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The microwave performance of amorphous dielectric materials at very low temperatures and very
low excitation strengths displays significant excess loss. Here, we present the loss tangents of some
common amorphous and crystalline dielectrics, measured at low temperatures (T < 100 mK) with
near single-photon excitation energies, E/h̄ω0 ∼ 1, using both coplanar waveguide (CPW) and
lumped LC resonators. The loss can be understood using a two-level state (TLS) defect model. A
circuit analysis of the half-wavelength resonators we used is outlined, and the energy dissipation of
such a resonator on a multilayered dielectric substrate is considered theoretically.

Dielectric loss is a significant concern for superconduct-
ing quantum bits (qubits), as energy relaxation within
the dielectric is one of the primary sources of quan-
tum decoherence1. Superconducting qubits operate in
the low-temperature, low-voltage regime, where dielectric
loss is typically not well characterized. While the dielec-
tric loss may be extremely small at higher excitation volt-
ages and temperatures, it has been observed that the loss
tangent scales inversely with voltage (tan δ ∼ 1/Vrms)
and levels off at an intrinsic value tan δi that is often
substantially greater than the loss at larger voltages, as
shown in Fig. 1. The lowest excitation voltages shown
there correspond to of order 1 photon in a 6 GHz LC
resonator, with C ∼ 1 pF.

This behavior has been postulated to arise from cou-
pling to a bath of TLS defects in the dielectric, which
absorb and disperse energy at low power but become sat-
urated with increasing voltage and temperature2. TLS
are found in most amorphous materials and arise from
an energy difference between defect bond configurations
coupled by tunneling. The bath of TLS is assumed to
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FIG. 1: Loss tangent after adjusting for the electrical loading.
Data labeled SiO2 and Si correspond to 300nm PECVD SiO2

on single-crystal Si, and 100 Ω-cm single-crystal Si, respec-
tively. All resonators had Al electrodes. T ≤ 100 mK.

have a constant distribution in energy and a log uniform
distribution in transition strength3. These defect states
couple to the surrounding electric field through the elec-
tric dipole moments that arise from differences in the
charge distribution between configurations4.

Although dielectric loss at higher powers and temper-
atures has been extensively reported, the literature con-
tains very little information on dielectric performance in
the low-temperature, low-voltage limit. Guided by prior
measurements of hydrogenated dielectrics with over-
constrained lattices5, we examined the microwave loss
of a range of dielectric materials compatible with qubit
fabrication. Here we report direct measurements of the
intrinsic loss tangents of these dielectric materials.

To perform these measurements, we fabricated both
parallel LC resonators, comprising a superconducting
inductive coil and a parallel-plate capacitor containing
the dielectric in question, and half-wavelength CPW res-
onators, where the single-layer superconducting metal
electrodes are patterned atop the dielectric. A CPW
resonator is shown in Fig. 2(a). LC resonators afford
more straightforward analysis of the loss tangent, due to
the parallel electric field configuration between the plates,
while CPW resonators are easier to fabricate, but require
more complicated analysis. Both types of resonators were
coupled to measurement lines through on-chip coupling
capacitors Cc, as illustrated in Fig. 2(b). The resonators
had resonance frequencies near the 6 GHz operating fre-
quencies of our qubits. The resonators’ transmission S-
parameter, S21, was measured as a function of voltage
and temperature, using a vector network analyzer. The
loss tangents were extracted as described below. The
results of these measurements are compiled in Table I.

Near its half-wave resonance frequency, a CPW res-
onator can be represented by an equivalent LC lumped
circuit, shown in Fig. 2(b). The Norton equivalent circuit
is shown in Fig. 2(c), where the voltage source has been
transformed to a current bias V1/(R0 +Zc) ' V1/Zc, and
the impedance R0 + Zc can be written as Zc ‖ |Zc|2/R0,
where we have used |Zc| = 1/ωCc À R0 for typical cou-
pling capacitances Cc on the order of a few fF. This can
now be viewed as a parallel LCR circuit with effective
capacitance C ′ = C + 2Cc and resistance R′ = R ‖
|Zc|2/2R0 (Fig. 2(d)). The response at frequency ω,
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TABLE I: Intrinsic loss tangents, after accounting for exter-
nal loss and CPW field-distribution analysis. Deposited films
have typical thickness of a few hundred nanometers. Materi-
als marked “SC” indicate single crystals.

