in investigating this question. In particular, so far
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we have made extensive use of static observers – measuring the acceleration
of freely falling frames relative to them. Static observers were also of interest
when discussing acceleration horizons – so long as they were outside of the
acceleration horizons. Recall that the past and future acceleration horizons
divided Minkowski space into four regions: static worldlines did not enter two
of these at all, and in another region static worldlines would necessarily move
‘backwards in time.’ The fourth region was the normal ‘outside’ region, and we
concluded that true static observers could only exist there.

We have seen that the spacetime near the black hole horizon is just like that
near an acceleration horizon. As a result, there will again be no static observers
below the horizon. We suspected this earlier based on the idea that it takes
infinite acceleration to remain static at the horizon and we expected the gravi-
tational effects to be even stronger deeper inside. Based on our experience with
acceleration horizons, we now begin to see how this may in fact be possible.
It has become clear that we will need to abandon static observers in order to
describe the region below the black hole horizon.

Past Acceleration Horizon

Future Acceleration Horizon

Signals from this region can

never reach the rocket

The Light rays from
this event never

catch up with the rocket

The rocket can never
send signals to this region

(‘‘end of the world’’)

Suppose then that we think about freely falling observers instead. As we know,
freely falling observers typically have the simplest description of spacetime. Us-
ing the connection with acceleration horizons, we see immediately how to draw
a (freely falling) spacetime diagram describing physics near the Schwarzschild
radius. It must look just like our diagram above for flat spacetime viewed from
an inertial frame near an acceleration horizon! Note that r = Rs for the black
hole is like s = 0 for the acceleration horizon since α→∞ in both cases.

The important part of this is that s = 0 is not only the event Z, but is in fact
the entire horizon! This is because events separated by a light ray are separated
by zero proper distance. It also follows from continuity since, arbitrarily close to
the light rays shown below we clearly have a curve of constant r for r arbitrarily
close to Rs. So, r = Rs is also the path of a light ray, and forms a horizon in the
black hole spacetime. In the black hole context, the horizon is often referred to
as the ‘event horizon3 of the black hole.’

3Technically, relativists distinguish various types of horizons. However, all of these horizons
coincide for the static round black hole we are discussing. The term ‘event horizon’ is common
in popular treatments of black holes, so I wanted to be sure to make this connection here.
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Horizon
Future

Past Horizon

r = R

r = R s

s

Right
Exterior
r oo

Left

?
Exterior

Future 
Interior

Past
Interior

r = Rs

9.2.5 A summary of where we are

Let us review our discussion so far. We realized that, so long as we were outside
the matter that is causing the gravitational field, any spherically symmetric
(a.k.a. ‘round’) gravitational field is described by the Schwarzschild metric.
This metric has a special place, at r = Rs, the ‘Schwarzschild Radius.’ Any
object which is smaller than its Schwarzschild Radius will be surrounded by an
event horizon, and we call such an object a black hole.

If we look far away from the black hole, at r � Rs, then the gravitational field is
much like what Newton would have predicted for an object of that mass. There
is of course a little gravitational time dilation, and a little curvature4, but not
much. Indeed, the Schwarzschild metric describes the gravitational field not
only of a black hole, but of the earth, the Sun, the moon, and any other round
object. However, for those more familiar objects, the surface of the object is at
r � Rs. For example, on the surface of the Sun r/Rs ∼ 5× 105.

So, far from a black hole, objects can orbit just like planets orbit the Sun. By
the way, remember that orbiting objects are freely falling – they do not require
rocket engines or other forces to keep them in orbit. However, suppose that we
look closer in to the horizon. What happens then?

In one of the homework problems, you will see that something interesting hap-
pens to orbiting objects when they orbit at r = 3Rs/2. There, an orbiting object
experiences no proper time: ∆τ = 0. This means that the orbit at this radius is
a lightlike path. In other words, a ray of light will orbit the black hole in a circle

4e.g., dC/dR is a bit less than 2π.
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at r = 3Rs/2. For this reason, this region is known as the ‘photon sphere.’ This
makes for some very interesting visual effects if you would imagine traveling to
the photon sphere. A few years ago NASA funded a guy to make some nice
computer generated movies showing how this would look. He hasn’t included
the effect of gravity on the color of light, but otherwise what he has done gives
a very good impression of what you would see. You can find his movies5 at
(http://antwrp.gsfc.nasa.gov/htmltest/rjn bht.html).

Photon Sphere
r =        Rs

3

2

Horizon

r =   R s

This is not to say that light cannot escape from the photon sphere. The point
is that, if the light is moving straight sideways (around the black hole) then
the black hole’s gravity is strong enough to keep the light from moving farther
away. However, if the light were directed straight outward at the photon sphere,
it would indeed move outward, and would eventually escape.

And what about closer in, at r < 3Rs/2? Any circular orbit closer in is spacelike,
and represents an object moving faster than the speed of light. So, given our
usual assumptions about physics, nothing can orbit the black hole closer than
r = 3R2/2. Any freely falling object that moves inward past the photon sphere
will continue to move to smaller and smaller values of r. However, if it ceases
to be freely falling (by colliding with something or turning on a rocket engine)
then it can still return to larger values of r.

Now, suppose that we examine even smaller r, and still have not run into the
surface of an object that is generating the gravitational field. If we make it all
the way to r = Rs without hitting the surface of the object, we find a horizon
and we call the object a black hole.

Recall that even though it is at a constant value of r, the horizon contains the
worldlines of outward directed light rays. To see what this means, imagine an
expanding sphere of light (like one of the ones produced by a firecracker) at
the horizon. Although it is moving outward at the speed of light (which is
infinite boost parameter.), the sphere does not get any bigger. The curvature
of spacetime is such that the area of the spheres of light do not increase. A
spacetime diagram looks like this:

5The movies are in MPEG format, so if you don’t already have an MPEG player then you
may need to install one on your computer to see them.
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r = R

r = R s

s

r oo
r = Rs t

Here, I have used arrows to indicate the direction in which the time coordinate
t increases on this diagram.

Not only do light rays directed along the horizon remain at r = Rs, any light ray
at the horizon which is directed a little bit sideways (and not perfectly straight
outward) cannot even stay at r = Rs, but must move to smaller r. The diagram
below illustrates this by showing the horizon as a surface made up of light rays.
If we look at a light cone emitted from a point on this surface, only the light
ray that is moving in the same direction as the rays on the horizon can stay in
the surface. The other light rays all fall behind the surface and end up inside
the black hole (at r < Rs).

Similarly, any object of nonzero mass requires an infinite acceleration (directed
straight outward) to remain at the horizon. With any finite acceleration, the
object falls to smaller values of r. At any value of r less than Rs no object
can ever escape from the black hole. This is clear from the above spacetime
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diagram, since to move from the future interior to, say, the right exterior the
object would have to cross the light ray at r = Rs, which is not possible.

Note that we could have started with this geometric insight at the horizon and
used it to argue for the existence of the photon sphere: Light aimed sideways
around the black hole escapes when started far away but falls in at the horizon.
Somewhere in the middle must be a transition point where the light neither
escapes nor falls in. Instead, it simply circles the black hole forever at the same
value of r.

9.3 Beyond the Horizon

Of course, the question that everyone would like to answer is “What the heck is
going on inside the black hole?” To understand this, we will turn again to the
Schwarzschild metric. In this section we will explore the issue in quite a bit of
detail and obtain several useful perspectives.

9.3.1 The interior diagram

To make things simple, let’s suppose that all motion takes place in the r, t plane.
This means that dθ = dφ = 0, and we can ignore those parts of the metric. The
relevant pieces are just

ds2 = −(1−Rs/r)dt2 +
dr2

1−Rs/r
. (9.16)

Let’s think for a moment about a line of constant r (with dr = 0). For such
a line, ds2 = −(1 − Rs/r)dt2. The interesting thing is that, for r < Rs, this is
positive. Thus, for r < Rs, a line of constant r is spacelike. You will therefore
not be surprised to find that, near the horizon, the lines of constant r are just
like the hyperbolae that are a constant proper time from where the two horizons
meet. Below, I have drawn a spacetime diagram in a reference frame that is in
free fall near the horizon.
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r = Rs t

r = R s

t

r = Rs

r > R s

r < Rs

The coordinate t increases along these lines, in the direction indicated by the
arrows. This means that the t-direction is actually spacelike inside the black
hole. The point here is not that something screwy is going on with time inside
a black hole. Instead, it is merely that using the Schwarzschild metric in the
way that we have written it we have done something ‘silly’ and labelled a space
direction t. The problem is in our notation, not the spacetime geometry.

Let us fix this by changing notation when we are in this upper region. We
introduce t′ = r and r′ = t. The metric then takes the form

ds2 = −(1−Rs/t′)dr′2 +
dt′2

1−Rs/t′
. (9.17)

You might wonder if the Schwarzschild metric is still valid in a region where the
t direction is spacelike. It turns out that it is. Unfortunately, we were not able
to discuss the Einstein equations in detail. If we had done so, however, then
we could check this by directly plugging the Schwarzschild metric into equation
(8.15) just as we would to check that the Schwarzschild metric is a solution
outside the horizon.

Finally, notice that the lines above look just the like lines we drew to describe
the boost symmetry of Minkowski space associated with the change of reference
frames. In the same way, these lines represent a symmetry of the black hole
spacetime. After all, the lines represent the direction of increasing t = r′. But,
the Schwarzschild metric is completely independent of t = r′ – it depends only
on r = t′! So, sliding events along these lines and increasing their value of
t = r′ does not change the spacetime in any way. Outside of the horizon, this
operation moves events in time. As a result, the fact that it is a symmetry
says that the black hole’s gravitational field is not changing in time. However,
inside the horizon, the operation moves events in a spacelike direction. Roughly
speaking, we can interpret the fact that this is a symmetry as saying that the
black hole spacetime is the same at every place inside.

However, the metric does depend on r = t′, so the interior is dynamical.
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We have discovered a very important point: although the black hole spacetime
is independent of time on the outside, it does in fact change with time on the
inside. On the inside the only symmetry is one that relates different points in
space, it says nothing about the relationship between events at different times.

Now, you might ask just how the spacetime changes in time. Recall that on one
of the hyperbolae drawn above (in the future interior region) there is a symmetry
that relates all of the points in space. Also recall that the full spacetime is 3+1
dimensional and that for every point on the diagram above the real spacetime
contains an entire sphere of points. Even inside the horizon, the spacetime is
spherically symmetric Now, the fact the points on our hyperbola are related by
a symmetry means that the spheres are the same size (r) at each of these points!
What changes as we move from one hyperbola to another (‘as time passes’) is
that the size of the spheres (r) decreases. This is ‘why’ everything must move
to smaller r inside the black hole – the whole spacetime is shrinking!

To visualize what this means, it is useful to draw a picture of the curved space
of a black hole at some time. You began this process on a recent homework
assignment when you considered a surface of constant t (dt = 0) and looked at
circumference (C) vs. radius (R) for circles in this space6. You found that the
space was not flat, but that the size of the circles changed more slowly with
radius than in flat space. One can work out the details for any constant t slice
in the exterior (since the symmetry means that they are all the same!). Two
such slices are shown below. Note that they extend into both the ‘right exterior’
with which we are familiar and the ‘left exterior’, a region about which we have
so far said little7.

r = R s

r = Rs

constant t slice

another constant t slice

Ignoring, say, the θ direction and drawing a picture of r and φ (at the equator,
θ = π/2), any constant t slice (through the two “outside” regions) looks like

6Note that here we consider a different notion of a ‘moment of time’ than we used above
when used the surface of constant r inside the black hole. In general relativity (since there are
no global inertial frames) the notion of a ‘moment of time’ can be very general. Any spacelike
surface will do.

7The symmetry of the metric under r′ → −r′ (i.e., t → −t) tells us that the left exterior
region is a mirror image copy of the right exterior region.
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this:

Bridge
Region Rosen

Asmptotic Einstein-
Second

Region
Asmptotic
First

This is the origin of the famous idea that black holes can connect our universe
(right exterior) to other universes (left exterior), or perhaps to some distant
region of our own universe. If this idea bothers you, don’t worry too much: as
we will discuss later, the other end of the tunnel is not really present for the black
holes commonly found in nature. Note that the left exterior looks just like the
right exterior and represents another region ‘outside’ the black hole, connected
to the first by a tunnel. This tunnel is called a ‘wormhole,’ or ‘Einstein-Rosen
bridge.’

So, what are these spheres inside the black hole that I said shrink with time?
They are the ‘throat’ of the wormhole. Gravity makes the throat shrink, and
begin to pinch off. That is, if we draw the shape of space on each of the slices
numbered 0,1,2 below, they would look much like the Einstein-Rosen bridge
above, but with narrower and narrower necks as we move up the diagram.
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r = R s

r = Rs

1

2

3

3

2

1

Does the throat ever pinch off completely? That is, does it collapse to r = 0 in
a finite proper time? We can find out from the metric. Let’s see what happens
to a freely falling observer who falls from where the horizons cross (at r = Rs)
to r = 0 (where the spheres are of zero size and the throat has collapsed). Our
question is whether the proper time measured along such a worldline is finite.
Consider an observer that starts moving straight up the diagram, as indicated
by the dashed line in the figure below. We first need to figure out what the full
worldline of the freely falling observer will be.

r = R s

r = Rs
Suppose worldline
of free faller starts

like this

Will the freely falling worldline curve to the left or to the right? Recall that,
since t is the space direction inside the black hole, this is just the question of
whether it will move to larger t or smaller t. What do you think will happen?
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Well, our diagram is exactly the same on the right as on the left, so there seems
to be a symmetry. In fact, you can check that the Schwarzschild metric is
unchanged if we replace t by −t. So, both directions must behave identically.
If any calculation found that the worldline bends to the left, then there would
be an equally valid calculation showing that the worldline bends to the right.
As a result, the freely falling worldline will not bend in either direction and will
remain at a constant value of t.

Now, how long does it take to reach r = 0? We can compute the proper time
by using the freely falling worldline with dt = 0. For such a worldline the metric
yields:

dτ2 = −ds2 =
dr2

Rs/r − 1
=

r

Rs − r
dr2. (9.18)

Integrating, we have:

τ =

∫ 0

Rs

dr

√
r

Rs − r
. (9.19)

It is not important to compute this answer exactly. What is important is to
notice that the answer is finite. We can see this from the fact that, near r ≈ Rs
the integral is much like dx√

x
near x = 0. This latter integral integrates to

√
x

and is finite at x = 0. Also, near r = 0 the integral is much like x
Rs
dx, which

clearly gives a finite result. Thus, our observer measures a finite proper time
between r = Rs and r = 0 and the throat does collapse to zero size in finite
time.

9.3.2 The Singularity

This means that we should draw the line r = 0 as one of the hyperbolae on our
digram. It is clearly going to be a ‘rather singular line’ (to paraphrase Sherlock
Holmes again), and we will mark it as special by using a jagged line. As you
can see, this line is spacelike and so represents a certain time. We call this line
the singularity. Note that this means that the singularity of a black hole is not
a place at all!

The singularity is most properly thought of as being a very special time, at
which the entire interior of the black hole squashes itself (and everything in it)
to zero size. Note that, since it cuts all of the way across the future light cone
of any events in the interior (such as event A below), there is no way for any
object in the interior to avoid the singularity.
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r = R s

r = Rs

r = 0

r oo

A

By the way, this is a good place to comment on what would happen to you if
you tried to go from the right exterior to the left exterior through the wormhole.
Note that, once you leave the right exterior, you are in the future interior region.
From here, there is no way to get to the left exterior without moving faster than
light. Instead, you will encounter the singularity. What this means is that the
wormhole pinches off so quickly that even a light ray cannot pass through it from
one side to the other. It turns out that this behavior is typical of wormholes.

