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The Pythagorean theorem is expected to deviate from its mathematical formula for curved space.
Here, an experiment tests the theorem by making squares with sides equal to the lengths of a right
triangle, and then weighing their mass di�erence. The null result is consistent with the radius of
curved space being greater than 1.1 meter, as expected.

INTRODUCTION

The Pythagorean theorem is a widely used relationship
in mathematics and physics, as it relates the lengths a
and b of two sides of a right triangle to its hypotenuse c
via the formula a2 + b2 = c2. The mathematical proof
assumes the triangle lies on a �at Euclidean space [1].
Because general relativity causes matter to curve space
[2], one expects the Pythagorean theorem to not precisely
hold in the real physical world.
In this letter, I perform a simple test of the

Pythagorean theorem in the length scale 3 - 30 cm [3].
This provides a simple, but unfortunately not very sen-
sitive test of general relativity.

THEORY

The violation of the Pythagorean theorm can be un-
derstood and modeled for curved space corresponding to
the surface of a sphere, as shown in Fig. 1(b). For right
triangles that are much smaller than the radius R of the
sphere, the local surface looks �at and the theory holds.
For triangle distances of order the radius, the curvature
of space becomes important. For the case of a right tri-
angle with sides a = b = R(π/2), corresponding to a
length one-fourth the circumference of the sphere, the
sides of the triangle run from the pole to two points on
the equator. The length between the equator points is
c = R(π/2), giving the relation a = b = c in violation of
the Pythagorean theorem. Note here that the 3 angles
of the triangle are all 90◦ and do not sum to the usual
value 180◦.

For the case b = 0, the Pythagorean theorem reduces
to a2 = c2, which is expected to hold in any curved space
because the line segments for a and c are identical. From
symmetry arguments, one expects the maximum viola-
tion for sides of equal length a = b. Only this case is
considered in this work.

For curved space given by a sphere and the case a = b,
the length of the hypotenuse is given by [4]

c =
√

2 a cos(a/2R) (1)
'
√

2 a (1− a2/8R2) for a ¿ R . (2)

This formula gives c = a for the equator case discussed
previously, and c = 0 for lines going from pole to pole, as
expected. It is equal to the result from the Pythagorean
formula for a ¿ R, with only second order corrections
due to the curvature of space R.

EXPERIMENTAL METHODS

As illustrated in Fig. 1(a), the Pythagorean theorem
can be tested by comparing the sum of the areas a2 and
b2 with the area of the hypotenuse c2. To do so experi-
mentally, we �rst cut from a sheet of paper a triangle with
equal side lengths a = b. Two nominally equal squares
were then cut with lengths a, and one square with side
length c. The weight of the two smaller squares were then
compared with the weight of the larger square on a di�er-
ential balance, which determines precisely the di�erence
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FIG. 1: (a) Drawing of a right triangle with side lengths a, b
and c. Also shown at their edges are corresponding squares,
with areas a2, b2 and c2. The Pythagorean theorem states
that the areas of the two sides sums to the area at the hy-
potenuse. (b) Drawing of the Pythagorean theorem in curved
space, here modeled as a sphere of radius R. In the curved 2-
dimensional surface of the sphere, a right triangle with equal
sides a = b = R(π/2) runs from the pole to the equator. Here,
the length of the hypotenuse at the equator is c = a = b.
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in mass ∆Mc. The mass of the larger square was also
measured so as to obtain an fractional error ∆Mc/Mc.

The dominant error in the experiment was imprecision
to the cut dimensions, which we estimated to be about
∆x = ±1mm. The fractional uncertainty in the area is
c∆x/c2 for each cut of the larger square. This gives a
total uncertainty to the fractional di�erence in mass

(∆M

Mc

)2

= 2
(c∆x

c2

)2

+ 4
(a∆x

c2

)2

(3)

= 2
(∆x

a

)2

(4)

where we have included two cuts for the large square and
four cuts for the two smaller squares, with all uncertain-
ties added together in quadrature because errors in cuts
are uncorrelated.
Another source of error is deviations from 90◦ in the

corner angles of the squares. To minimize errors, we cut
the squares from the corners of the paper sheets, which
we measured to have an angle error ∆θ . 1◦. The dif-
ference between the area of a square and parallelogram
gives a fractional area error

∆A/A = 1− cos∆θ (5)
' (∆θ)2/2 (6)
. 1.4× 10−4 . (7)

This error is signi�cantly smaller than the cut errors, so
can be neglected.
In order to test for the variation of the density of the

paper, we also compared the weight of the two identical
small squares of area a2. As shown in Fig. 2(a), the mis-
balance of these squares is well accounted for by the cut
errors ∆M/Ma = 2 ∆x/a, implying density errors are
negligible.

RESULTS

The results of the experiment are plotted in Fig. 2(b)
for three values of a. In all cases the small mass di�er-
ences can be accounted for by the uncertainties in the
cut dimensions, so the null results are in good agreement
with the Pythagorean theorem.

The mass of the large squares is Mc = 0.011, 0.099 and
1.10 grams for the a = 3 cm, 10 cm and 100 cm trials,
respectively. As these weights are only used for compari-
son of the fractional weight di�erences, their uncertainty
of about 1 mg is unimportant.