Dielectric Metal Resonator tan δi × 106

100 Ω-cm Si (SC) Al CPW < 5−12
Sapphire (SC) Re CPW < 6−10
Sapphire (SC) Al CPW < 9−21
a-Si:H Al LC 22−25
a-Si:H Al CPW 10−130
Interdigitated cap. Al LC 41−47

on sapphire (SC)
SiNx Re or Al LC or CPW 100−200
Thermal SiO2 Al CPW 300−330
Sputtered Si Al CPW 500−600
AlN Al CPW 1100−1800
PECVD SiO2 Al CPW 2700−2900
MgO Al CPW 5000−8000

near the resonance frequency ω0 = 1/
√

LC ′, is given by

V =
V1

Zc

1
1/R′ + 1/iωL + iωC ′

. (1)

The output voltage V2, as shown in Fig. 2(b), is given by
V2 = V R0/(R0+Zc) ' V R0/Zc. The normalized scatter-
ing matrix parameter is given by S21 = 2V2/V1, where we
have used |S21| = 1 for the on-resonance transmittance
of a lossless resonator. Finally, taking Qm = R′/ω0L,
Rc = |Zc|2/2R0, and assuming Qm À 1, we obtain

S21 ' − 1
1 + Rc/R

1
1 + i2Qm(ω − ω0)/ω0

. (2)

This equation is used to fit our measured S21 data,
from which we can extract the total measured quality
factor Qm = 1/ tan δ. The quality factor is attributed
to the parallel sum of two independent loss mechanisms,
1/Qm = 1/Q0 + 1/Qc, where 1/Q0 is the internal di-
electric loss, and 1/Qc the loss due to the measurement
impedance R0. We calculate Qc either from the formula
1/Qc = 2R0Z0ω

2
0C2

c , where Z0 is the resonator character-
istic impedance, or through the relation Qc = Qm/|S21|
for over-coupled samples, when Qm saturates at high
powers and |S21| ' 1. Finally, the limiting loss tan-
gent is related to Q0 at the lowest excitation voltage,
tan δ0 = 1/Q0.

For an LC resonator, this limiting loss tangent is a
direct measurement of the low-power, low-temperature
intrinsic loss of the dielectric, tan δi. This can be seen
by noting that the electric field in an LC resonator is al-
most entirely confined to the space between the capacitor
plates. Furthermore, the inductive loss is typically neg-
ligible at these temperatures6. However, in a CPW res-
onator, the electric field samples a large volume of space
around the CPW not filled by the dielectric of interest,
so the limiting loss tangent tan δ0 is not identical to the

FIG. 2: (a) Micrograph of a half-wavelength CPW resonator.
(b) Circuit representation and measurement lines. (c) Norton
equivalent circuit (|Zc| À R0). (d) LCR equivalent circuit.

intrinsic loss tangent. For a CPW resonator fabricated
on a multi-layer substrate, it is necessary to know the
fraction of the electrical energy stored in each dielectric,
and the intrinsic loss tangents for all but one of the con-
stituent dielectrics, as well as the value of limiting loss
tangent for the composite structure.

This can be seen by considering the quality fac-
tor of a resonator driven at frequency ω, defined as
Q = ω(Wm + We)/Pl, where Wm and We are the
time-averaged magnetic and electric energies stored in
a given volume, respectively, and Pl is the time-averaged
power dissipated in that volume7. For a resonator
driven on resonance, ω = ω0 and Wm = We, so that
Q = 2ω0We/Pl. Furthermore, Pl can be expressed as
Pl = 1

2ω0

(
Im

∫
ε| ~E|2 d3x + Im

∫
µ| ~H|2 d3x

)
, where ε is

the spatially-varying complex dielectric constant. Ignor-
ing magnetic loss, which we do not believe to contribute
significantly, this reduces to Pl = 1

2ω0Im
∫

ε| ~E|2 d3x.
With We = 1

4Re
∫

ε| ~E|2d3x, we can re-express the res-
onant quality factor as

Q =
Re

∫
ε| ~E|2 d3x

Im
∫

ε| ~E|2 d3x
. (3)

It is useful to consider the time-averaged electric energy
divided by the quality factor,

We

Q
=

1
4
Im

∫
ε| ~E|2d3x. (4)

This is a general expression for a spatially-varying dielec-
tric constant. In our structures, the total volume can be
divided into distinct isotropic regions.