Let’s get a little bit more information about the singularity by studying the
motion of two freely falling objects. As we have seen, some particularly simple
geodesics inside the black hole are given by lines of constant t. I have drawn
two of these (at t1 and t2) on the diagram below.

r = R s

r = Rs

r = 0

r oo

t = tt = t 1 2

One question that we can answer quickly is how far apart these lines are at
each r (say, measured along the line r = const). That is, “What is the proper
length of the curve at constant r from t = t1 to t = t2?” Along such a curve,
dr = 0 and we have ds2 = (Rs/r−1)dt2. So, s = (t1− t2)

√
Rs/r − 1. As r → 0,

the separation becomes infinite. Since a freely falling object reaches r = 0 in
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finite proper time, this means that any two such geodesics move infinitely far
apart in a finite proper time. It follows that the relative acceleration (a.k.a.
the gravitational tidal force) diverges at the singularity. (This means that the
spacetime curvature also becomes infinite.) Said differently, it would take an
infinite proper acceleration acting on the objects to make them follow (non-
geodesic) paths that remain a finite distance apart. Physically, this means that
it requires an infinite force to keep any object from being ripped to shreds near
the black hole singularity.

9.3.3 Beyond the Singularity?

Another favorite question is “what happens beyond (after!) the singularity?”
The answer is not at all clear. The point is that just as Newtonian physics
is not valid at large velocities and as special relativity is valid only for very
weak spacetime curvatures, we similarly expect General Relativity to be an
incomplete description of physics in the realm where curvatures become truly
enormous. This means that all we can really say is that a region of spacetime
forms where the theory we are using (General Relativity) can no longer be
counted on to correctly predict what happens.

The main reason to expect that General Relativity is incomplete comes from
another part of physics called quantum mechanics. Quantum mechanical ef-
fects should become important when the spacetime becomes very highly curved.
Roughly speaking, you can see this from the fact that when the curvature is
strong local inertial frames are valid only over very tiny regions and from the
fact the quantum mechanics is always important in understanding how very
small things work. Unfortunately, no one yet understands just how quantum
mechanics and gravity work together. We say that we are searching for a theory
of “quantum gravity.” It is a very active area of research that has led to a
number of ideas, but as yet has no definitive answers. This is in fact the area
of my own research.

Just to give an idea of the range of possible answers to what happens at a
black hole singularity, it may be that the idea of spacetime simply ceases to be
meaningful there. As a result, the concept of time itself may also cease to be
meaningful, and there may simply be no way to properly ask a question like
“What happens after the black hole singularity?” Many apparently paradoxical
questions in physics are in fact disposed of in just this way (as in the question
‘which is really longer, the train or the tunnel?’). In any case, one expects that
the region near a black hole singularity will be a very strange place where the
laws of physics act in entirely unfamiliar ways.

9.3.4 The rest of the diagram and dynamical holes

There still remains one region of the diagram (the ‘past interior’) about which
we have said little. Recall that the Schwarzschild metric is time symmetric
(under t→ −t). As a result, the diagram should have a top/bottom symmetry,
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and the past interior should be much like the future interior. This part of the
spacetime is often called a ‘white hole’ as there is no way that any object can
remain inside: everything must pass outward into one of the exterior regions
through one of the horizons!

r = Rs

r = R s
r = Rs

r = R s

r > R ssr > R

r < R

r < R

s

s

r = 0

r = 0

As we mentioned briefly with regard to the second exterior, the past interior
does not really exist for the common black holes found in nature. Let’s talk
about how this works. So far, we have been studying the pure Schwarzschild
solution. As we have discussed, it is only a valid solution in the region in which
no matter is present. Of course, a little bit of matter will not change the picture
much. However, if the matter is an important part of the story (for example,
if it is matter that causes the black hole to form in the first place), then the
modifications will be more important.

Let us notice that in fact the ‘hole’ (whether white or black) in the above space-
time diagram has existed since infinitely far in the past. If the Schwarzschild
solution is to be used exactly, the hole (including the wormhole) must have been
created at the beginning of the universe. We expect that most black holes were
not created with the beginning of the universe, but instead formed later when
too much matter came too close together. Recall that a black hole must form
when, for example, too much thin gas gets clumped together.

Once the gas gets into a small enough region (smaller than its Schwarzschild
radius), we have seen that a horizon forms and the gas must shrink to a smaller
size. No finite force (and, in some sense, not even infinite force) can prevent the
gas from shrinking. Now, outside of the gas, the Schwarzschild solution should
be valid. So, let me draw a worldline on our Schwarzschild spacetime diagram
that represents the outside edge of the ball of gas. This breaks the diagram into
two pieces: an outside that correctly describes physics outside the gas, and an
inside that has no direct physical relevance and must be replaced by something
that depends on the details of the matter:
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r = Rs

r = R s
r = Rs

r = R s
r = 0

r = 0

Outside Edge of 
the matter

Here, the Schwarzschild 
solution correctly describes

the spacetime

This part of the 
Eternal Black Hole is
not relevant to a black
hole that forms from
the collapse of matter.

We see that the ‘second exterior’ and the ‘past interior’ are in the part of the
diagram with no direct relevance to relevance to black holes that form from
collapsing matter. A careful study of the Einstein equations shows that, inside
the matter, the spacetime looks pretty normal. A complete spacetime diagram
including both then region inside the matter and the region outside would look
like this:

r = 0

r = 0

of the 
Center 

matter

Outside Edge of the matter

Schwarzschild here

Not Schwarzschild
here

Horizon

r = R      along Horizon from here on outsr < Rs
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9.3.5 Visualizing black hole spacetimes

We have now had a fairly thorough discussion about Schwarzschild black holes
including the outside, the horizon, the inside, and the “extra regions” (second
exterior and past interior). One of the things that we emphasized was that the
spacetime at the horizon of a black hole is locally flat, just like everywhere else
in the spacetime. Also, the curvature at the horizon depends on the mass of the
black hole. The result is that, if the black hole is large enough, the spacetime
at the horizon is less curved than it is here on the surface of the earth, and a
person could happily fall through the horizon without any discomfort (yet).

It is useful to provide another perspective on the various issues that we have
discussed. The idea is to draw a few pictures that I hope will be illustrative.
The point is that the black hole horizon is an effect caused by the curvature
of spacetime, and the way that our brains are most used to thinking about
curved spaces is to visualize them inside of a larger flat space. For example,
we typically draw a curved (two-dimensional) sphere) as sitting inside a flat
three-dimensional space.

Now, the r, t plane of the black hole that we have been discussing and drawing
on our spacetime diagrams forms a curved two-dimensional spacetime. It turns
out that this two-dimensional spacetime can also be drawn as a curved surface
inside of a flat three-dimensional spacetime. These are the pictures that we will
draw and explore in this section.

To get an idea of how this works, let me first do something very simple: I
will draw a flat two-dimensional spacetime inside of a flat three-dimensional
spacetime. As usual, time runs up the diagram, and we use units such that light
rays move along lines at 45o angles to the vertical. Note that any worldline of a
light ray in the 3-D spacetime that happens to lie entirely in the 2-D spacetime
will also be the worldline of a light ray in the 2-D spacetime, since it is clearly
a curve of zero proper time. A pair of such crossed light rays are shown below
where the light cone of the 3-D spacetime intersects the 2-D spacetime.
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Now that we’ve got the idea, I’ll show you a picture that represents the (2-D) r, t
plane of our black hole, drawn as a curved surface inside a 3-D flat spacetime.
It looks like this:
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Below, I have drawn in the curves of constant r so that you can visualize them
more easily. Note that larger r is farther from the center of the diagram, and in
particular farther out along the ‘flanges.’ One flange represents the left exterior,
and one represents the right exterior.

0

Y
0

X

0T

0

Y
0

X

0T

The most important thing to notice is that we can once again spot two lines
that 1) are the worldlines of light rays in the 3D flat space and 2) lie entirely
within the curved 2D surface. As a result, they again represent worldlines of
light rays in the black hole spacetime. They are marked with yellow lines on
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the first picture I showed you (above) of the black hole spacetime and also on
the diagrams below. Note that they do not move at all outward toward larger
values of r. These are the horizons of the black hole.

Another thing we can see from these diagrams is the symmetry we discussed.
The symmetry of the 2-D black hole spacetime is the same as the boost sym-
metry of the larger 3D Minkowski space. Inside the black hole, this symmetry
moves events in a spacelike direction. We can also see from this picture that,
inside the black hole, the spacetime does change with time.

9.4 Stretching and Squishing: Tidal effects in
General Relativity

We have now seen several manifestations of what are called ‘tidal effects’ in
general relativity, where gravity by itself causes the stretching or squashing of
an object. We discussed these a lot in homework problems 1 and 2, but even
earlier our most basic observation in general relativity was that gravity causes
freely falling observers to accelerate relative to each other. That is to say that,
on a spacetime diagram, freely falling worldlines may bend toward each other or
bend away. In problem 1 and 2 I asked how you thought this effects the ocean
around the earth as the earth falls freely around the moon. The answer was
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that it stretches the ocean in the direction pointing toward (and away from)
the moon, while it squishes (or compresses) the ocean in the perpendicular
directions. This is because different parts of the ocean would like to separate
from each other along the direction toward the moon, while they would like to
come closer together in the other directions:

Earth

Ocean

Wants to separate this way.

Moon
together in this

direction

Wants to come

As stated in the homework solutions, this effect is responsible for the tides
in the earth’s oceans. (You know: if you stand at the beach for 24 hours, the
ocean level rises, falls, then rises and falls again.) Whenever gravity causes
freely falling observers (who start with no relative velocity) to come together
or to separate, we call this a tidal effect. As we have seen, tidal effects are the
fundamental signature of spacetime curvature, and in fact tidal effects are a
direct measure of spacetime curvature.

Of course any other object (a person, rocket ship, star, etc.) would feel a
similar stretching or squishing in a gravitational field. Depending on how you
are lined up, your head might be trying to follow a geodesic which would cause
it to separate from your feet, or perhaps to move closer to your feet. If this
effect were large, it would be quite uncomfortable, and could even rip you into
shreds (or squash you flat).

However, as we have seen, this effect is generally small for geodesics that are
close together: if the stones in problem 1 were only as far apart as your head
and feet are, the effect would have been completely negligible! So, unless the
spacetime curvature is really big, it usually does not harm small objects like
people – only large objects like planets and stars.

On the other hand, we argued that this tidal effect will become infinitely
large at the singularity of a black hole. There the effect certainly will be strong
enough to rip apart even tiny objects like humans, or cells, or atoms, or even
subatomic particles. It is therefore of interest to learn how to compute how
strong this effect actually is. We know that it is small far away from a black
hole and that it is large at the singularity, but how big is it at the horizon?
This last question is the key to understanding what you would feel as you fell
through the horizon of a Schwarzschild black hole.

These are exactly the questions we’re going to ask (and answer) in the current
section. We will investigate tidal effects in more detail and discover how to
compute them directly from the metric. Before we begin, I should warn you that
this will be one of the more technical sections of these notes as the derivations
are quite involved. It is sufficiently technical that I will almost certainly not go
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through this in class. You will find, however, that the results of this section are
essential for doing certain homework problems. You should read through this
section but, if you find yourself becoming lost in the details of the argument,
you may want to skip ahead to subsections 9.4.4 and 9.4.5 which will give you
an overview of the results.

9.4.1 The setup

So, let’s suppose that somebody tells us what the spacetime metric is (for exam-
ple, it might be the Schwarzschild metric). For convenience, let’s suppose that
it is independent of time and spherically symmetric. In this case, we discussed
in class how to find the acceleration of static observers relative to freely falling
observers who are at the same event in spacetime. What we are going to do
now is to use this result to compute the relative acceleration of two neighboring
freely falling observers.

To start with, let’s draw a spacetime diagram in the reference frame of one
of the freely falling observers. What this means is that lines drawn straight up
(like the dotted one below) represent curves that remain a constant distance
away from our first free faller. If you followed Einstein’s discussion, this is what
he would call a ‘Gaussian’ coordinate system. We want our two free fallers to
start off with the same velocity – this is analogous to using ‘initially parallel
geodesics’. For the sake of argument, let’s suppose that the geodesics separate
as time passes, though the discussion is exactly the same if they come together.
The freely falling observers are the solid lines, and the static observers are the
dashed lines. To be concrete, I have chosen the static observers to be accelerating
toward the right, but again it doesn’t really matter.

t = 0

Free Fall

constant
distance

Free Fall

a

a

s1

static
static

a

x=0

FF2

s2

The coordinate x measures the distance from the first freely falling observer.

What we would like to know is how fast the second geodesic is accelerating away
from the first. Let us call this acceleration aFF2, the acceleration of the second
free faller. Since we are working in the reference frame of the first free faller,
the corresponding acceleration aFF1 is identically zero.

Now, what we already know is the acceleration of the two static observers relative
to the corresponding free faller. In other words, we know the acceleration as1
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of the first static observer relative to the first free faller, and we know the
acceleration as2 of the second static observer relative to the second free faller.
Note that the total acceleration of the second static observer in our coordinate
system is aFF2 + as2 – her acceleration relative to the second free faller plus
the acceleration of the second free faller in our coordinate system. This is
represented pictorially on the diagram above.

Actually, there is something else that we know: since the two static observers
are, well, static, the proper distance between them (as measured by them) can
never change. We will use this result to figure out what aFF2 is.

The way we will proceed is to use the standard Physics/Calculus trick of looking
at small changes over small regions. Note that there are two parameters (T and
L, as shown below) that tell us how big our region is. L is the distance between
the two free fallers, and T is how long we need to watch the system. We will
assume that both L and T are very small, so that the accelerations as1 and as2
are not too different, and so that the speeds involved are all much slower than
the speed of light.

t = 0

L

T

Now, pick a point (p1) on the worldline of the first static observer. Call the
coordinates of that point x1, t1. (We assume t1 < T .) Since the velocity is
still small at that point, we can ignore the difference between acceleration and
proper acceleration and the Newtonian formula:

x1 =
1

2
as1t

2
1 +O(T 4) (9.20)

is a good approximation. The notation O(T 4) is read “terms of order T 4.” This
represents the error we make by using only the Newtonian formula. It means
that the errors are proportional to T 4 (or possibly even smaller), and so become
much smaller than the term that we keep (t21) as T → 0. Note that since this is
just a rough description of the errors, we can use T instead of t1.

Recall that the two static observers will remain a constant distance apart as
determined by their own measurements. To write this down mathematically,
we need to understand how these observers measure distance. Recall that any
observer will measure distance along a line of simultaneity. I have sketched in
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this line of simultaneity below, and called the point p2 (where it intersects the
worldline of the second static observer) x2, t2.

t = 0
1

2

p   = x  , t

p    = x  , t

1 1

2 2

x = 0

Now, since spacetime is curved, this line of simultaneity need not be perfectly
straight on our diagram. However, we also know that, in a very small region near
the first Free Faller (around whom we drew our diagram), space is approximately
flat. This means that the curvature of the line of simultaneity has to vanish near
the line x = 0. Technically, the curvature of this line (the second derivative of t
with respect to x) must itself be ‘of order (x2 − x1). This means that p1 and p2

are related by an equation that looks like:

t2 − t1
x2 − x1

= slope at p1 + [curvature at p1] (x2 − x1) + O([x2 − x1]2)

= slope at p1 + O([x2 − x1]2) + O(T2[x2 − x1]). (9.21)

Again, we need only a rough accounting of the errors. As a result, we can just
call the errors O(L2) instead of O([x2 − x1]2).

