
Supplementary Information

1. VOODOO CAT STATE

In the main article we display the measured and calcu-
lated Wigner functions for the resonator states |0〉+ |N〉
and for the states |1〉 + exp(ikπ/8)|3〉 + |6〉, k = 0 to 4.
In Fig. S1 we display the “Voodoo cat” state, which in-
volves Fock states as high as |9〉, fully demonstrating the
range of states we can currently prepare.

2. WIGNER TOMOGRAPHY AND DENSITY MATRIX

The Wigner function W (α) and density matrix ρ are
related via the trace

W (α) =
2

π
Tr (D(−α)ρD(α)Π) . (4)

To measure the Wigner function, we first prepare the
resonator state, as given by the density matrix ρ.
During state analysis, microwaves drive the resonator
and coherently displace the resonator state by −α =
(1/2)

∫

Ωr(t)dt, as described by the operator D(−α) =

D†(α) = exp(α∗a − αa†). For the displaced resonator
state ρ′ = D(−α)ρD(α), we determine the diagonal ele-
ments ρ′nn by measuring Pe(τ) during a swap interaction8

(see below). As the Fock states are eigenstates of the par-
ity operator Π with eigenvalues 1 (-1) for even (odd) Fock
states, the Wigner function can simply be calculated as

W (α) = (2/π)
∑

n

(−1)nρ′nn(−α). (5)

We note that the Wigner function can also be calcu-
lated directly from the time trace Pe(τ) via a Fresnel
transform30, requiring only a short time scan, but yield-
ing slightly less precise results in our case. The parity
can also be measured directly in the dispersive limit24,
obviating the time scan, but the dispersive regime is in-
compatible with the parameters we need for state prepa-
ration.

The amplitude scale and the phase of the microwave
pulse α are calibrated by a best fit between the measured
and calculated Wigner distributions. Small variations
(∼ 5 %) in the scale calibration were found for the various
states measured here, including the coherent state, and
thus an average was used. The magnitude of the scale
factor is in good agreement with the attenuation of the
microwave line and its coupling capacitor.

The density matrix can be calculated from the Wigner
function by inverting Eq. (4). However, to make full use
of the measured data, we instead calculate the density
matrix ρ directly from the full set of measured photon

number probabilities28 by solving the set of linear equa-
tions

ρ′nn(αm) = 〈n|D(−αm)ρD(αm)|n〉 =
∑

j,i

Mnmjiρji,

(6)
one for each extracted photon number n and one for each
measured displacement αm. The matrix

Mnmji = 〈j|D(αm)|n〉∗ 〈i|D(αm)|n〉 , (7)

is calculated by expanding the displacement operator
D(α) = exp(αa† − α∗a) in the Fock basis:

〈p|D(α)|q〉 = e−|α|2/2
√

p!q!

min{p,q}
∑

k=0

α(p−k)(−α∗)(q−k)

k!(p − k)!(q − k)!
.

(8)
We solve the largely overdetermined linear system of
Eq. (6) by least-squares while restricting ρ to be hermi-
tian. Due to noise, ρ can have small negative eigenvalues.
Therefore we diagonalise ρ, set the unphysical negative
eigenvalues to zero, and then transform back to the Fock
basis. Finally we normalise ρ.

3. PHOTON NUMBER READOUT

At the end of the state preparation sequence for the
resonator, the qubit is ideally in its ground state. We ver-
ify this by performing state tomography of the qubit15,
yielding a qubit density matrix that is very close to the
ground state. Typically, the off-diagonal elements of the
density matrix are very small, but the excited state prob-
ability is not zero, corresponding to a Bloch vector point-
ing close to the |g〉 state: For the state generation shown
in Fig. 4, the angle θ between the Bloch vector and |g〉 is
always smaller than 5◦. For the states described in Fig. 3,
the angles are from left to right 15◦, 3◦, 13◦, 4◦, and 9◦,
due to less precise tune-up of the sequences for some of
the states. The length of the Bloch vector is close to 0.8 in
Fig. 4 and slightly larger in Fig. 3. This decrease in am-
plitude could be due to errors in the preparation sequence
that leave the qubit and resonator somewhat entangled.
However, we attribute the reduction in visibility mostly
to decoherence: The preparation sequences for the states
in Fig. 4 take approximately 200ns, a time slightly longer
than the Ramsey coherence time T2 = 150ns of the qubit.
This implies that when the qubit is brought into an equal
superposition of |g〉 and |e〉 and left there for a time of
200ns (worst case), the length of the Bloch vector would
be reduced to 0.25. The qubit decoherence is actually less
than this because the state is typically not in an equal
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Figure S1 | Wigner tomography of a “Voodoo cat” state. Left panel is theory, middle panel is experiment, and right panel is
the comparison of the density matrices, as in the main article. This “Voodoo cat” state is an equal superposition of coherent
states |α = 2〉 (“alive”), |α = 2e2πi/3〉 (“dead”) and |α = 2e4πi/3〉 (“zombie”). The state can be expanded in the Fock basis as
∑