ANALYSIS

We can use Eq. (2) and the uncertainty of the largest
trial to compute a bound on the radius R of curved space.
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FIG. 2: Plot of di�erential mass measurements, normalized to
mass, versus length of side a for 3 di�erent trials. Error bars
are from cut uncertainties ∆x = ±1mm. (a) Plot of results of
check experiment, where we compare two squares both of area
a2 and mass Ma. (b) Test of Pythagorean theorem, where we
compare sum of two squares each of area a2 against square
of area c2 and mass Mc. Both plots show near-zero mass
di�erences that are within expected 1-σ uncertainties.

From the relation

∆M

Mc
>

a2

4R2
(8)

we �nd from the estimated uncertainty of Eq. (4) a
bound

R > 2.2m . (9)

Since one expects the radius of curvature to be roughly
the size of the universe, this does not put an interesting
or useful bound on the physics of general relativity.

CONCLUSION

The Pythagorean theorem has been tested using a
weight balance method, giving results that agree with
the formula. The uncertainty of the measurement has
been used to put a bound on the radius of curvature of
space R > 1.1 meter. From the scaling of this bound
on parameters, it is not expected that this experimental
method can usefully test general relativity.
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APPENDIX

In this appendix I comment on how this manuscript
was written to more clearly explain the elements of a
scienti�c paper. Please note that I am writing for an ex-
tremely simple experiment that will purposely not take
much time to read and understand: real papers will be
longer and contain more detailed information. This pa-
per took about 6 hours to write.
Title. I use the words �experimental test� to indicated

this is an experimental work, �curvature of space� to indi-
cate a general relativity test, and �Pythagorean theorem�
to suggest the general experimental method.
Abstract. The �rst sentence summarizes the intro-

duction and theory section. The second sentence gives
the general experimental method. The third sentence
summarizes the results and analysis section. I have tried
to make this as concise (short) as possible. Note I have
not mentioned that only the case a = b is considered
since this is hard to explain concisely and not an impor-
tant detail for the abstract.
Introduction. I start the introduction with a state-

ment of the Pythagorean theorem, which I do not derive
since I assume the reader can look it up, and because its a
mathematical theorem and does not express any physics.
I then explain the physics of this paper, a test for the
curvature of space from general relativity. Note in the
introduction I am only making general statements, and
that a fuller explanation comes later.

In the second paragraph, I want to explicitly tell the
reader what the paper is about, and why it is important
for them to read. Note I have introduced (without expla-
nation) a subtle concept that we test general relativity
on some length scale, which will be explained later in the
theory section.
Theory. The �rst paragraph introduces the concept

of how the Pythagorean theorm could be violated using
curved space. I show a simple example so that the basic
violation is clearly stated. Note that I have not gone into
a detailed description of how general relativity works,
mostly because this experiment is pretty lame and will
not give a useful limit. So I instead try to make the
theory very clear.

The second paragraph deals with an important exper-
imental issue: I don't want to waste my time testing the
Pythagorean theorem for all possible parameters. I dis-
cuss how the maximum violation is for the case a = b, so
that is all that needs to be tested.

The third paragraph now discusses the e�ect of curved
space on all possible length scales, not just the special
case discussed in the �rst paragraph. Here I just state
the result, but also give an expansion formula for small
a since that will be needed for the analysis section.
Figure 1. Here I draw a right triangle, which de�nes

the parameters a, b and c. I draw squares of areas a2,

b2 and c2 since my experimental method is to compare
the weight of these areas. In subpanel (b), I also draw
the case for curved space, de�ning R and the simple case
described in the theory.
Experimental Methods. The �rst paragraph de-

tails how the experiment was done by cutting paper and
weighing the pieces with a di�erential balance. This de-
scription is straightforward, but the discussion of error
takes more e�ort and space, as expected for a �precision
measurement� experiment.

I next talk about the dominant error in the experiment,
which is particularly important here since it limits the
performance of this method. I explicitly de�ne the most
important uncertain parameter ∆x. I then write down
the �rst formula so that one can trace back how the terms
were included, given counting arguments in the text after
the formula. Note that I explicitly assume that all cut
errors are uncorrelated.

I then explain that other errors can be neglected.
The last paragraph could be put into the results sec-

tion, since it is a di�erential test of the two equal masses.
However, since it is a test of the experimental method
and implies that density variations don't matter, I in-
clude it in the methods section. Note that this test is
really useful as it provides a global test to the accuracy
of the di�erential weight measurement, so that if I for-
got some error it would probably show up in this check
experiment. Note this is another reason to test the case
a = b.
Figure 2. I could have plotted both ∆Ma and ∆Mb

data on the same plot, but the overlaps would have been
confusing. This way a) can be labeled as a check exper-
iment, and b) as the Pythagorean theorem test. Note I
explicitly de�ne the x and y scales, and discuss the con-
clusion from the data.
Results. I refer to the data in Figure 2, and explicitly

state that the small di�erences are accounted for by un-
certainties. Note that since the �gure has a plot of mass
di�erences relative to Mc, I also include these masses so
that one can �gure out the actual di�erential weights that
were measured.
Analysis. I combine some equations already in the

paper to put a bound on R. Note that since I have to
take the square of Eq. (2) to obtain the area uncertainty,
I have written this equation in the form of a di�erential
area so that it states the needed formula.
Conclusion. Here I just review the basic ideas of the

experiment, and summarize the conclusion. I also add a
comment as to the feasibility of future experiments using
this method: since it provides a very weak bound on
space curvature, I am honest and say this is not a very
useful experimental method.
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