Remember that, in flat space, the slope of this line of simultaneity would be
vs1/c

2, where vs1 is the velocity of the first static observer. Very close to x = 0,
the spacetime can be considered to be flat. Also, as long as t1 is small, the point
p1 is very close to x = 0. So, the slope at p1 is essentially vs1/c

2. Also, for small
t1 we have vs1 = as1t. Substituting this into the above equation and including
the error terms yields

t2 = t1 + (as1t1/c
2)(x2 − x1) +O(L3)

= t1

(
1 +

as1
c2

(x2 − x1)
)

+O(L3) +O(T 2L), (9.22)

OK, we’re making progress here. We’ve already got two useful equations written
down (9.20 and 9.23), and we know that a third will be the condition that the
proper distance between p1 and p2 will be the same as the initial separation L
between the two free fallers:

L2 = (x2 − x1)2 − c2(t2 − t1)2. (9.23)
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In addition, there is clearly an analogue of equation (9.20) for the second static
observer (remembering that the second one does not start at x = 0, but instead
starts at x = L):

x2 = L+
1

2
(as2 + aFF2)t22 +O(T 4). (9.24)

9.4.2 The solution

So, let’s try using these equations to solve the problem at hand. The way the I
will proceed is to substitute equation (9.22) for t2 in equation (9.24). That way
we express both positions in terms of just t1. The result is

x2 = L+
1

2
(as2 + aFF2)

(
1 +

as1
c2

(x2 − x1)
)2

t21 +O(T 4) +O(L3T 2). (9.25)

OK, now we will want to use the condition (9.23) that the proper distance be-
tween the static observers does not change. This equation involves the difference
x2 − x1. Subtracting equation (9.20) from equation (9.25), we get:

x2 − x1 = L+
1

2
(as2 + aFF2 − as1)t21 + (as2 + aFF2)

as1
c2

(x2 − x1)t21

+
1

2
(as2 + aFF2)

a2
s1

c4
(x2 − x1)2t21 +O(T 4) +O(L3T 2). (9.26)

And, actually, we won’t need to keep the (x2 − x1)2 term, so we can write this
as:

x2−x1 = L+
1

2
(as2+aFF2−as1)t21+(as2+aFF2)

as1
c2

(x2−x1)t21+O(T 4)+O(L2T 2).

(9.27)

Now, this equation involves x2 − x1 on both the left and right sides, so let’s
solve it for x2 − x1. As you can check, the result is:

x2−x1 =

(
L+

1

2
(as2 + aFF2 − as1)t21

)(
1− (as2 + aFF2)

as1
c2
t21

)−1

+O(T 4)+O(T 2L2).

(9.28)

But there is a standard ‘expansion’ (1− x)−1 = 1 + x+O(x2) that we can use
to simplify this. We find:

x2−x1 = L+
1

2
(as2 + aFF2− as1)t21 +L(as2 + aFF2)

as1
c2
t21 +O(T 4) +O(T 2L2).

(9.29)
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Believe it or not, we are almost done!!!! All we have to do now is to substitute
this (and also equation 9.22 for the times) into the requirement that ∆x2 −
c2∆t2 = L2. Below, we will only keep terms up through T 2 and L2. Note that:

(x2−x1)2 = L2+L(as2+aFF2−as1)t21+2L2(as2+aFF2)
as1
c2
t21+O(T 4)+O(T 2L3)

(9.30)
while

(t2 − t1)2 = t21a
2
s1L

2/c2 +O(L3T 2). (9.31)

So, since the proper distance between p1 and p2 must be L2,

L2 = ∆x2 − c2∆t2

= L2 + L(as2 + aFF2 − as1)t21 + L2(2as2 + 2aFF2 − as1)
as1
c2
t21

+ O(T 4) +O(T 2L3). (9.32)

Canceling the L2 terms on both sides leaves only terms proportional to t21L. So,
after subtracting the L2, let’s also divide by t21L. This will leave:

0 = (as2 +aFF2−as1) +L(2as2 + 2aFF2−as1)
as1
c2

+O(T 2/L) +O(L2). (9.33)

Reminder: What we want to do is to solve for aFF2, the acceleration of the
second free faller. In preparation for this, let’s regroup the terms above to collect
things with aFF2 in them:

0 = aFF2(1 + 2Las1/c
2) + (as2 − as1) + L(2as2 − as1)

as1
c2

+O(T 2/L) +O(L2).

(9.34)

Now, before we solve for aFF2, I want to make one more simplification. Re-
member that we started off by assuming that the region was very small. If it is
small enough, then in fact as1 and as2 are not very different. In fact, we will
have as1 − as2 = O(L). This simplifies the last term a lot since L(2as2 − as1) =
Las1 +O(L2). Using this fact, and solving the above equation for aFF2 we get:

aFF2 = −as2 − as1 + La2
s1/c

2

1 + Las1/c2
+O(T 2/L) +O(L2)

= −(as2 − as1)− La2
s1/c

2 +O(T 2/L) +O(L2). (9.35)

9.4.3 The Differential equation

Whew!!!!!!!!!!! Well, that’s the answer. But now we want to convert it into a
more useful form which will apply without worrying about whether our region



9.4. STRETCHING AND SQUISHING 259

is small. What we’re going to do is to take the limit as T and L go to zero and
turn this into a differential equation. Technically, we will take T to zero faster
that L so that T 2/L2 → 0. Note that we are really interested in how things
change with position at t = 0, so that is is natural to take T to zero before
taking L to zero.

OK, so imagine not just two free fallers, but a whole set of them at every value
of x. Each of these starts out with zero velocity, and each of them has an
accompanying static observer. The free faller at x will have some acceleration
aFF (x), and the static observer at x will have some acceleration as(x) relative
to the corresponding free faller. If L is very small above, notice that as2−as1 =
Ldasdx +O(L2) and that (since aFF1 = 0), aFF2 = LdaFF

dx +O(L2).

So, we can rewrite equation (9.35) as:

L
daFF
dx

= −Ldas
dx
− La2

s/c
2 +O(T 2/L) +O(L2). (9.36)

We can now divide by L and take the limit as T/L and L go to zero. The result
is a lovely differential equation:

daFF
dx

= −das
dx
− a2

s/c
2 (9.37)

By the way, the important point to remember about the above expression is
that the coordinate x represents proper distance. (Sound familiar?)

9.4.4 What does it all mean?

One of the best ways to use this equation is to undo part of the last step.
Say that you have two free falling observers close together that have no initial
velocity. Then, if their separation L is small enough, their relative acceleration
is LdaFF

dx or

relative acceleration = −L
(
das
dx

+ a2
s/c

2

)
. (9.38)

Let’s take a simple example of this. Suppose that you are near a black hole
and that your head and your feel are both freely falling objects. Then, this for-
mula tells you at what acceleration your head would separate from (or, perhaps,
accelerate toward) your feet. Of course, your head and feet are not, in reality,
separate freely falling objects. The rest of your body will pull and push on them
to keep your head and feet roughly the same distance apart at all times. How-
ever, your head and feet will want to separate or come together, so depending
on how big the relative acceleration is, keeping your head and feet in the proper
places will cause a lot of stress on your body.

For example, suppose that the relative acceleration is 10m/s2 (1g) away from
each other. In that case, the experience would feel much like what you feel if
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you tie your legs to the ceiling and hang upside down. In that case also, your
head wants to separate from the ceiling (where your feet are) at 10m/s2.

Whee!!

However, if the relative acceleration were a lot bigger, it would be extremely
uncomfortable. In fact, a good analogy with the experience would be being on
a Medieval rack – an old torture device where they pulled your arms one way
and your feet in the opposite direction. If the relative acceleration were great
enough, I’m afraid that your head would in fact separate from your feet.

9.4.5 Black Holes and the Schwarzschild Metric

OK, so how big is this near a black hole? Well, remember that the acceleration of
static observers (relative to freely falling observers) in the Schwarzschild metric
is given by:

as =
c2

2

(
Rs
r2

)
(1−Rs/r)−1/2. (9.39)

We would like to take the derivative of this with respect to the proper distance
S in the radial direction. That is, we will work along a line of constant t, φ,
and θ. In this case, as we have seen before,

dr

dS
=
√

1−Rs/r. (9.40)

So,

das
dS

= (
√

1−Rs/r)
das
dr

. (9.41)

A bit of computation yields

das
dS

= −c2
(
Rs
r3

)
− c2

4

(
Rs
r2

)2

(1−Rs/r)−1. (9.42)

On the other hand, we have:
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a2
s/c

2 =
c2

4

(
Rs
r2

)2

(1−Rs/r)−1. (9.43)

To evaluate the relative acceleration, equation (9.38) tells us to add these
two results together. Clearly, there is a major cancellation and all that we have
left is:

relative acceleration = c2

(
Rs

r3

)
L. (9.44)

This gives the relative acceleration of two freely falling observers who, at that
moment, are at rest with respect to the static observers. (The free fallers are
also located at radius r and are separated by a radial distance L, which is much
smaller than r.) The formula holds anywhere that the Schwarzschild metric
applies. In particular, anywhere outside a black hole.

Now for the question you have all been waiting for .... what happens at the
horizon (or, perhaps just barely outside)? Well, this is just r = Rs. In this case,
equation (9.44) reads

relative acceleration = c2

(
L

R2
s

)
. (9.45)

The most important thing to notice about this formula is that the answer is
finite. Despite the fact that a static observer at the horizon would need an
infinite acceleration relative to the free fallers, any two free fallers have only a
finite acceleration relative to each other.

The second thing to notice is that, for a big black hole (large Rs), this relative
acceleration is even small. (However, for a small black hole, it can be rather
large.) I’ll let you plug in numbers on your own and see how the results come
out. Have fun!

9.5 Black Hole Astrophysics and Observations

We have now come to understand basic round (Schwarzschild) black holes fairly
well. We have obtained several perspectives on black hole exteriors and interiors
and we have also learned about black hole singularities. However, there are
several issues associated with black holes that we have yet to discuss. Not least
of these is the observational evidence that indicates that black holes actually
exist! This section will be devoted to this evidence and to the physics that
surrounds it.

9.5.1 The observational evidence for black holes

We argued back in section 9.2.1 that big black holes should not be too hard
to make. So, the question arises, are there really such things out there in the
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universe? If so, how do we find them? Black holes are dark after all, they
themselves do not shine brightly like stars do.

Well, admittedly most of the evidence is indirect. Nevertheless, it is quite strong.
Let’s begin by reviewing the evidence for a black hole at the center of our own
galaxy.

What is quite clear is that there is something massive, small, and dark at the
center of our galaxy. Modern techniques allow us to make high resolution pho-
tographs of stars orbiting near the galactic center. In class, I will give you a
handout contains copies of some of these photographs so that you can see the
quality for yourselves. Note that one can track the motion of the objects di-
rectly through the photographs. One can also measure the velocities using the
Doppler shift. The result is that we know a lot about the orbits of these objects,
so that we can tell a lot about the mass of whatever object lies at the very center
(marked with an * on one diagram in the handout) that they are orbiting around.
Note: Along with other material on this subject, the photographs and diagrams
in the handout come from a lovely talk about the status of black hole observa-
tions by Andrew Fabian (http://online.itp.ucsb.edu/online/bhole c99/fabian/).
Go ahead and look at this talk if you want to see the diagrams and photos
before I hand them out.

What the data shows quite clearly is that there is a mass of 2.61 × 106 solar
masses (MO is the mass of the sun) contained in a region of size .02 parsecs
(pc). Now, a parsec is around 3 × 1016m. So, this object has a radius of less
than 6×1014m. In contrast, the Schwarzschild radius for a 2.61×106 solar mass
object is around 1010m. So, what we get from direct observations of the orbits
of stars is that this object is smaller than 10, 000Rs.

That may not sound like a small bound (since 10,000 is a pretty big number),
but an important point is that an object of that mass at r = 10, 000Rs could not
be very dense. If we simply divide mass by volume, we would find an average
density of 10−9 that of water! We know an awful lot about how matter behaves
at that density and the long and short of it is that the gravitational field of this
object should make such a diffuse gas of stuff contract ...... You might then ask
what happens when it becomes dense enough to form a solid. This brings us to
another interesting observation....

It turns out that, at the very position at the center of our galaxy where the
massive object (black hole?) should be located, a strong radio signal is being
emitted. The source of this signal has been named “Sagittarius A∗” (Sgr A∗). It
therefore natural to assume that this signal is coming from the massive object
that we have been discussing. As we will see below, it is natural for radio
signals to be emitted not from black holes themselves, but from things falling
into black holes. Precision radio measurements using what is called “very-long
baseline interferometry” (VLBI) tell us that the radio signal is coming from a
small region. In terms of Rs for the mass we have been discussing, the region’s
size is about 30Rs.

It therefore appears that the object itself is within 30Rs. If the mass were spread
uniformly over a volume of 30Rs, it would have a density about three times
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greater than that of air. However, the proper acceleration (of static observers
relative to freely falling ones) would be about 100g’s. Again, we know a lot
about how matter behaves under such conditions. In particular, we know that
matter at that density behaves like a gas. However, the 100g acceleration means
that the pressure in the gas must be quite high in order to keep the gas from
collapsing. In particular, the pressure would reach one atmosphere about 1km
inside the object. One hundred thousand km inside, the pressure would reach
one hundred thousand atmospheres! Since we are thinking of an object of size
30Rs = 3× 1011m (which is 300 million km), one hundred thousand km is less
than .1% of the way to the center. So, the vast majority of the object is under
much more than one hundred thousand (105) atmospheres of pressure. At 105

atmospheres of pressure, all forms of matter will have roughly the density of a
solid. The matter supports this pressure by the electrons shells of the atoms
bumping up against one another.

So, using what we know about matter, the object must surely be even smaller:
small enough that have at least the density of water. Such an object (for this
mass) would have a size of less than 3Rs. So, we are getting very close. At the
surface of such an object, the relative accelerations of freely falling and static
observers would be around 10, 000g’s. At a depth of 10, 000km (again .1% of
the way to the center), the pressure would be 1014N/m2, or roughly one billion
atmospheres. At this pressure, any kind of matter will compress to more than
30 times the density of water. So, again, we should redo the calculation, but
now at 30 times the density of water.....

At this density, the object would be within its Schwarzschild radius. It would
be a black hole. We conclude that we the experimental bounds and what we
know about physics the object at the center of our galaxy either is a black hole
already or is rapidly collapsing to become one. Oh, the time such an object
would it take to collapse from 30Rs is about 15 minutes. Astronomers have
been monitoring this thing for awhile, so I guess it’s a black hole by now.

9.5.2 Finding other black holes

So, while the astronomical measurements do not directly tell us that Sagittarius
A∗ is a black hole, when combined with what we know about (more or less)
ordinary matter, the conclusion that the object is a black hole is hard to escape.
Much the same story is true for other “black hole candidates” as the astronomers
call them. The word candidate is added to be intentionally conservative, but
at this point I don’t know of anyone who actually doubts that they are in fact
black holes. Black hole candidates at the center of other galaxies are identified
in much the same way that Sagittarius A∗ was found. Astronomers study how
stars orbit around those galactic centers to conclude that there is “massive
compact object” near the center. Typically, such objects are also associated
with strong emissions of radio waves.

Similar techniques are used for finding smaller black holes as well. The small
black holes that we think we have located are in so-called ‘binary systems.’ The
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way that these black holes were found was that astronomers found certain stars
which seemed to be emitting a lot of high energy x-rays. This is an unusual
thing for a star to do, but it is not so odd for a black hole (as we will discuss
shortly). On closer inspection of the star, it was found that the star appeared
to “wobble” back and forth. This is just what the star would seem to do if it
was in fact orbiting close to a small massive dark object that could not be seen
directly. This is why they are called binary systems, since there seem to be two
objects in the system. These massive dark objects have masses between 5 and
10 solar masses. Actually, there are also cases where the dark companion has a
mass of less then 2 solar masses, but those are known to be neutron stars (see
below).