For example, for a CPW resonator formed by Al pat-
terned on 100 nm SiNx, on a 100 Ω-cm single-crystal Si
substrate, we separate Eq. (4) into two parts, We/Q0 =
1
4 Im

∫
A

εA| ~EA|2 d3x+ 1
4 Im

∫
B

εB | ~EB |2 d3x, where the vol-
umes A and B correspond to the regions occupied by the
SiNx and the Si, respectively. This can be re-written as
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FIG. 3: Temperature dependence of an Al/100 Ω-cm single-
crystal Si CPW, measured with an rms excitation voltage of
1 mV.

We/Q0 = WeA/QA +WeB/QB , or in terms of the intrin-
sic loss tangents tan δi,A and tan δi,B as

We tan δ0 = WeA tan δi,A + WeB tan δi,B . (5)

A finite-element analysis of the electric field distribution
shows 11% of the total time-averaged energy is stored
in the SiNx, 81% in the Si, and the remainder in vac-
uum. An independent measurement of the loss for SiNx,
using an LC resonator, yielded tan δi,SiN = 1.8 × 10−4.
The intrinsic loss tangent for single-crystal silicon was
extracted from the analysis of a CPW resonator on 100
Ω-cm Si, yielding tan δi,Si = 4.8× 10−6. Using Eq. 5, we
calculate an expected loss tangent for the composite sam-
ple of tan δ0,calc = 2.3× 10−5. The measurement yielded
tan δ0,exp = 2.2× 10−5, in excellent agreement.

Equation 4 can also be used to extract the intrinsic loss
of a given dielectric layer, once the intrinsic loss tangents
of the other layers in the structure are known. In this
way we extracted the intrinsic loss tangents of all the di-
electrics measured with CPW resonators, as tabulated in
Table I. For example, a sample of Al/300nm SiO2/100 Ω-
cm Si was used to measure the loss of thermal SiO2 that
was commercially grown in a furnace. The limiting loss
tangent of this CPW resonator was 8.9 × 10−5; a finite-
element analysis showed that 27% of energy is stored in
the SiO2, 61% in the Si, and 12% in the vacuum. We

thus find that the intrinsic loss tangent of thermal SiO2

is 3.1× 10−4.

As expected, thermal SiO2 exhibits comparatively high
loss8. The results of Table I imply that a more highly con-
strained lattice is correlated to lower loss. This can be
seen in the silicon compounds where the transition from
SiO2 → SiNx → a-Si:H → single-crystal Si corresponds
to an increase in coordination number and a decrease in
loss. Furthermore, the lower bounds on single-crystal Si
and sapphire are not known precisely, because the mea-
surements may be limited by factors other than dielectric
loss, such as radiation. However, fabricating devices with
single-crystal dielectrics is more difficult than using eas-
ily deposited amorphous materials. Due to this, we are
currently optimizing the deposition of a-Si:H since it is
the least lossy amorphous material, and in general, the
loss tangent has been seen to correlate to the coherence
times in our phase qubits9.

These measurements were all taken at temperatures
near 100 mK. At higher temperatures the dielectric loss
may be overshadowed by the loss in the superconducting
Al electrodes10. In Fig. 3 we display the temperature-
dependent loss of an Al/100 Ω-cm Si CPW. The higher
loss with increasing temperature, and the frequency shift,
are consistent with other measurements6,11.

In conclusion, we have reported the low voltage, low
temperature, intrinsic loss of many dielectrics. Further-
more, we have shown how to extract the intrinsic dielec-
tric loss from CPW resonator data and find the results
of measured CPW resonators to be commensurate with
values given by LC resonators. Discovering other materi-
als with lower loss tangents than the dielectrics reported
here would offer significant improvements in qubit coher-
ence times, and may be a crucial step in developing a
scalable superconducting quantum computer.
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