n=0,3,6,9...
(2n/

√
n!)|n〉. For the experimental realisation we have truncated the expansion at n = 9. Theory and experiment

match well (fidelity F = 0.83), indicating that states up to nine photons can be created accurately.

superposition of |g〉 and |e〉. In addition, the qubit fre-
quency is partially stabilised when it is interacting with
the resonator.

Because the qubit is only weakly entangled with the
resonator, we can read out the resonator state with the
qubit. In doing so we must account for a reduction in the
readout visibility due to the reduced length of the qubit
Bloch vector after the preparation sequence.

We perform photon number readout on the resonator

by bringing the qubit on resonance (∆ = 0) for a variable
time and then measuring its excited state probability Pe.
With the qubit on resonance and no drive signals, all
terms in Eq. (1) vanish except for the interaction. If the
qubit-resonator state at the beginning of this resonant
interaction is described by the system density matrix ρ̃,
the probability to measure the qubit in the excited state
after time τ is

Pe(τ) =
1

2

(

1 − ρ̃(g,0),(g,0) −
∞
∑

n=1

(

(ρ̃(g,n),(g,n) − ρ̃(e,n−1),(e,n−1)) cos(
√

nΩτ) + 2Im(ρ̃(e,n−1),(g,n)) sin(
√

nΩτ)
)

)

. (9)

The qubit is mostly disentangled from the resonator and
nearly in the ground state, and thus we can neglect the
last two terms of Eq. (9), simplifying this relation to

Pe(τ) ≈ 1

2

(

1 − Pg

∞
∑

n=0

Pn cos(
√

nΩτ)

)

, (10)

where Pg is the probability for the qubit to start in its
ground state and Pn = ρnn are the diagonal elements of
the resonator density matrix. The probabilities Pn may
now be extracted from the measured time evolution Pe(τ)
by performing a least-squares fit of the data with cosine
oscillations at the various frequencies

√
nΩ.

We measure the Rabi coupling frequencies
√

nΩ by
driving the resonator with a coherent microwave pulse,
generating a coherent state, then measuring Pe(τ).
Fourier transforms of Pe(τ), taken for a range of drive

amplitudes, give sharp peaks at frequencies
√

nΩ that
are used for calibration.

With Pg and
√

nΩ already determined, calculating Pn

from Eq. (10) becomes a linear least squares fit, which
yields stable and robust results.

In our earlier experiment8, decay of resonator states
during measurement required the introduction of visibil-
ity factors. Because coherence times are longer here, vis-
ibility factors would be greater than 95% and are not
absolutely required to correct for the decay of the Fock
states during measurement. Nevertheless, the precision
of the photon number analysis was improved by includ-
ing decoherence into the calculation of Pe(τ). We nu-
merically solve the Lindblad master equation31 for the
qubit coupled to Fock states, including the same Hamil-
tonian evolution as Eq. (1) but with the relaxation times
T1,r = 3.5µs for the resonator and T1,q = 650ns for the
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qubit and using the dephasing time Tφ,q = 300ns for the
qubit (resonator dephasing is much slower than 3.5µs
and not included in the model). Note that we use a larger
qubit dephasing time than measured for the qubit alone,
which accounts for the stabilising effect of the resonator
on the qubit. As we do not know of any theory precisely
predicting this stabilising effect, the qubit dephasing pa-
rameter was adjusted to best match the observed time
evolution.

Although we typically fit for photon numbers up to
nfit = 15, the results are significant only up to nmax = 10.
We fit more photons than needed because the oscillations
from Pn are not orthogonal, so Pn from the highest n ab-
sorbs some probability from non-fitted photon numbers.

4. PULSE CALIBRATION

As illustrated in Table 1 in the main article, the inter-
mediate states during state generation are quite complex.
This complexity discourages the measurement of interme-
diate states to tune the sequences. Instead, we carefully
calibrate the fundamental operations, the single qubit
Rabi pulse, the qubit-resonator photon swap, and the
qubit-resonator phase accumulation, thus obviating the
need to tune up individual sequences. The calibrations of
the microwave electronics described here are fully auto-
mated. The qubit calibrations are semi-automated and
require standard adjustments of the bias and read-out,
which are not detailed here.