We had a discussion in the previous section about how our knowledge of normal
matter led to the conclusion that Sagittarius A∗ is a black hole. Well, we also
have a pretty good idea of how star-like objects work in the solar mass range.
In actual stars, what happens is that the objects become dense enough that
nuclear fusion occurs. This generates large amounts of heat that increases the
pressure in the matter (remember the ideal gas law?) far above what it would
be otherwise. It is this pressure that keeps the object from collapsing to higher
density. Thus, the reason that a star has a relatively low density (the average
density of the sun is a few times that of water) is that it is very hot! This of
course is also the reason that stars shine.

Now, the dark companions in the binary systems do not shine. It follows that
they are not hot. As a result, they must be much smaller and much more dense.
Our understanding of physics tells us that massive cold objects will collapse
under their own weight. In particular, a cold object greater than 1.4 times the
mass of the sun will not be a star at all. It will be so dense that the electrons
will be crushed into the atomic nuclei, with the result that they will be absorbed
into the protons and electron + proton will turn into a neutron. Thus the object
ceases to be normal matter (with electrons, protons, and neutrons) at all, but
becomes just a big bunch of neutrons. This number of 1.4 solar masses is called
the Chandrasekhar limit after the physicist who discovered it. In practice, when
we look at the vast numbers of stars in the universe, we have never found a cold
star of more than 1.4 solar masses though we have found some that are close.

So, any cold object of more than 1.4 solar masses must be at least as strange
as a big bunch of neutrons. Well, neutrons can be packed very tightly without
resistance, so that in fact such ‘neutron stars’ naturally have the density of an
atomic nucleus. What this means is that one can think of a neutron star as
being essentially one incredibly massive atomic nucleus (but will all neutrons
and no protons).

The density of an atomic nucleus is a huge 1018kg/m3. (This is 1015 times that
of normal matter.) Let us ask: suppose we had a round ball of nuclear matter
at this density. How massive would this ball need to be for the associated
Schwarzschild radius to be larger than the ball itself? The answer is about 4
times the mass of the sun. So, working with a very simple model in which the
density is constant (and always equal to the density of normal nuclei, which are
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under significantly less pressure) inside the object, we find that any cold object
with a mass greater than four solar masses will be a black hole! It turns out
that any model where the density increases with depth and pressure yields an
even stronger bound. As a result, modern calculations predict that any cold
object with a mass of greater than 2.1 solar masses will be a black hole.

As one can see from the observational data in the handout, the dark companions
in the binary systems all have masses significantly greater than 2 solar masses.
By the way, it is reassuring to note that every neutron star that has been found
has been in the range between 1.4 and 2.1 solar masses.

9.5.3 A few words on Accretion and Energy

Even with the above arguments, one might ask what direct measurements could
be made of the size of the dark companions. Can we show directly that their
size is comparable to the Schwarzschild radius? To do so one needs to use the
energy being released from matter falling into a black hole. This leads us to a
brief discussion of what are called accretion disks.

The idea is shown on one of the pictures that I have handed out. In general,
matter tends to flow into black holes. This addition of matter to an object is
called “accretion.” Black holes (and neutron stars) are very small, so that a
piece of matter from far away that becomes caught in the gravitational field is
not likely to be directed straight at the black hole or neutron star, but instead
is likely to go into some kind of orbit around it. The matter piles up in such
orbits and then, due to various interactions between the bits of matter, some
bits slowly loose angular momentum and move closer and closer to the center.
Eventually, they either fall through the horizon of the black hole or hit the
surface of the neutron star.

In cases where the compact object is in a binary system, the matter flowing in
comes mostly from the shining star. This process makes the accreting matter
into a disk, as shown in the picture8 below. This is why astronomers often talk
about ‘accretion disks’ around black holes and neutron stars.

8This picture was created by Jillian Bornak, a past PHY312 student.
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Now, an important point is that a lot of energy is released when matter falls
toward a black hole. Why does this happen? Well, as an object falls, its speed
relative to static observers becomes very large. When many such of matter
bump into each other at high these speeds, the result is a lot of very hot matter!
This is where those x-rays come from that I mentioned awhile back. The matter
is hot enough that x-rays are emitted as thermal radiation.

By the way, it is worth talking a little bit about just how we can calculate the
extra ‘kinetic energy’ produced when objects fall toward black holes (or neutron
stars). To do so, we will run in reverse a discussion we had long ago about light
falling in a gravitational field.

Do you recall how we first argued that there must be something like a gravi-
tational time dilation effect? It was from the observation that a photon going
upward through a gravitational field must loose energy and therefore decrease
in frequency. Well, let’s now think about a photon that falls down into a grav-
itational field from far away to a radius r. Recall that clocks at r run slower
than clocks far away by a factor of

√
1−Rs/r. Since the lower clocks run more

slowly, from the viewpoint of these clocks the electric field of the photon seems
to be oscillating very quickly. So, this must mean that the frequency of the
photon (measured by a static clock at r) is higher by a factor of 1/

√
1−Rs/r

than when the frequency is measured by a clock far away. Since the energy of a
photon is proportional to its frequency, the energy of the photon has increased
by 1/

√
1−Rs/r.

Now, in our earlier discussion of the effects of gravity on light we noted that the
energy in light could be turned into any other kind of energy and could then
be turned back into light. We used this to argue that the effects of gravity on
light must be the same as on any other kind of energy. So, consider an object of
mass m which begins at rest far away from the black hole. It contains an energy
E = mc2. So, by the time the object falls to a radius r, its energy (measured
locally) must have increased by the same factor was would the energy of a
photon; to E = mc21/

√
1−Rs/r. What this means is that if the object gets

anywhere even close to the Schwarzschild radius, it’s energy will have increased
by an amount comparable to its rest mass energy. Roughly speaking, this means
that objects which fall toward a black hole or neutron star and collide with each
other release energy on the same scale as a star or a thermonuclear bomb. This
is the source of those x-rays and the other hard radiation that we detect from
the accretion disk.

Actually, there is one step left in our accounting of the energy. After all, we
don’t sit in close to the black hole and measure the energy of the x-rays. Instead,
we are far away. So, we also need to think about the energy that the x-rays
loose as they climb back out of the black hole’s gravitational field. To this end,
suppose our object begins far away from the black hole and falls to r. As we said
above, its energy is now E = mc2/

√
1−Rs/r. Suppose that the object now

comes to rest at r. The object will then have an energy E = mc2 as measured
at r. So, stopping this object will have released an energy of
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∆E = mc2

(
1√

1−Rs/r
− 1

)
. (9.46)

as measured at r. This is how much energy can be put into x-ray photons and
sent back out. But, on it’s way back out, such photons will decrease in energy by
a factor of

√
1−Rs/r−1. So, the final energy that gets out of the gravitational

field is:

∆E∞ = mc2
√

1−Rs/r

(
1√

1−Rs/r
− 1

)
= mc2(1−

√
1−Rs/r). (9.47)

In other words, the total energy released to infinity is a certain fraction of the
energy in the rest mass that fell toward the black hole. This fraction goes to
1 if the mass fell all the way down to the black hole horizon. Again, so long
as r was within a factor of 100 or so of the Schwarzschild radius, this gives an
efficiency comparable to thermonuclear reactions.

I can now say something about the question that we asked at the beginning of
this section. Using direct observations, how strongly can we bound the size of
a black hole candidate? It turns out that one can study the detailed properties
of the spectrum of radiation produced by an accretion disk, and that one can
match this to what one expects from an accretion disk living in the Schwarzschild
geometry. Current measurements focus on a particular (x-ray) spectral line
associated with iron. In the best case, the results show that the region emitting
radiation is within 25Rs.

9.5.4 So, where does all of this energy go, anyway?

This turns out to be a very interesting question. There is a lot of energy be-
ing produced by matter falling into a black hole or a neutron star. People are
working very hard with computer models to figure out just how much matter
falls into black holes, and therefore just how much energy is produced. Unfor-
tunately, things are sufficiently complicated that one cannot yet state results
with certainty. Nonetheless, some very nice work has been done in the last few
years by Ramesh Narayan and his collaborators showing that in certain cases
there appears to be much less energy coming out than there is going in. Where
is this energy going? It is not going into heating up the object or the accretion
disk, as such effects would increase the energy that we see coming out (causing
the object to shine more brightly). If their models are correct, one is forced to
conclude that the energy is truly disappearing from the part of the spacetime
that can communicate with us. In other words, the energy is falling behind the
horizon of a black hole. As the models and calculations are refined over the
next five years or so, it is likely that this missing energy will be the first ‘direct
detection’ of the horizon of a black hole.
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9.6 Black Hole Odds and Ends

Black holes are an enormous subject area and there are many parts of the
story that we have not yet discussed. For most of these there is simply not
enough time to address them in a one semester course. However, a few topics
merit special mention either because of their common appearance in the popular
media9, because they will be useful in our discussion of cosmology in chapter 10,
or because of their intrinsic interest. We will therefore be addressing Hawking
radiation, Penrose diagrams, and more complicated types of black holes (more
complicated than Schwarzschild black holes) in turn.

9.6.1 A very few words about Hawking Radiation

Strictly speaking, Hawking Radiation is not a part of this course because it
does not fall within the framework of general relativity. However, since someone
always asks about it, I feel the need to make a few very brief comments on the
subject. Believe me, this is only the very tip of the iceberg!

Here’s the story: do you recall that, when we discussed the black hole singu-
larity, we said that what really happens there will not be described by general
relativity? We mentioned that physicists expect a new and even more funda-
mental understanding of physics to be important there, and that the subject
is called “quantum gravity.” We also mentioned that very little is understood
about quantum gravity at the present time.

Well, there is one thing that we think we do understand about quantum effects
in gravity. This is something that happens outside the black hole and therefore
far from the singularity. In this setting, the effects of quantum mechanics in the
gravitational field itself are extremely small. So small that we believe that we
can do calculations by simply splicing together our understanding of quantum
mechanics (which governs the behavior of photons, electrons, and such things)
and our understanding of gravity. In effect, use quantum mechanics together
with the equivalence principle to do calculations.

Stephen Hawking did such a calculation back in the early 1970’s. What he found
came as a real surprise. Consider a black hole by itself, without an accretion disk
or any other sort of obvious matter nearby. It turns out that the region around
the black hole is not completely dark! Instead, it glows like a hot object, albeit
at a very low temperature. The resulting thermal radiation is called Hawking
radiation.

Now, I first want to say that this is an incredibly tiny effect. For a solar mass
black hole the associated temperature is only 10−5 Kelvin, that is, 10−5 degrees
above absolute zero. Large black holes are even colder, as the temperature is
proportional to M−2, where M is the black hole mass. So black holes are very,
very cold. In particular, empty space has a temperature of about 3K due to

9So that you have likely heard of such things already or will encounter them in the future.
I would like you to have at least some exposure to the real story about these things.
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what is called the ‘cosmic microwave background’ (we will be talking about this
soon), so a black hole is much colder than empty space. However, if one could
make or find a very tiny black hole, that black hole would be very hot.

Second, let me add that the radiation does not come directly from the black
hole itself, but from the space around the black hole. This is a common mis-
conception about Hawking radiation: the radiation does not by itself contradict
our statement that nothing can escape from within the horizon.

But, you may ask, how can radiation be emitted from the space around the
black hole? How can there be energy created from nothing? The answer is that,
in ‘quantum field theory10,’ one can have negative energies as well as positive
energies. However, these negative energies should always be very small and
should survive only for a short time. What happens is that the space around
the black hole produces a net zero energy, but it sends a positive energy flux of
Hawking radiation outward away from the black hole while sending a negative
energy flux inward across the horizon of the black hole. The negative energy is
visible only for a short time between when it is created and when it disappears
behind the horizon of the black hole.

The net effect is that the black hole looses mass and shrinks, while positive
energy is radiated to infinity. A diagram illustrating the fluxes of energy is
shown below.

r = R s

r = Rs

r = 0 Positive energy escapes as 

falls into the black
Negative energy

hole

9.6.2 Penrose Diagrams, or “How to put infinity in a box”

There are a few comments left to make about black holes, and this will re-
quire one further technical tool. The tool is yet another kind of spacetime
diagram (called a ‘Penrose diagram’) and it will be useful both for discussing
more complicated kinds of black holes and for discussing cosmology in chapter
10. Actually, it is not all that technical.

10Quantum field theory is what you get when you combine quantum mechanics and the idea
that things of interest are fields, like the electric and magnetic fields. Quantum field theory
is what is used to understand all of subatomic and particle physics, for example.
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The point is that, as we have seen, it is often useful to compare what an observer
very far from the black hole sees to what one sees close to the black hole. We
say that an observer very far from the black hole is “at infinity.” Comparing
infinity with finite positions is even more important for more complicated sorts
of black holes that we have not yet discussed. However, it is difficult to draw
infinity on our diagrams since infinity is after all infinitely far away.

How can we draw a diagram of an infinite spacetime on a finite piece of paper?
Think back to the Escher picture of the Lobachevskian space. By ‘squishing’ the
space, Escher managed to draw the infinitely large Lobachevskian space inside
a finite circle. If you go back and try to count the number of fish that appear
along on a geodesic crossing the entire space, it turns out to be infinite. It’s just
that most of the fish are drawn incredibly small. Escher achieved this trick by
letting the scale vary across his map of the space. In particular, at the edge an
infinite amount of Lobachevskian space is crammed into a very tiny amount of
Escher’s map. In some sense this means that his picture becomes infinitely bad
at the edge, but nevertheless we were able to obtain useful information from it.

We want to do much the same thing for our spacetimes. However, for our case
there is one catch: As usual, we will want all light rays to travel along lines at 45
degrees to the vertical. This will allow us to continue to read useful information
from the diagram. This idea was first put forward by (Sir) Roger Penrose11,
so that the resulting pictures are often called “Penrose Diagrams.” They are
also called “conformal diagrams” – conformal is a technical word related to the
rescaling of size.

Let’s think about how we could draw a Penrose diagram of Minkowski space.
For simplicity, let’s consider our favorite case of 1+1 dimensional Minkowski
space. Would you like to guess what the diagram should look like?

As a first guess, we might try a square or rectangle. However, this guess has a
problem associated with the picture below. To see the point, consider any light
ray moving to the right in 1+1 Minkowski space, and also consider any light
ray moving to the left. Any two such light rays are guaranteed to meet at some
event. The same is in fact true of any pair of leftward and rightward moving
objects since, in 1 space dimension, there is no room for two objects to pass
each other!

Left- and right- moving objects
always collide when space has only 

one dimension

However, if the Penrose diagram for a spacetime is a square, then there are in
fact leftward and rightward moving light rays that never meet! Some examples
are shown on the diagram below.

11Penrose is a mathematician and physicist who is famous for a number of things.
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These light rays do not meet

So, the rectangular Penrose diagram does not represent Minkowski space. What
other choices do we have? A circle turns out to have the same problem. After
a little thought, one finds that the only thing which behaves differently is a
diamond:

That is to say that infinity (or at least most of it) is best associated not which
a place or a time, but with a set of light rays! In 3+1 dimensions, we can as
usual decide to draw just the r, t coordinates. In this case, the Penrose diagram
for 3+1 Minkowski space is drawn as a half-diamond:

9.6.3 Penrose Diagrams for Black holes

Using the same scheme, we can draw a diagram that shows the entire spacetime
for the eternal Schwarzschild black hole. Remember that the distances are no
longer represented accurately. As a result, some lines that used to be straight
get bent12. For example, the constant r curves that we drew as hyperbolae
before appear somewhat different on the Penrose diagram. However, all light
rays still travel along straight 45 degree lines. The result is:

12This is the same effect that one finds on flat maps of the earth where lines that are really
straight (geodesics) appear curved on the map.
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As you might guess, I did not introduce Penrose diagrams just to draw a new
diagram for the Schwarzschild black hole. It turns out though that Schwarzschild
black holes are not the only kind of black holes that can exist. Recall that the
Schwarzschild metric was correct only outside of all of the ‘matter’ (which means
anything other than gravitational fields) and only if the matter was spherically
symmetric (‘round’). Another interesting case to study occurs when we add a
little bit of electric charge to a black hole. In this case, the charge creates an
electric field which will fill all of space! This electric field carries energy, and so
is a form of ‘matter.’ Since we can never get out beyond all of this electric field,
the Schwarzschild metric by itself is never quite valid in this spacetime. Instead,
the spacetime is described by a related metric called the Reissner-Nor̈dstr∅m
(RN) metric. The Penrose diagram for this metric is shown below:
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Actually, this is not the entire spacetime.... the dots in the diagram above indi-
cate that this pattern repeats infinitely both to the future and to the past! This
diagram has many interesting differences when compared to the Schwarzschild
diagram. One is that the singularity in the RN metric is timelike instead of be-
ing spacelike. Another is that instead of there being only two exterior regions,
there are now infinitely many!

The most interesting thing about this diagram is that there does exist a timelike
worldline (describing an observer that travels more slowly than light) that starts
in one external region, falls into the black hole, and then comes back out through
a ‘past horizon’ into another external region. Actually, is possible to consider the
successive external regions as just multiple copies of the same external region.
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In this case, the worldline we are discussing takes the observer back into the
same universe but in such a way that they emerge to the past of when the
entered the black hole!
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with finite

acceleration

However, it turns out that there is an important difference between the Schwarzschild
metric and the RN metric. The Schwarzschild metric is stable. This means that,
while the Schwarzschild metric describes only an eternal black hole in a space-
time by itself (without, for example, any rocket ships near by carrying observers
who study the black hole), the actual metric which would include rocket ships,
falling scientists and students, and so on can be shown to be very close to the
Schwarzschild metric. This is why we can use the Schwarzschild metric itself to
discuss what happens to objects that fall into the black hole.

It turns out though that the RN metric does not have this property. The exterior
is stable, but the interior is not. This happens because of an effect illustrated on
the diagram below. Suppose that some energy (say, a light wave) falls into the
black hole. From the external viewpoint this is a wave with a long wavelength
and therefore represents a small amount of energy. The two light rays drawn
below are in fact infinitely far apart from the outside perspective, illustrating
that the wave has a long wavelength when it is far away.
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However, inside the black hole, we can see that the description is different. Now
the two light rays have a finite separation. This means that that near the light
ray marked “inner horizon,” what was a long wavelength light ray outside is
now of very short wavelength, and so very high energy! In fact, the energy
created by any small disturbance will become infinite at the “inner horizon.” It
will come as no surprise that this infinite energy causes a large change in the
spacetime.

The result is that dropping even a small pebble into an RN black hole creates a
big enough effect at the inner horizon to radically change the Penrose diagram.
The Penrose diagram for the actual spacetime containing an RN black hole
together with even a small disturbance looks like this:
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Some of the researchers who originally worked this out have put together a
nice readable website that you might enjoy. It is located at (http://www-
theorie.physik.unizh.ch/∼droz/inside/).

Actually, I have to admit that no one believes that real black holes in nature
will have a significant electric charge. The point is that a black hole with a sig-
nificant (say, positive charge) will attract other (negative) charges, which fall in
so that the final object has zero total charge. However, real black holes do have
one property that turns out to make them quite different from Schwarzschild
black holes: they are typically spinning. Spinning black holes are not round,
but become somewhat disk shaped (as do all other spinning objects....). As
a result, they are not described by the Schwarzschild metric. The spacetime
that describes a rotating black hole is called the Kerr metric. There is also of
course a generalization that allows both spin and charge and which is called the
Kerr-Newman metric.

It turns out that the Penrose diagram for a rotating black hole is much the
same as that of an RN black hole, but with the technical complication that
rotating black holes are not round. One finds the same story about an unstable
inner horizon in that context as well, with much the same resolution. I would
prefer not to go into a discussion of the details of the Kerr metric because of the
technical complications involved, but it is good to know that things basically
work just the same as for the RN metric above.

9.6.4 Some Cool Stuff

Other Relativity links: In case you haven’t already discovered them, the SU Rel-
ativity Group (the group that does research in Relativity) maintains a page of
Relativity Links at (http://physics.syr.edu/research/relativity/RELATIVITY.html).
The ones under ‘Visualizing Relativity’

(http://physics.syr.edu/research/relativity/RELATIVITY.html#Visualizing Rel-
ativity)

can be a lot of fun.
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9.7 Homework Problems

Fun with the Schwarzschild Metric: In the first few problems below, you
will explore the Schwarzschild metric – the metric that describes the gravita-
tional field (that is, the shape of spacetime) outside of any spherically symmetric
distribution of matter. Thus, this same metric describes the shape of spacetime
outside of round planets, round starts, round neutron stars, and round black
holes!!! The only differences between these objects are 1) the value of the mass
M and 2) how close you can get to the object before you hit the surface of the
matter (so that the Schwarzschild metric no longer applies).

In it’s full glory, the Schwarzschild metric is:

ds2 = −
(

1− Rs
r

)
dt2 +

dr2

1− Rs

r

+ r2dθ2 + r2 sin2 θ dφ2, (9.48)

where RS = 2MG/c2.

Here, θ and φ are coordinates on a sphere as shown below. θ is similar to
latitude – it is the angle between your position on the sphere and the north
pole – thus, θ goes from zero (at the north pole) to π at the south pole. φ is
like longitude, running from 0 to 2π around the sphere. These are the standard
spherical coordinates used by physicists; however, they are ‘backwards’ from the
coordinates used in many calculus classes (that is, θ and φ have been switched).
The point p below has coordinates θ, φ:

North Pole

p

θ

φ

1. Consider a static clock at some value of r.

(a) In terms of the radial position r, how fast does a static clock run
relative to a clock far away (at r = ∞)? Hint: calculate the proper
time dτ measured by such a clock.

(b) Suppose that you are standing on the surface of the Sun. How fast
does your clock run relative to a clock far away (at r = ∞)? (i.e.,
calculate the relevant number.) Note that Msun = 2 × 1030kg, G =
6.7 × 10−11Nm2/kg2, and c = 3 × 108m/s. Also, at the surface of
the sun, r = 7 × 108m.
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(c) In terms of r, what is the acceleration of this clock relative to freely
falling observers?

(d) Suppose that you are standing on the surface of the Sun. How heavy
do you feel?

2. Let’s look at the shape of a ‘slice of simultaneity’ as defined by the static
observers in the Schwarzschild metric. This is a slice with t = constant,
so that dt = 0. The slice is a three dimensional surface labeled by r, θ,
and φ. For simplicity, let’s think about the two dimensional surface that
goes through the equator – i.e., let’s look at the subsurface θ = π/2. On
this subsurface, dθ = 0.

I’d like you to examine the curvature of this subsurface. As we have seen,
the easiest way to do this is to compare the circumference of circles with
their radius. Here, however, we have a complication: the metric above is
only correct outside the matter (i.e., outside the star). So, we can’t use it
to describe what happens at the center.

One way to get around this problem is to change our focus slightly. Instead
of finding the function C = C(R) that relates the Circumference C to the
Radius R, we can find the derivative dC/dR. This gives the rate of change
dC in the circumference as the circle is enlarged by a proper distance dR.
Note that, in flat space, C = 2πR so dC/dR = 2π.

In curved space, the answer will be different. You can calculate dC/dR
for the t = const, θ = π/2 subsurface of the Schwarzschild metric by
first finding the circumference C = C(r) for a circle of constant r. You
can then compute dC/dr directly. The derivative dC/dR can then be
calculated from dC/dr and dr/dR using the chain rule. To find dr/dR,
remember that the radius R is the actual length of a line that goes straight
out from the center of the circle to the edge.

(a) What is dC/dR?

(b) Does C increase too fast or too slow relative to flat space?

(c) What happens to dC/dR as r gets very big??

3. When we studied the effect of gravity on clocks in section 9.1.1 we only
did the computations for static clocks. However, we mentioned that other
(‘moving’) clocks would measure time differently – much as was true back
in our study of special relativity (flat spacetime). The metric above allows
you to calculate how this works.

Let’s look at clocks that are in nice, circular orbits of constant r. A
key question is: how fast do such clocks move around the star (relative
to static observers)?? Unfortunately, this question is beyond the scope of
this course – since orbiting objects are freely-falling, it involves calculating
the actual worldlines of geodesics in the Schwarzschild metric. So, let me
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just give you the answer: an object in a circular orbit at r moves around
with an angular velocity of

dφ

dt
=

√
Rs
2r3

. (9.49)

That is, it moves around the planet, star, or black hole so that φ =

φ0 + t
√

Rs

2r3 . In particular, this means that, along its orbit we have,

dφ = dt

√
Rs
2r3

. (9.50)

(a) You can now use this to calculate the relationship between the proper
time τ measured by the clock in orbit and the time t (which, you may
recall [see problem 1], is the proper time measured by a static clock
far away). Consider a clock in a circular orbit (i.e., at constant r)
around the equator (constant θ, θ = π/2). You can use the above
equation and the Schwarzschild metric to relate dτ directly to dt.
[Remember, dτ2 = −ds2.] Solve the resulting equation to express τ
in terms of t.

(b) If your calculations above are correct, something interesting should
happen at r = 3RS/2. What happens to the relationship of τ and t
there?

(c) [extra credit] Do you know how to interpret the result you found
in (3b)? [Hint: what happens to dτ2 for r < 3RS/2]?

4. Suppose that you are tossed out of a space ship outside of a black hole
and that you fall in. To answer the questions below, use the fact that the
spacetime near the horizon of a black hole is just like the region of flat
spacetime near an acceleration horizon.

(a) Recall that, near the black hole horizon, a spacetime diagram (in a
certain freely falling frame) looks like this:
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r = R s

r = R s

Sketch a worldline on this diagram describing you falling into the
black hole as described above.

(b) Suppose that you send out light rays at regular intervals to signal
the rocket. Draw several of these light rays on your diagram.

(c) The people on the rocket watch the light rays you send out through
a telescope. Describe what they see. Do they see you age slowly or
quickly? When do they see you cross the horizon? If they first sit
and watch for awhile, is it possible for them to come and rescue you?

(d) Describe what you feel as you fall in. Is there a difference between
falling into a ‘large’ black hole and a ‘small’ black hole? If so, explain
what it is. [Hint: Have you read section 9.4 on tidal forces yet?]

(e) Suppose now that the rocket sends out light rays toward you at reg-
ular intervals. Describe what you see if you watch these light rays
through a telescope. Do you see people in the rocket age slowly or
quickly? Do you see anything special when you cross the horizon?
Is there a difference between falling into a ‘large’ black hole and a
‘small’ black hole? If so, explain what it is.

For each of the problems below, the term ‘black hole’ refers to the round
Schwarzschild black hole that we have been studying in class.

5. Use your knowledge of static observers in a gravitational field to answer
the following questions.

(a) Is it possible for a rocket to remain static (i.e., to remain at constant
r, θ, φ) at the photon sphere?

(b) If you were placed in such a rocket, would you remain alive? (Hint:
How heavy would you feel?) If the answer depends on the black
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hole, describe roughly for which black holes you would survive and
for which you would not.

6. Remember that, near the horizon of a black hole, a good picture of space-
time looks like:

r =  R sr =  R s

r =  R s r =  R s
IV

II

III I

Here we have drawn an ‘eternal’ black hole – one that has been present
since the Universe began.

(a) What do the four regions (I, II, III, and IV) represent? (In particular,
what is ‘outside’ and what is ‘inside’?)

(b) Draw another copy of the diagram above. Draw in the singularity on
this new diagram.

(c) Draw in the lines of constant r (the coordinate in the Schwarzschild
metric) on this diagram.

(d) Draw a new diagram showing the lines of constant t (the coordinate in
the Schwarzschild metric) on this diagram. (Hint: remember that the
static observers near the black hole horizon are just like the uniformly
accelerated observers near an acceleration horizon.)

(e) If you fall into a black hole from the outside (i.e., if you fall past the
horizon), can you ever get out? Use your diagram to explain why or
why not.

(f) Can you travel from region I to region III? Use your diagram to
explain why or why not.

7. Suppose that you are tossed out of a space ship outside of a black hole and
that you fall in. Draw a spacetime diagram (in which light rays move at
45o to the vertical) showing you falling from the horizon to the singularity.
Describe what you feel at various stages as you fall along this worldline.

8. Consider a ball of matter (say, a star) collapsing to form a black hole.

(a) Draw a spacetime diagram (in which all light rays move at 45o to the
vertical) that describes this process.

(b) Suppose that we are outside the black hole at some constant value of
r. What do we see if we watch the collapse through a telescope?
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(c) What would we see and feel if, instead of staying out side, we fell into
the black hole? Would we ever see the star’s surface reach r = 0?

9. Suppose that you are a static observer (perhaps you have built a platform
to stand on) far from a black hole and that you tie a long string (of
negligible mass) to a 1kg rock. You then drop the rock and let it fall
toward the black hole, pulling the string with it. You also tie the string
to an electric generator so that, as the rock falls, it powers the generator.
The generator will take energy from the motion of the rock and turn it
into electrical energy.

Suppose that the rock falls all the way to the photon sphere before stop-
ping. If all of the energy lost by the rock is made into electricity (i.e., a
100% efficiency generator), how much electricity will be made??? Is there
a difference between using a ‘large’ black hole and a ‘small’ black hole? If
so, explain what it is.



Chapter 10

Cosmology: The Study of
the Universe as a whole

Read Einstein, ch. 30-32

In the last few chapters we have been talking a lot about the geometry, or shape,
of spacetime. In the particular case of the spacetime near a Schwarzschild black
hole, we have gone into great detail on this subject. But what about the big
picture? What can we say about the shape of the Universe as a whole?

Einstein asked this question very early on. He was motivated by technical
problems with the description of the Universe as a whole in Newtonian gravity
and he wanted to see if his theory worked better. It did, but not quite in the
way that he expected....

10.1 The Copernican Principle and Relativity

Of course, in the early 1900’s people did not know all that much about the
universe, but they did have a few ideas on the subject. In particular, a certain
philosophical tradition ran strong in astronomy, dating back to Copernicus.
(Copernicus was the person who promoted the idea that the stars and planets
did not go around the earth, but that instead the planets go around the sun.)
This tradition held in high esteem the principle that “The earth is not at a
particularly special place in the Universe”. It was this idea which had freed
Copernicus from having to place the earth at the center of the Universe.

The idea was then generalized to say that, for example “The Sun is not a
particularly special star,” and then further to “There is no special place in the
Universe.” Or, said differently, the Copernican principle is that “Every place
in the universe is basically the same.”

So, on philosophical grounds, people believed that the stars were sprinkled more
or less evenly throughout the universe. Now, one might ask, is this really true?

283
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Well, the stars are not in fact evenly sprinkled. We now know that they are
clumped together in galaxies. And even the galaxies are clumped together a
bit. However, if one takes a sufficiently rough average then it is basically true
that the clusters of galaxies are evenly distributed. We say that the universe
is homogeneous. Homogeneous is just a technical word which means that every
place in the universe is the same.

10.1.1 Homogeneity and Isotropy

In fact, there is another idea that goes along with every place being essentially
the same. This is the idea that the universe is the same in every direction. The
technical word is that the universe is isotropic. To give you an idea of what this
means, I have drawn below a picture of a universe that is homogeneous but is
not isotropic – the galaxies are farther apart in the vertical direction than in
the horizontal direction:

In contrast, a universe that is both homogeneous and isotropic must look roughly
like this:

10.1.2 That technical point about Newtonian Gravity in
Homogeneous Space

By the way, we can use the picture above to point out that technical problem
I mentioned with Newtonian Gravity in infinite space. I will probably skip this
part in class, but it is here for your edification.