4.1. Calibration of the microwave circuitry

We control the qubit using flux bias and microwave
pulses. The flux bias is applied via two separate signal
lines, one heavily low-pass filtered but weakly attenuated
allowing large flux bias excursions at low speed, the other
unfiltered but heavily attenuated allowing small excur-
sions at high rates. The lines are combined in the ex-
perimental cryostat at a custom inductive bias-tee just
outside of the sample mount. This summed current in-
ductively couples magnetic flux to the qubit. The mi-
crowave line has two broadband (20GHz) 20 dB attenu-
ators placed at 4 K and the mixing chamber and capaci-
tively couples current to the qubit.

4.1.1. Slow flux bias

The slow flux-bias waveform is generated by a custom
low-speed and high-accuracy digital to analog converter
(DAC) based on the MAX54232. For low noise perfor-
mance, its digital inputs and clock are held constant dur-
ing qubit operation.

4.1.2. Fast flux bias

The fast flux-bias waveform is generated by custom
DAC electronics32 based on the AD9736, which gives
14 bit resolution at a 1 GHz sampling rate. Its two differ-
ential outputs are sent through separate Gaussian low-
pass filters32 with a 3 dB roll-off frequency of 200MHz,
and then to a differential amplifier (THS4509) for low
distortion amplification and conversion to a single-ended
output. To correct for imperfections in this electron-
ics chain, we first generate a step-edge output from the
DAC and measure with a sampling oscilloscope the out-
put waveform. Using de-convolution techniques, we then
digitally correct any desired waveform with the measured
response of the step-edge.

The 200MHz low-pass filters considerably suppress sig-
nals close to the DAC Nyquist frequency of 500MHz.
The de-convolution correction compensates for this sup-
pression and greatly amplifies signal components close
to the Nyquist frequency, causing various artifacts. We
add a software low-pass filter to prevent this amplifica-
tion of high frequency components, as well as ringing due
to a sharp cutoff at the Nyquist frequency. We found
that a Gaussian low-pass filter with a 3 dB frequency of
150MHz, worked well with our electronics chain.

This calibration from the sampling oscilloscope elimi-
nates all distortions outside the cryostat. Wiring imper-
fections inside the cryostat may also be measured and
corrected by using the qubit as a sampling oscilloscope.
We use the flux-bias dependence of the qubit transition
frequency to measure how the actual flux bias evolves in
time: We first tune a 8 ns FWHM resonant microwave π-
pulse in amplitude and frequency to yield a high fidelity
|g〉 → |e〉 qubit transition (see below). We then add a
1 µs flux-bias pulse just before the microwave pulse. The
flux waveform is much longer than the ∼ 100 ns timescale
over which imperfections are observed, so we only con-
sider the second (falling) flank of the waveform. In the
absence of imperfections, the flux bias following the test
waveform will settle to its pre-waveform value, and the
microwave swap pulse will be precisely resonant with the
|g〉 → |e〉 transition. In actuality, we find that the qubit
frequency is slightly de-tuned, so the π-pulse fidelity is
reduced. We then add a flux bias offset to bring the qubit
back on resonance and return the fidelity of the π-pulse
to its original value. By scanning flux offset and timing,
we can map out the response of the qubit to the flux
bias step. We then correct for this response in the same
way as for the response function measured with the os-
cilloscope. Because this method has only a limited time
resolution due to the finite length of the microwave pulse,
we correct for fast distortions outside the cryostat.
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4.1.3. Microwave drive

For the microwave drive for qubit and resonator we use
a single microwave source (Anritsu 68369A/NV), modu-
lated by IQ mixers (Marki IQ0307LXP). The I and Q
channels of each mixer are driven by two DAC outputs
identical to the fast flux bias. The mixers generate single-
sideband microwaves that can vary in frequency, phase,
and amplitude. We phase-lock all five DAC channels to
an external 10MHz clock, and digital communication be-
tween the DACs ensures that the waveforms are synchro-
nised with each other and the microwave source. We per-
form 3 types of calibrations for the microwave signals:

DAC zero adjustment ensures that the IQ mixer output
can be turned off precisely, eliminating bleed-through of
the carrier signal. In principle, a small magnitude of
carrier leakage is not a problem because, as we use side-
band mixing, the carrier frequency is typically not reso-
nant with the qubit or resonator. However, we typically
place the carrier frequency between qubit and resonator
frequency. Since the qubit is swept through the carrier
frequency each time it is tuned into resonance with the
resonator, carrier leakage could slightly perturb the qubit
state. To calibrate the I and Q DAC values needed to zero
out the mixer, we measure the mixer output with a spec-
trum analyser in a very narrow frequency band around
the carrier frequency. A simple search allows both I and
Q to be zeroed: We first fix the Q channel DAC and mea-
sure the power for 3 different I DAC values, finding the
minimum from a parabolic fit. We then fix this I value
and measure the power for three Q values, finding the
best Q value in the same way. This sequence is repeated
over increasingly narrow ranges until the resolution of the
DAC is reached. We typically find carrier on/off ratios of
> 70 dB. We also find DAC values for zero are strongly
dependent on carrier frequency.

Sideband mixing generates a shift ∆ω in the carrier fre-
quency ω by applying a signal of frequency ∆ω to the
I and Q ports of the mixer. A single sideband is gener-
ated when the signal to port Q is phase shifted by π/2
with respect to port I. IQ mixers are imperfect, and de-
viations exist in both the amplitude sensitivities and the
relative phase, which gives rise to an opposite frequency
sideband at −∆ω. We cancel this undesired signal by
adding to the digital I and Q waveforms a compensat-
ing signal of adjustable amplitude and phase at −∆ω.
To adjust this compensating signal, we measure the un-
desirable sideband signal with a spectrum analyser and
adjust the real and imaginary part of the compensation
to achieve an absolute minimum, with the same search
pattern as for zeroing of the DACs. We find the compen-
sation depends both on the carrier frequency ω and the
sideband frequency ∆ω.

Deconvolution calibration is similar to that performed
for the flux bias signal. Here, we measure the pulse re-
sponse at microwave frequencies. After calibrating the

DAC zero and sideband mixing, we apply a 1 ns impulse
to port I and measure the output of the IQ mixer with
a sampling oscilloscope. The impulse response is then
obtained by numerically demodulating the carrier fre-
quency. The same measurement is then repeated for port
Q. As this calibration is slow, it is performed only for a
single carrier frequency, typically 6 GHz. This simple cal-
ibration is sufficient because the microwave signals do not
have stringent requirements on the pulse shape. We find
precise calibration of the sideband mixing is of greater
importance.

4.2. Qubit microwave pulses

When microwave pulses are used to generate qubit
transitions |g〉 ↔ |e〉, excitations to higher energy lev-
els must be avoided, in particular the next higher eigen-
state |2〉. The |2〉 ↔ |e〉 transition frequency is typi-
cally 200MHz lower than |e〉 ↔ |g〉 due to the limited
non-linearity of the phase qubit. Microwave pulses for
|g〉 ↔ |e〉 therefore need to have low spectral compo-
nent at the |e〉 ↔ |2〉 transition frequency, so the pulses
must be sufficiently long and accurately shaped. We pro-
gram the pulses to have Gaussian envelopes with 8 ns
FWHM, which were measured to yield negligible popu-
lation (<∼ 10−4) of the |2〉 state33.

We calibrate single qubit Rabi pulses with the |g〉 → |e〉
transition, which corresponds to a rotation π on the
Bloch sphere. For this calibration, we maximise the
measured probability Pe by adjusting the amplitude and
frequency of the microwaves, as described in a previous
experiment33 that obtained a gate fidelity of 98%. For
Bloch sphere rotations with smaller angles, we simply
scale the pulse amplitude. Nonlinearities in the DAC
and from the AC Stark effect generate errors of less than
2 % in the rotation angle.

4.3. On-resonance tuning

We typically de-tune the qubit by ≈ 500MHz below
the resonator frequency for a qubit-resonator coupling
of Ω/2π ≈ 20MHz. By operating below the resonator
frequency, the qubit is not swept through this resonance
when measured and higher level transitions of the qubit
do not cross the resonator frequency. To calibrate the
flux bias pulse that tunes the qubit into resonance with
the resonator, we prepare the qubit in the |e〉 state using
a microwave Rabi pulse (see above), apply a flux bias
tuning pulse with a variable amplitude and duration, and
then measure the excited state probability Pe. Close to
resonance, a single photon is swapped between the qubit
and resonator at the frequency

Ω′ =
√

Ω2 + ∆2 (11)
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which equals the coupling strength Ω when the qubit and
resonator are on resonance (∆ = 0). The resonance con-
dition is precisely measured by varying the tuning pulse
amplitude and duration τ , mapping out Pe as shown in
Fig. 2 of the article. We then Fourier transform Pe(τ) for
different flux biases, and fit the maxima of the Fourier
transform to Eq. (11) to find the flux bias amplitude that
gives the minimum swap frequency. This fit is shown in
Fig. 2d of the article.