The point is that, to compute the gravitational field at some point in space we
need to add up the contributions from all of the infinitely many galaxies. This
is an infinite sum. When you discussed such things in your calculus class, you
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learned that some infinite sums converge and some do not. Actually, this sum
is one of those interesting in-between cases where the sum converges (if you set
it up right), but it does not converge absolutely. What happens in this case is
that you can get different answers depending on the order in which you add up
the contributions from the various objects.

To see how this works, recall that all directions in this universe are essentially
the same. Thus, there is a rotational symmetry and the gravitational field must
be pointing either toward or away from the center. Now, it turns out that New-
tonian gravity has a property that is much like Gauss’ law in electromagnetism.
In the case of spherical symmetry, the gravitational field on a given sphere de-
pends only on the total charge inside the sphere. This makes it clear that on
any given sphere there must be some gravitational field, since there is certainly
matter inside:

But what if the sphere is very small? Then, there is essentially no matter inside,
so the gravitational field will vanish. So, at the ‘center’ the gravitational field
must vanish, but at other places it does not.

But now we recall that there is no center! This universe is homogeneous, mean-
ing that every place is the same. So, if the gravitational field vanishes at one
point, it must also vanish at every other point..... This is what physicists call
a problem. However, Einstein’s theory turns out not to have this problem. In
large part, this is because Einstein’s conception of a gravitational field is very
different from Newton’s. In particular, Einstein’s conception of the gravitational
field is local while Newton’s is not.

10.1.3 Homogeneous Spaces

Now, in general relativity, we have to worry about the curvature (or shape) of
space. So, we might ask: “what shapes are compatible with the idea that space
must be homogeneous and isotropic?” It turns out that there are exactly three
answers:

1. A three-dimensional sphere (what the mathematicians call S3). This can
be thought of as the set of points that satisfy x2

1 + x2
2 + x2

3 + x2
4 = R2 in

four-dimensional Euclidean space.

2. Flat three dimensional space.
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3. The three dimensional version of the Lobachevskian space.

By the way, it is worth pointing out that option (1) gives us a finite sized
universe. The second and third options gives us infinite spaces. However, if we
were willing to weaken the assumption of isotropy just a little bit, we could get
finite sized spaces that are very much the same. To get an idea of how this
works, think of taking a piece of paper (which is a good model of an infinite flat
plane) and rolling it up into a cylinder. This cylinder is still flat, but it is finite
in one direction. This space is homogeneous, though it is not isotropic (since
one direction is finite while the other is not):

Rolling up flat three dimensional space in all three directions gives what is called
a 3-torus, and is finite in all three directions. The Lobachevskian space can also
be ‘rolled up’ to get a finite universe. This particular detail is not mentioned in
many popular discussions of cosmology.

Actually, these are not just three spaces. Instead, each possibility (sphere, flat,
Lobachevskian) represents 3 sets of possibilities. To see the point, let’s consider
option #1, the sphere. There are small spheres, and there are big spheres. The
big spheres are very flat while the tiny spheres are tightly curved. So, the sphere
that would be our universe could, in principle, have had any size.

The same is true of the Lobachevskian space. Think of it this way: in Escher’s
picture, no one told us how big each fish actually is. Suppose that each fish
is one light-year across. Such a space can also be considered ‘big,’ although of
course any Lobachevskian space has infinite volume (an infinite number of fish).
In particular, if we consider a region much smaller than a single fish, we cannot
see the funny curvature effects and the space appears to be flat. You may recall
that we have to look at circles of radius 2 fish or so to see that C/R is not always
2π. So, if each fish was a light year across, we would have to look really far away
to see the effects of the curvature. On the other hand, if each fish represented
only a millimeter (a ‘small’ space), the curvature would be readily apparent just
within our class room. The point is again that there is really a family of spaces
here labelled by a length – roughly speaking, this length is the size of each fish.

What about for the flat space? After all, flat is flat..... Here, making the
universe bigger does not change the geometry of space at all – it simply remains
flat. However, it will spread out the galaxies, stars, and such. (The same
is, of course, also true in the spherical and Lobachevskian contexts.) So, for
the flat space case, one easy effect to visualize is the change in the density of
matter. However, there is more to it than this: the spacetime is curved, and the
curvature depends on the rate of expansion. We can see this because observers
at different places in ‘space’ who begin with no relative velocity nevertheless
accelerate apart when the universe ‘expands’ !
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10.2 Dynamics! (a.k.a. Time Evolution)

So, homogeneity and isotropy restrict the shape of space to be in one of a
few simple classes. That is to say, at any time (to the extent that this means
anything) the shape of space takes one of these forms. But what happens as
time passes? Does it maintain the same shape, or does it change? The answer
must somehow lie inside Einstein’s equations (the complicated ones that we
have said rather little about), since they are what control the behavior of the
spacetime metric.

Luckily, the assumptions of homogeneity and isotropy simplify these equations
a lot. Let’s think about what the metric will look like. It will certainly have
a dt2 part. If we decide to use a time coordinate which measures proper time
directly then the coefficient of dt2 will just be −1. We can always decide to make
such a choice. The rest of the metric controls the metric for space1, which must
be the metric for one of the three spaces described above. Now, the universe
cannot suddenly change from, say, a sphere to a Lobachevskian space. So, as
time passes the metric for space can only change by changing the the overall
size (a.k.a. ‘scale’) of the space. In other words, the space can only get bigger
or smaller.

What this means mathematically is that the metric must take the general form:

ds2 = −dτ2 + a2(t)(metric for unit− sized space). (10.1)

The factor a(t) is called the ‘scale factor’ or ‘size of the universe.’ When a is
big, all of the spatial distances are very big. When a is small, all of the spatial
distances are very small. So, a space with small a will have a highly curved space
and very dense matter. Technically, the curvature of space is proportional to
1/a2, while the density of matter is proportional to 1/a3.

Note that the only freedom we have left in the metric is the single function a(t).
Einstein’s equations must therefore simplify to just a single equation that tells
us how a(t) evolves in time.

10.2.1 Expanding and Contracting Universes

Before diving into Einstein’s equations themselves, let’s first take a moment to
understand better what it means if a changes with time. To do so, let’s consider
a case where a starts off ‘large’ but then quickly decreases to zero:

1There can also be terms of the form dtdx, dtdy, and dtdz that mix time and space.
However, these three terms can be thought of as giving the x, y, z components of a vector in
space. But space is isotropic, so there is no special direction in which this vector can point.
The only vector with no direction is the zero vector, so in fact this vector must vanish. It
follows that there are in fact no cross terms of this sort.
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t

a

a = 1

This is just a fake model system to better understand what a is. I make no claims
that this represents any reasonable solution of Einstein’s equations. Neverthe-
less, let’s think about what happens to a freely falling object in this universe
that begins ‘at rest’, meaning that it has zero initial velocity in the reference
frame used in equation (10.1). If it has no initial velocity, then we can draw a
spacetime diagram showing the first part of its worldline as a straight vertical
line:

x

t

Now, when a shrinks to zero, what happens to the worldline? Will it bend
to the right or to the left? Well, we assumed that the Universe is isotropic,
right? So, the universe is the same in all directions. This means that there is
a symmetry between right and left, and there is nothing to make it prefer one
over the other. So, it does not bend at all but just runs straight up the diagram.
In other words, an object that begins at x = 0 with zero initial velocity will
always remain at x = 0.

Of course, since the space is homogeneous, all places in the space are the same
and any object that begins at any x = x0 with zero initial velocity will always
remain at x = x0. From this perspective it does not look like much is happening.

However, consider two such objects: one at x1 and one at x2. The metric ds2

contains a factor of the scale a. So, the actual proper distance between these
two points is proportional to a. Suppose that the distance between x1 and x2 is
L when a = 1 (at t = 0). Then, later, when the scale has shrunk to a < 1, the
new distance between this points is only aL. In other words, the two objects
have come closer together.

Clearly, what each object sees is another object that moves toward it. The
reason that things at first appeared not to move is that we chose a funny sort of
coordinate system (if you like, you can think of this as a funny reference frame,
though it is nothing like an inertial reference frame in special relativity). The
funny coordinate system simply moves along with the freely falling objects –
cosmologists call it the ‘co-moving’ coordinate system.

It is also worth pointing out what happens if we have lots of such freely falling
objects, each remaining at a different value of x. In this case, each object sees
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all of the other objects rushing toward it as a decreases. Furthermore, an object
which is initially a distance L away (when a = 1) becomes only a distance aL
away. So, the object has ‘moved’ a distance (1 − a)L. Similarly, an object
which is initially a distance 2L away becomes 2aL away and ‘moves’ a distance
2(1− a)L – twice as far.

This reasoning leads to what is known (for reasons that we will explain later) as
the ‘Hubble Law.’ This law states that in a homogeneous universe the relative
velocity between any two objects is proportional to their distance:

v = H(t) · d, (10.2)

where v is the relative ‘velocity’, d is the distance, and H(t) is the ‘Hubble
constant’ – a number that does depend on time but does not depend on the
distance to the object being considered. Here I have put the word velocity (and
related words like ‘moves’) in quotes for reasons that will become clear below.

It is important to stress again that the Hubble constant is constant only in
the sense of being independent of d. There is no particular reason that this
‘constant’ should be independent of time and, indeed, we will see that it is
natural for H to change with time. I have written the above relation using
H(t) to emphasize this point. The Hubble constant is determined by the rate
of change of a: H(t) = 1

a
da
dt .

As expected, there is no special object that is the ‘center’ of our collapsing
universe. Instead, every object sees itself as the center of the process. As usual,
none of these objects is any more ‘right’ about being the center than any other.
The difference is just a change of reference frames.

10.2.2 A flat spacetime model

In case this is hard to grasp, it is worth mentioning that you have seen something
similar happen even in flat spacetime. Suppose I consider an infinite collection of
inertial observers all of whom pass through some special event. Let me suppose
that observer #1 differs from observer #0 by the same boost parameter as any
other observer n+1 differs from observer n. We could draw a spacetime diagram
showing these observers as below:
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1 2-1-2 0

x = 0

t  = const

Note that this is not the k = 0 Universe which has flat space. Instead, the
entire spacetime is flat here when viewed as a whole, but the slice representing
space on the above diagram is a hyperboloid, which is most definitely not flat.
Instead, this hyperboloid is a constant negative curvature space (k = −1). Since
the spacetime here is flat, we have drawn the limit of the k = −1 case as we
take the matter density to zero. It is not physically realistic as a cosmology, but
I include it here to give you a diagram that illustrates the co-moving coordiante
system used in cosmology. In addition, for k = −1 the matter density does
become vanishingly small in the distant future (if the cosmological constant
vanishes; see below). Thus, for such a case this diagram does become accurate
in the limit t→∞.

Shown here in the reference frame of observer #0, that observer appears to
be the center of the expansion. However, we know that if we change reference
frames, the result will be:

2 30-1 1
t  = const
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In this new reference frame, now another observer appears to be the ‘center.’

These discussions in flat spacetime illustrate three important points: The first
is that although the universe is isotropic (spherically symmetric), there is no
special ‘center.’ Note that the above diagrams even have a sort of ‘big bang’
where everything comes together, but that it does not occur any more where
one observer is than where any other observer is.

The second important point that the above diagram illustrates is that the surface
that is constant t in our co-moving cosmological coordinates does not represent
the natural notion of simultaneity for any of the co-moving observers. The
‘homogeneity’ of the universe is a result of using a special frame of reference in
which the t = const surfaces are hyperbolae. As a result, the universe is not in
fact homogeneous in any inertial reference frame (or any similar reference frame
in a curved spacetime).

This is related to the third point: When discussing the Hubble law, a natural
question is, “What happens when d is large enough that H(t) · d is greater than
the speed of light?” Recall that in general relativity measurements that are not
local are a subtle thing. For example, in the flat spacetime example above, in
the coordinates that we have chosen for our homogeneous metric, the t = const
surfaces are hyperbolae. They are not in fact the surfaces of simultaneity for
any of the co-moving observers.

Now, the distance between co-moving observers that we have been discussing is
the distance measured along the hyperbola (i.e., along the homogeneous slice),
which is a very different notion of distance than we are used to using in Minkowski
space. This means that the ‘velocity’ in the Hubble law is not what we had pre-
viously called the relative velocity of two objects in Minkowski space. Instead,
in our flat spacetime example, the velocity in the Hubble law turns out to cor-
respond directly to the boost parameter θ. However, for the nearby galaxies (for
which the relative velocity is much less than the speed of light), this subtlety
can be safely ignored (since v and θ are proportional there).

10.2.3 On to the Einstein Equations

So, the all important question is going to be: What is the function a(t)? What
do the Einstein equations tell us about how the Universe will actually evolve?
Surely what Newton called the attractive ‘force’ of gravity must cause something
to happen!

As you might expect, the answer turns out to depend on what sort of stuff
you put in the universe. For example, a universe filled only with light behaves
somewhat differently from a universe filled only with dirt.

In particular, it turns out to depend on the density of energy (ρ) and on the
pressure (P ). [You may recall that we briefly mentioned earlier that, in general
relativity, pressure is directly a source of gravity.]

For our homogeneous isotropic metrics, it turns out that the Einstein equations
can be reduced to the following two equations:
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3

a2

(
da

dt

)2

=
8πG

c2
ρ− 3

kc2

a2
, (10.3)

3

a

d2a

dt2
= −4πG

c2
(ρ+ 3P ) (10.4)

In the first equation, the constant k is equal to +1 for the spherical (positively
curved) universe, k = 0 for the flat universe, and k = −1 for the Lobachevskian
(negatively curved) universe.

We’re not going to derive these equations, but let’s talk about them a bit. The
second one is of a more familiar form. It looks kind of like Newton’s second law
combined with Newton’s law of Universal Gravitation – on the left we have the
acceleration d2a/dt2 while the right provides a force that depends on the amount
of matter present (ρ). Interestingly though, the pressure P also contributes. The
reason that Newton never noticed the pressure term is that ρ is the density of
energy and, for an object like a planet, the energy is mc2 which is huge due
to the factor of c2. In comparison, the pressure inside the earth is quite small.
Nevertheless, this pressure contribution can be important in cosmology.

Recall that when a changes it tells us whether the (co-moving) bits of matter
are coming closer together or spreading farther apart. This means that, in the
present context, the Einstein equations tell us what the matter is doing as well
as what the spacetime is doing. Thought of this way, the second equation should
make a lot of sense. The left hand side is an acceleration term, while the right
hand side is related to the sources of gravity. Under familiar conditions where
the particles are slowly moving, the energy density is roughly c2 times the mass
density. This factor of c2 nicely cancels the c2 in the denominator, leaving the
first term on the right hand side as G times the density of mass. The pressure
has no hidden factors of c2 and so P/c2 is typically small. Under such conditions,
this equation says that gravity causes the bits of matter to accelerate toward
one another (this is the meaning of the minus sign) at a rate proportional to the
amount of mass around. That sounds just like Newton’s law of gravity, doesn’t
it?

In fact, we see that gravity is attractive in this sense whenever energy density ρ
and pressure (P ) are positive. In particular, for positive energy and pressure, a
must change with time in such a way that things accelerate toward each other.
Under such conditions it is impossible for the universe to remain static. Now,
back in the early 1900’s people in fact believed (based on no particular evidence)
that the universe had been around forever and had been essentially the same
for all time. So, the idea that the universe had to be changing really bothered
Einstein. In fact, it bothered him so much that he found a way out.

10.2.4 Negative Pressure, Vacuum Energy, and the Cos-
mological Constant

Physicists do expect that (barring small exceptions in quantum field theory)
the energy density ρ will be always be positive. However, the is no reason in
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principle why the pressure P must be positive. Let’s think about what a negative
pressure would mean. A positive pressure is an effect that resists something
being squeezed. So, a negative pressure is an effect that resists something being
stretched. This is also known as a ‘tension.’ Imagine, for example, a rubber
band that has been stretched. We say that it is under tension, meaning that it
tries to pull itself back together. A sophisticated relativistic physicist calls such
an effect a ‘negative pressure.’

Let’s look closely at equation (10.4). We see that the universe can in fact ‘sit
still’ and remain static if ρ + 3P = 0. If ρ + 3P is negative, then gravity will
in fact be repulsive (as opposed to attractive) the various bits of matter will
accelerate apart. Now, because ρ is typically very large (since it is the density
of energy and E = mc2) this requires a truly huge negative pressure. The kinds
of matter that we are most familiar with will never have such a large negative
pressure. However, physicists can imagine that their might possibly be such a
kind of matter.

The favorite idea along these lines is called “vacuum energy.” The idea is that
empty space itself might somehow have energy. At first, this is a rather shocking
notion. I mean, if it is empty, how can it have energy? But, some reflection will
tell us that this may simply be a matter of semantics: given the space that we
think is empty (because we have cleared it of everything that we know how to
remove), how empty is it really? In the end, like everything else in physics, this
question must be answered experimentally. We need to find a way to go out
and to measure the energy of empty space.

Now, what is clear is that the energy of empty space must be rather small.
Otherwise, it’s gravitational effects would screw up our predictions of, for ex-
ample, the orbits of the planets. However, there is an awful lot of ‘empty’ space
out there. So, taken together it might still have some nontrivial effect on the
universe as a whole.

OK, so why should vacuum energy (the energy density of empty space) have
negative pressure? Well, an important fact here is that energy density and
pressure are not completely independent. Pressure, after all is related to the
force required to change the size of a system: to smash it or to stretch it out.
On the other hand, force is related to energy: for example, we must add energy
to a rubber band in order fight the tension forces and stretch it out. The fact
that we must add energy to a spring in order to stretch it is what causes the
spring to want to contract; i.e., to have a negative pressure when stretched.

Now, if the vacuum itself has some energy density ρ and we stretch the space
(which is just what we will do when the universe expands) then the new (stretched)
space has more vacuum and therefore more energy. So, we again have to add
energy to stretch the space, so there is a negative pressure. It turns out that pres-
sure is (minus) the derivative of energy with respect to volume P = −dE/dV .
Here, E = ρV , so P = −ρ. Clearly then for pure vacuum energy we have
ρ + 3P < 0 and gravity is repulsive. On the other hand, combining this with
the appropriate amount of normal matter could make the two effects cancel out
and could result in a static universe.
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Since P = −ρ for vacuum energy, we see that vacuum energy is in fact charac-
terized by a single number. It is traditional to call this number Λ, and to define
Λ so that we have

ρ =
Λ

8πG
,

P = − Λ

8πG
.

Such a Λ is called the ‘cosmological constant.’ We have, in fact seen it before.
You may recall that, during our very brief discussion of the Einstein equations in
section 8.4.1, we mentioned that Einstein’s assumptions and the mathematics
in fact allowed two free parameters. One of these we identified as Newton’s
Universal Gravitational Constant G. The other was the cosmological constant
Λ. This is the same cosmological constant: as we discussed back then, the
cosmological constant term in the Einstein equations could be called a funny
sort of ‘matter.’ In this form, it is none other than the vacuum energy that we
have been discussing.

We mentioned that Λ must be small to be consistent with the observations of the
motion of planets. However, clearly matter is somewhat more clumped together
in our solar system than outside. Einstein hoped that this local clumping of
normal matter (but not of the cosmological constant) would allow the gravity
of normal matter to completely dominate the situation inside the solar system
while still allowing the two effects to balance out for the universe overall.

Anyway, Einstein thought that this cosmological constant had to be there –
otherwise the universe could not remain static. However, in the early 1920’s,
something shocking happened: Edwin Hubble made detailed measurements of
the galaxies and found that the universe is in fact not static. He used the Doppler
effect to measure the motion of the other galaxies and he found that they are
almost all moving away from us. Moreover, they are moving away from us at a
rate proportional to their distance! This is why the rule v = H(t) · d is known
as the ‘Hubble Law.’ The universe appeared to be expanding..... The result
was that Einstein immediately dropped the idea of a cosmological constant and
declared it to be the biggest mistake of his life.

10.3 Our Universe: Past, Present, and Future

OK, so the other galaxies are running away from ours at a rate proportional to
their distance from us. The implication is that the universe is expanding, and
that it has been expanding for some time. In fact, since gravity is generally
attractive, we would expect that the universe was expanding even faster in the
past.

To find out more of the details we will have to look again to the Einstein
equations. We will also need to decide how to encode the current matter in
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the universe in terms of a density ρ and a pressure P . Let’s first think about
the pressure. Most matter today is clumped into galaxies, and the galaxies are
quite well separated from each other. How much pressure does one galaxy apply
to another? Essentially none. So, we can model the normal matter by setting
P = 0.

When the pressure vanishes, one can use the Einstein equations to show that the
quantity: E = 8πGρa3/3 is independent of time. Roughly speaking, this is just
conservation of energy (since ρ is the density of energy and a3 is proportional
to the volume). As a result, assuming that Λ = 0 the Einstein equations can be
written:

1

c2

(
da

dt

)2

− E
c2a

+ k = 0. (10.5)

Recall that k is a constant that depends on the overall shape of space: k = +1 for
the spherical space, k = 0 for the flat space, and k = −1 for the Lobachevskian
space.

In the above form, this equation can be readily solved to determine the behavior
of the universe for the three cases k = −1, 0,+1. We don’t need to go into the
details here, but let me draw a graph that gives the idea of how a changes with
t in each case:

k = +1

k = -1

k = 0

a t

ta 2/3
a(t)

proper time

Note that for k = +1 the universe expands and then recontracts, whereas for
k = 0,−1 it expands forever. In the case k = 0 the Hubble constant goes to
zero at very late times, but for k = −1 the Hubble constant asymptotes to a
constant positive value at late times.

Note that at early times the three curves all look much the same. Roughly
speaking, our universe is just now at the stage where the three curves are be-
ginning to separate. This means that, the past history of the universe is more
or less independent of the value of k.
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10.4 Observations and Measurements

So, which is the case for our universe? How can we tell? Well, one way to figure
this out is to try to measure how fast the universe was expanding at various
times in the distant past. This is actually not as hard as you might think: you
see, it is very easy to look far backward in time. All we have to do is to look
at things that are very far away. Since the light from such objects takes such a
very long time to reach us, this is effectively looking far back in time.

10.4.1 Runaway Universe?

The natural thing to do is to try to enlarge on what Hubble did. If we could
figure out how fast the really distant galaxies are moving away from us, this will
tell us what the Hubble constant was like long ago, when the light now reaching
us from those galaxies was emitted. The redshift of a distant galaxy is a sort
of average of the Hubble constant over the time during which the signal was in
transit, but with enough care this can be decoded to tell us about the Hubble
constant long ago. By measuring the rate of decrease of the Hubble constant,
we can learn what kind of universe we live in.

However, it turns out that accurately measuring the distance to the distant
galaxies is quite difficult. (In contrast, measuring the redshift is easy.) Until
recently, no one had seriously tried to measure such distances with the accuracy
that we need. However, a few years ago it was realized that there may be a
good way to do it using supernovae.

The particular sort of supernova of interest here is called ‘Type Ia.’ Astrophysi-
cists believe that type Ia supernovae occur when we have a binary star system
containing one normal star and one white dwarf. We can have matter flowing
from the normal star to the white dwarf in an accretion disk, much as matter
would flow to a neutron star or black hole in that binary star system. But
remember that a white dwarf can only exist if the mass is less than 1.4 solar
masses. When extra matter is added, bringing the mass above this threshold,
the electrons in the core of the star get squeezed so tightly by the high pressure
that they bond with protons and become neutrons. This releases vast amount
of energy in the form of neutrinos (another kind of tiny particle) and heat which
results in a massive explosion: a (type Ia) supernova.

Anyway, it appears that this particular kind of supernova is pretty much always
the same. It is the result of a relatively slow process where matter is gradually
added to the white dwarf, and it always explodes when the total mass hits
1.4 solar masses. In particular, all of these supernovae are roughly the same
brightness (up to one parameter that astrophysicists think they know how to
correct for). As a result, supernovae are a useful tool for measuring the distance
to far away galaxies. All we have to do is to watch a galaxy until one of these
supernovae happens, and then see how bright the supernova appears to be.
Since it’s actual brightness is known, we can then figure out how far away it
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is. Supernovae farther away appear to be much dimmer while those closer in
appear brighter.

About two years ago, the teams working on this project released their data.
The result came as quite a surprise. Their data shows that the universe is not
slowing down at all. Instead, it appears to be accelerating!

As you might guess, this announcement ushered in the return of the cosmological
constant. By the way, the cosmological constant has very little effect when the
universe is small (since vacuum energy is the same density whether the universe
is large or small while the density of normal matter was huge when the universe
was small). However, with a cosmological constant, the effects of the negative
pressure get larger and larger as time passes (because there is more and more
space, and thus more and more vacuum energy). As a result, a cosmological
constant makes the universe expand forever at an ever increasing rate. Adding
this case to our graph, we get:

k = +1

k = 0

a t

ta 2/3
a(t)

proper time

Λ = 0

Λ = 0

Λ > 0
Λ = 0

k = -1

The line for Λ > 0 is more or less independent of the constant k.

So, should we believe this? The data in support of an accelerating universe has
held up well for three years now. However, there is a long history of problems
with observations of this sort. There are often subtleties in understanding the
data that are not apparent at first sight, as the various effects can be much more
complicated than one might naively expect. Physicists say that there could be
significant ‘systematic errors’ in the technique. All this is to say that, when you
measure something new, it is always best to have at least two independent ways
to find the answer. Then, if they agree, this is a good confirmation that both
methods are accurate.
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10.4.2 Once upon a time in a universe long long ago

It turns out that one way to get an independent measurement of the cosmological
constant is tied up with the story of the very early history of the universe. This
is of course an interesting story in and of itself.

Let’s read the story backwards. Here we are in the present day with the galaxies
spread wide apart and speeding away from each other. Clearly, the galaxies used
to be closer together. As indicated by the curves in our graphs, the early history
of the universe is basically independent of the value of Λ or k.

So, imagine the universe as a movie that we now play backwards. The galaxies
now appear to move toward each other. They collide and get tangled up with
each other. At some point, there is no space left between the galaxies, and they
all get scrambled up together – the universe is just a mess of stars.

Then the universe shrinks some more, so that the stars all begin to collide.
There is no space left between the stars and the universe is filled with hot
matter, squeezing tighter and tighter. The story here is much like it is near
the singularity of a black hole: even though squeezing the matter increases
the pressure, this does not stop the spacetime from collapsing. In fact, as we
have seen, pressure only adds to the gravitational attraction and accelerates the
collapse.

As the universe squeezes tighter, the matter becomes very hot. At a certain
point, the matter becomes so hot that all of the atoms ionize: the electrons
come off and separate from the nuclei. Something interesting happens here.
Because ionized matter interacts strongly with light, light can no longer travel
freely through the universe. Instead, photons bounce around between nuclei
like ping pong balls! It it the cosmic equivalent of trying to look through a very
dense fog, and it becomes impossible to see anything in the universe. This event
is particularly important because, as we discussed earlier, the fact that it takes
light a long time to travel across the universe means that when we look out into
the universe now, looking very far away is effectively looking back in time. So,
this ionization sets a limit on how far away and how far back in time we can
possibly see. On the other hand, ever since the electrons and nuclei got together
into atoms (deionization) the universe has been more or less transparent. For
this reason, this time is also called ‘decoupling.’ [Meaning that light ‘decouples’
or ‘disconnects’ from matter.] As a result, we might expect to be able to see all
the way back to this time.

What would we see if we could see that far back? Well, the universe was hot,
right? And it was all sort of mushed together. So, we might expect to see a
uniform glow that is kind of like looking into a hot fire. In fact, it was quite
hot: several thousand degrees.

Another way to discuss this glow is to remember that the universe is homo-
geneous. This means that, not only was stuff “way over there” glowing way
back when, but so was the stuff where we are. What we are saying is that the
whole universe (or, if you like, the whole electromagnetic field) was very hot
back then. A hot electromagnetic field contains a lot of light.... Anyway, the
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point about light barely interacting with matter since decoupling means that,
since that time, the electromagnetic field (i.e., light) should just have gone on
and done its thing independent of the matter. In other words, it cannot receive
energy (heat) from matter or loose energy (heat) by dumping it into matter. It
should have pretty much the same heat energy that it had way back then.

So, why then is the entire universe today not just one big cosmic oven filled
with radiation at a temperature of several thousand degrees? The answer is
that the expansion of the universe induces a redshift not only in the light from
the distant galaxies, but in the thermal radiation as well. The effect is similar
to the fact that a gas cools when it expands. Here, however, the gas is a gas of
photons and the expansion is due to the expansion of the universe. The redshift
since decoupling is about a factor of 2000, with the result that the radiation
today has a temperature of a little over 3 degrees Kelvin (i.e. 3 degrees above
absolute zero).

At 3 degrees Kelvin, electromagnetic radiation is in the form of microwaves (in
this case, think of them as short wavelength radio waves). This radiation can be
detected with what are basically big radio telescopes or radar dishes. Back in
the 60’s some folks at Bell Labs built a high quality radio dish to track satellites.
Two of them (Penzias and Wilson) were working on making it really sensitive,
when the discovered that they kept getting a lot of noise coming in, and coming
in more or less uniformly from all directions. It appeared that radio noise was
being produced uniformly in deep space!

This radio ‘noise’ turned out to be thermal radiation at a temperature of 2.7
Kelvin. Physicists call it the ‘Cosmic Microwave Background (CMB).’ It’s dis-
covery is one of the greatest triumphs of the ‘big bang’ idea. After all, that is
what we have been discussing. Long ago, before decoupling, the universe was
very hot, dense, and energetic. It was also in the process of expanding, so that
the whole process bears a certain resemblance (except for the homogeneity of
space) to a huge cosmic explosion: a big bang. The discovery of the CMB ver-
ifies this back to an early stage in the explosion, when the universe was so hot
and dense that it was like one big star.

By the way, do you remember our assumption that the universe is homogeneous?
We said that it is of course not exactly the same everywhere (since, for example,
the earth is not like the inside of the sun) but that, when you measure things
on a sufficiently large scale, the universe does appear to be homogeneous. Well,
the cosmic microwave background is our best chance to test the homogeneity on
the largest possible scales since, as we argued above, it will not be possible to
directly ‘see’ anything coming from farther away. The microwaves in the CMB
have essentially traveled in a straight line since decoupling. We will never see
anything from farther away since, for the light to be reaching us now, it would
have had to have been emitted from an distant object before decoupling – back
when the universe was filled with thick ‘fog.’

When we measure the cosmic microwave background, it turns out to be incredi-
bly homogeneous. The departures from homogeneity in the CMB are only about
1 part in one hundred thousand! I’ll give you a handout that includes a ‘map’ of
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these tiny inhomogeneities from the first experiment (a satellite called COBE)
to measure them.