4.4. Swap pulse calibration

With the magnitude of the flux bias pulse determined
from the previous calibration step, we next precisely ad-
just the length of the swap pulse so that the photon is
completely transferred from the qubit to the resonator.
We optimise transfer by minimising the probability Pe of
finding the qubit in its excited state after the transfer.

The shape of the rising and falling edges of the flux
bias pulses is defined by the 150MHz numerical Gaussian
low-pass filter (see section 4.4.1), and is error-function
shaped with a 10% to 90% rise time of 2.3 ns. The finite
duration of the pulse rise and fall time, during which
the qubit is approaching resonance while interacting with
the resonator, limits the fidelity of the photon transfer.
To compensate for this effect, we add a Gaussian-shaped
overshoot to the beginning and end of the pulse, bringing
the qubit frequency slightly past the resonator frequency.
The Gaussian is centred at the step edge and its FWHM
of 2.1 ns is also defined by the numerical low-pass filter.
The pulse duration and overshoot height are adjusted
alternatingly several times to reach the global minimum
in Pe.

Once the transfer of the first photon is optimised, we
repeat the procedure for the second photon: A microwave
Rabi pulse is added immediately after the first swap pulse
bringing the qubit into the |e〉 state, and then the swap
pulse is optimised for minimum Pe. We typically repeat
this optimisation procedure for up to six photons, which
represents generation of Fock states in the resonator. The
amplitude of the optimal overshoot only depends weakly
on photon number. As calibration cannot depend on pho-
ton number for arbitrary state generation, we average the
overshoot and apply this value for all the swap pulses.
Using the average overshoot, we then repeat the calibra-
tion procedure for only the pulse duration, finding swap
times for up to 15 photons.

We use these swap times to calibrate the swap oper-
ation for arbitrary state generation. Since the coupling
strength scales as

√
n, where n is the photon number,

the n-photon swap time will result in a swap angle of
φ = π/

√
n when applied to the ground state of the res-

onator. Thus, when plotted versus 1/
√

n, as in Fig. S2,
all swap times should fall on a line, whose slope and in-
tercept give the calibration for the swap operation.
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Figure S2 | Calibration of the photon swap operation from
the measurement of optimum swap time versus 1/

√
n. The

optimum time for the n-photon swap pulse is measured by
maximising state transfer to the resonator, resulting in the
generation of Fock states. Because coupling strength scales
as

√
n, the data should fall on a line. The slope and offset

time of this line is used to calibrate the swap operation for
arbitrary state generation.
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Figure S3 | Ramsey interferometry between qubit and res-

onator. The sequence consists of a qubit π pulse followed
by two half-swaps separated by a variable delay time t, then
measurement of the qubit state. Delay times t only need to
be scanned around 20 ns, which are relevant for the arbitrary
state pulse sequence.

4.5. Phase accumulation rate

When the qubit is de-tuned from the resonator, the
|e, n〉 states accumulate phase with respect to the |g, n +
1〉 states at a rate ∆off = ωq−ωr, roughly −2π×500MHz.
For generating states more complex than Fock states, this
phase must be taken into account. To calibrate phase ac-
cumulation, Ramsey interferometry is used between the
qubit and resonator: We first prepare the qubit in the |e〉
state with a swap pulse, and then perform a half-swap
to the resonator. After a variable time t we perform a
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second half-swap, and measure Pe as a function of t. As
seen in Fig. S3, the probability oscillates sinusoidally at
the phase accumulation rate. The two half-swaps add
to a full swap, yielding a minimum Pe, when the delay
time t yields a phase accumulation of a multiple of 2π.
For phase accumulation of π, the second half-swap un-
does the first half-swap, yielding a maximum value for
Pe. The oscillation allows a precise calibration of phase
accumulation when the qubit and resonator are de-tuned.

Note that the timing of the pulses in Fig. S3 require
nearly continuous variation of t. The pulse edges can be
adjusted for a time much less than the 1 ns DAC update
time because the step edges are generated from several
DAC points. As illustrated in Fig. S3, we can adjust and
control the step edges in the 10− 50 ps range.
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