This, by the way, illustrates an important point about the early universe. It
was not like what we would get if we simply took the universe now and made
all of the galaxies come together instead of rushing apart. If we pushed all of
the galaxies together we would, for example, end up with a lot of big clumps
(some related to galactic black holes, for example). While there would be a lot
of general mushing about, we would not expect the result to be anywhere near
as homogeneous as one part in one hundred thousand.

It appears then that the universe started in a very special, very uniform state
with only very tiny fluctuations in its density. So then, why are there such large
clumps of stuff today? Today, the universe is far from homogeneous on the small
scale. The reason for this is that gravity tends to cause matter to clump over
time. Places with a little higher density pull together gravitationally and become
even more dense, pulling in material from neighboring under-dense regions so
that they become less dense. It turns out that tiny variations of one part in
one hundred thousand back at decoupling are just the right size to grow into
roughly galaxy-style clumps today. This is an interesting fact by itself: Galaxies
do not require special ‘seeds’ to start up. They are the natural consequence of
gravity amplifying teeny tiny variations in density in an expanding universe.

Well, that’s the rough story anyway. Making all of this work in detail is a
little more complicated, and the details do depend on the values of Λ, k, and
so on. As a result, if one can measure the CMB with precision, this becomes
an independent measurement of the various cosmological parameters. The data
from COBE confirmed the whole general picture and put some constraints on
Λ. The results were consistent with the supernova observations, but by itself
COBE was not enough to measure Λ accurately. A number of recent balloon-
based CMB experiments have improved the situation somewhat, and in the next
few years two more satellite experiments (MAP and PLANCK) will measure the
CMB in great detail. Astrophysicists are eagerly awaiting the results.

10.4.3 A cosmological ‘Problem’

Actually, the extreme homogeneity of the CMB raises another issue: how could
the universe have ever been so homogeneous? For example, when we point our
radio dish at one direction in the sky, we measure a microwave signal at 2.7
Kelvin coming to us from ten billion light-years away. Now, when we point our
radio dish in the opposite direction, we measure a microwave signal at the same
temperature (to within one part in one hundred thousand) coming at us from
ten billion light-years away in the opposite direction! Now, how did those two
points so far apart know that they should be at exactly the same temperature?

Ah! You might say, “Didn’t the universe used to be a lot smaller, so that those
two points were a lot closer together?” This is true, but it turns out not to help.
The point is that all of the models we have been discussing have a singularity
where the universe shrinks to zero size at very early times. An important fact is
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that this singularity is spacelike (as in the black hole). The associated Penrose
diagram looks something like this:

Singularity

Infinite Future

Now

Here, I have drawn the Penrose diagram including a cosmological constant, but
the part describing the big bang singularity is the same in any case (since, as
we have discussed, Λ is not important when the universe is small).

The fact that the singularity is spacelike means that no two points on the sin-
gularity can send light signals to each other (even though they are zero distance
apart). Thus, it takes a finite time for any two ‘places’ to be able to signal
each other and tell each other at what temperature they should be2. In fact,
we can see that if the two points begin far enough apart then they will never
be able to communicate with each other, though they might both send a light
(or microwave) signal to a third observer in the middle.

The light rays that tell us what part of the singularity a given event has
access to form what is called the ‘particle horizon’ of that event and the issue
we have been discussing (of which places could possibly have been in thermal
equilibrium with which other places) is called the ‘horizon problem.’

There are two basic ways out of this, but it would be disingenuous to claim that
either is understood at more than the most vague of levels. One is to simply
suppose that there is something about the big bang itself that makes things
incredibly homogeneous, even outside of the particle horizons. The other is to
suppose that for some reason the earliest evolution of the universe happened in
a different way than we drew on our graph above and which somehow removes
the particle horizons.

The favorite idea of this second sort is called “inflation.” Basically, the idea is
that for some reason there was in fact a truly huge cosmological constant in the
very earliest universe – sufficiently large to affect the dynamics. Let us again
think of running a movie of the universe in reverse. In the forward direction, the
cosmological constant makes the universe accelerate. So, running it backward
it acts as a cosmic brake and slows things down. The result is that the universe
would then be older than we would otherwise have thought, giving the particle
horizons a chance to grow sufficiently large to solve the horizon problem. The
resulting Penrose diagram looks something like this:

2More precisely, they will be unable to interact and so reach thermal equilibrium until
some late time.
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Infinite Future

Now

Singularity

The regions we see at decoupling now have past light cones that overlap quite a
bit. So, they have access to much of the same information from the singularity.
In this picture, it is easier to understand how these entire universe could be at
close to the same temperature at decoupling.

Oh, to be consistent with what we know, this huge cosmological ‘constant’ has
to shut itself off long before decoupling. This is the hard part about making
inflation work. Making the cosmological constant turn off requires an amount of
fine tuning that many people feel is comparable to the one part in one-hundred
thousand level of inhomogeneities that inflation was designed to explain.

Luckily, inflation makes certain predictions about the detailed form of the cosmic
microwave background. The modern balloon experiments are beginning to probe
the interesting regime of accuracy, and it is hoped that MAP and PLANCK will
have some definitive commentary on whether inflation is or is not the correct
explanation.

10.4.4 Looking for mass in all the wrong places

Actually, there is a third chapter in our discussion of the cosmological constant.
You see, it turns out that the supernovae results and the CMB do not really
measure Λ directly, but instead link the cosmological constant to the overall
density of matter in the universe. So, to get a real handle on things, one has to
know the density of more or less regular matter in the universe as well.

Before we get into how much matter there actually is (and how we find out),
I need to tell you about the somewhat funny language that cosmologists use
to discuss this question. To get the idea, I’ll need to bring back the Einstein
equation, and this time I’ll add in a part to describe the cosmological constant.
As a change from before though, I’ll write it in terms of the Hubble expansion
rate H = 1

a
da
dt .
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H2 − 8πGρ

3
− Λ

3
+ ka−2c2 = 0. (10.6)

The cosmologists like to reorganize this equation by dividing by H2. This gives

1− 8πGρ

3H2
− Λ

3H2
+

kc2

H2a2
= 0. (10.7)

Now, the three interesting cases are k = −1, 0,+1. The middle case is k = 0.
Look at what happens then: the quantity 8πGρ

3H2 + Λ
3H2 , which measures the

overall density of stuff (matter or cosmological constant) in ‘Hubble units’ must
be one! So, this is a convenient reference point. If we want to measure k, it is
this quantity that we should compute. So, cosmologists give it a special name:

Ω ≡ 8πGρ

3H2
+

Λ

3H2
. (10.8)

This quantity is often called the ‘density parameter,’ but we see that it is slightly
more complicated than that name would suggest. In particular, I should point
out that (like the Hubble ‘constant’) Ω will in general change with time. If,
however, Ω happens to be exactly equal to one at some time, it will remain
equal to one. So, to tell if the universe is positively curved (k = +1), negatively
curved (k = −1), or [spatially] flat (k = 0), what we need to do is to measure
Ω and to see whether it is bigger than, smaller than, or equal to one.

By the way, cosmologists in fact break this Ω up into two parts corresponding
to the matter and the cosmological constant.

Ωmatter ≡
8πGρ

3H2

ΩΛ ≡
Λ

3H2

(10.9)

Not only do these two parts change with time, but their ratio changes as well.
The natural tendency is for ΩΛ to grow with time at the expense of Ωmatter
as the universe gets larger and the vacuum energy becomes more important.
Anyway, when cosmologists discuss the density of matter and the size of the
cosmological constant, they typically discuss these things in terms of Ωmatter
and ΩΛ.

So, just how does one start looking for matter in the universe? Well, the place
to start is by counting up all of the matter that we can see – say, counting
up the number of stars and galaxies. Using the things we can see gives about
Ω = 0.05.

But, there are more direct ways to measure the amount of mass around – for
example, we can see how much gravity it generates! Remember our discussion
of how astronomers find black holes at the centers of galaxies? They use the
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stars orbiting the black hole to tell them about the mass of the black hole.
Similarly, we can use stars orbiting at the edge of a galaxy to tell us about the
total amount of mass in a galaxy. It turns out to be much more than what
we can see in the ‘visible’ matter. Also, recall that the galaxies are a little bit
clumped together. If we look at how fast the galaxies in a given clump orbit
each other, we again find a bit more mass than we expected.

It turns out that something like 90% of the matter out there is stuff that we
can’t see. For this reason, it is called ‘Dark Matter.’ Interestingly, although
it is attached to the galaxies, it is spread a bit more thinly than is the visible
matter. This means that a galaxy is surrounded by a cloud of dark matter
than is a good bit larger than the part of the galaxy that we can see. All of
these measurements of gravitational effects bring the matter count up to about
Ωmatter = .4.

Now, there is of course a natural question: Just what is this Dark Matter stuff
anyway? Well, there are lots of things that it is not. For example, it is not
a bunch of small black holes or a bunch of little planet-like objects running
around. At least, the vast majority is not of that sort. That possibility has
been ruled out by studies of gravitational lensing (a subject on which I wish
I had more time to spend). Briefly, recall that general relativity predicts that
light ‘falls’ in a gravitational field and, as a result, light rays are bent toward
massive objects. This means that massive objects actually act like lenses, and
focus the light from objects shining behind them. When such a ‘gravitational
lens’ passes in front of a star, the star appears to get brighter. When the lens
moves away, the star returns to its original brightness. By looking at a large
number of stars and seeing how often they happen to brighten in this way,
astronomers can ‘count’ the number of gravitational lenses out there. To make
a long story short, there are too few such events for all of the dark matter to
be clumped together in black holes or small planets. Instead, most of it must
be spread out more evenly.

Even more interestingly, it cannot be just thin gas..... That is, there are strong
arguments why the dark matter, whatever it is, cannot be made up of protons
and neutrons like normal matter! To understand this, we need to continue
the story of the early universe as a movie that we run backward in time. We
discussed earlier how there was a very early time (just before decoupling) when
the Universe was so hot and dense that the electrons were detached from the
protons. Well, continuing to watch the movie backwards the universe becomes
even more hot and dense. Eventually, it becomes so hot and dense that the
nuclei fall apart.

Now there are just a bunch of free neutrons and protons running around, very
evenly spread throughout the universe. It turns out that we can calculate what
should happen in such a system as the universe expands and cools. As a result,
one can calculate how many of these neutrons and protons should stick together
and form Helium vs. how many extra protons should remain as Hydrogen. This
process is called ‘nucleosynthesis.’ One can also work out the proportions of
other light elements like Lithium.... (The heavy elements were not made in
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the big bang itself, but were manufactured in stars and supernovae.) To cut
short another long story, the more dense the stuff was, the more things stick
together and the more Helium and Lithium should be around. Astronomers are
pretty good at measuring the relative abundance of Hydrogen and Helium, and
the answers favor roughly Ωnormal matter = .1, – the stuff we can see plus a
little bit more. As a result, this means that the dark matter is not made up of
normal things like protons and neutrons. By the way, physicists call such matter
‘baryonic3 matter’ so that this fact is often quoted as Ωbaryon = .1. A lot of this
may be in the form of small not-quite stars and such, but the important point
is that at least 75% of the matter in the universe really has to be stuff that is
not made up of protons and neutrons.

So, what is the dark matter then? That is an excellent question and a subject
of much debate. It may well be the case that all of this unknown dark matter
is some strange new kind of tiny particle which simply happens not to interact
with regular matter except by way of gravity. A number of ideas have been
proposed, but it is way too early to say how likely they are to be right.

10.4.5 Putting it all together

The last part of our discussion is to put all of this data together to see what the
implications are for ΩΛ and Ωmatter. I will give you a handout with some graphs
showing a lot of this data. Many of these graphs (and some other stuff) come
from from a talk given by Sean Carroll. The transparencies for his talk are
available on the web at: (http://pancake.uchicago.edu/ carroll/talks/ltalk/).
You can look them up if you want to see the data before I get around to handing
it out.

These graphs show that that each of the three measurements put some kind
of constraint on the relationship between Ωmatter and ΩΛ, corresponding to a
(wide) line in the Ωmatter − ΩΛ plane. You can see that, taken together, the
data strongly favors a value near Ωmatter = .4, ΩΛ = .6. That is, 60% of the
energy in the universe appears to be vacuum energy!

Now, what is really impressive here is that any two of the measurements would
predict this same value. The third measurement can then be thought of as a
double-check. As the physicists say, any two lines in a plane intersect somewhere,
but to get three lines to intersect at the same point you have to do something
right.

This means that the evidence for a cosmological constant is fairly strong –
we have not just one experiment that finds it, but in fact we have another
independent measurement that confirms this result. However, the individual
measurements are not all that accurate and may have unforeseen systematic
errors. So, we look forward to getting more and better data in the future to see
whether these results continue to hold up.

3Protons and neutrons are examples of a class of particles that physicists call ‘baryons.’
Baryons are particles that are made up of three quarks.
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We are in fact expecting to get a lot more data over the next few years. Two
major satellite experiments (called ‘MAP’ and ‘PLANCK’) are going to make
very detailed measurements of the Cosmic Microwave Background which should
really tighten up the CMB constraints on Ωmatter and ΩΛ. It is also hoped that
these experiments will either confirm or deny the predictions of inflation in more
detail.

By the way, it is a rather strange picture of the universe with which we are left.
There are several confusing issues. One of them is “where does this vacuum
energy come from?” It turns out that there are some reasonable ideas on this
subject coming from quantum field theory... However, while they are all reason-
able ideas for creating a vacuum energy, they all predict a value that is 10120

times too large. I will take a moment to state the obvious: 10120 is an incredibly
huge number. A billion is ten to the ninth power, so 10120 is one billion raised
to the thirteenth power. As a result, physicists are always asking, “Why is the
cosmological constant so small?”

Another issue is that, as we mentioned, ΩΛ and Ωmatter do not stay constant in
time. They change, and in fact they change in different ways. There is a nice
diagram (also from Sean Carroll) showing how they change with time. I’ll hand
this out too. What you can see is that, more or less independently of where you
start, the universe naturally evolves toward ΩΛ = 1. On the other hand, back at
the big bang ΩΛ was almost certainly near zero. So, an interesting question is:
“why is ΩΛ only now in the middle ground (ΩΛ = .6), making it’s move between
zero and one?” For example, does this argue that the cosmological constant is
not really constant, and that there is some new physical principle that keeps
it in this middle ground? Otherwise, why should the value of the cosmological
constant be such that ΩΛ is just now making it’s debut? It is not clear why Λ
should not have a value such that it would have taken over long ago, or such
that it would still be way too tiny to notice.

10.5 The Beginning and The End

Well, we are nearly finished with our story but we are not yet at the end. We
traced the universe back to a time when it was so hot and dense that the nuclei
of atoms were just forming. We have seen that there is experimental evidence
(in the abundances of Hydrogen and Helium) that the universe actually was
this hot and dense in its distant past. Well, if our understanding of physics is
right, it must have been even hotter and more dense before. So, what was this
like? How hot and dense was it? From the perspective of general relativity,
the most natural idea is that the farther back we go, the hotter and denser it
was. Looking back in time, we expect that there was a time when it was so hot
that protons and neutrons themselves fell apart, and that the universe was full
of things called quarks. Farther back still, the universe so hot that our current
knowledge of physics is not sufficient to describe it. All kinds of weird things
might have happened, like maybe the universe had more than four dimensions
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back then. Maybe the universe was filled with truly exotic particles. Maybe the
universe underwent various periods of inflation followed by relative quiet.

Anyway, looking very far back we expect that one would find conditions very
similar to those near the singularity of a black hole. This is called the ‘big bang
singularity.’ Just as at a black hole, general relativity would break down there
and would not accurately describe what was happening. Roughly speaking, we
would be in a domain of quantum gravity where, as with a Schwarzschild black
hole, our now familiar notions of space and time may completely fall apart. It
may or may not make sense to even ask what came ‘before.’ Isn’t that a good
place to end our story?


