Coherent State Evolution in a Superconducting Qubit
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Measurement is one of the fundamental building blocks of quantum informa-
tion processing systems. Partial measurement, where full wavefunction col-
lapse is not the only outcome, provides a detailed test of the measurement pro-
cess. We introduce quantum state tomography in a superconducting qubit
that exhibits high fidelity single-shot measurement. For the two probabilistic
outcomes of partial measurement, we find either a full collapse or a coherent
yet non-unitary evolution of the state. This latter behavior explicitly confirms
modern quantum measurement theory, and may prove important for error-

correction algorithms in quantum computation.



The wave-particle duality in quantum mechanics originates from two distinct ways in which
a quantum state may change: a linear (unitary) evolution according to the Schrodinger wave
equation, and a non-linear (projective or “collapse”) evolution due to measurement (/). In re-
cent years, it has been understood that an interesting combination of wave and particle dynamics
can be observed using partial measurements, where the quantum state both partially collapses
and coherently evolves at the same time (2). In quantum optics, continuous quantum measure-
ment backaction was harnessed to control state evolution, leading to the generation of squeezed
states (3). Also, partial measurement is predicted to be useful as a form of quantum error correc-
tion, where continuous feedback is used for correction (4). Here we present full experimental
verification of a partial measurement on a solid-state qubit (5-9) that is also a macroscopic quan-
tum system (/0,11). The simplicity of our partial measurement presents a clear demonstration
of this phenomenon (/2), shedding light on the physics of quantum measurements.

Recent experiments (/3-16) with superconducting circuits, fabricated using lithographic
techniques, have provided an intriguing link between microscopic quantum states and macro-
scopic quantum phenomena. Many important coherent effects, familiar from quantum optics
and nuclear magnetic resonance explorations, have been reproduced in such devices. Energy re-
laxation and dephasing of these Josephson qubits have also been extensively studied (6,7,17,18),
leading to various new techniques to further enhance the lifetime of the qubit state. However, the
delicate issue of measurement (/9) and the subsequent evolution of the qubit have received less
attention (/6, 20-23). Significant progress has been made to overcome low measurement visi-
bilities (16,20,21,23), measurement back-action (/7,20), short lifetimes of superposition states
(5,16,23) and difficulties in integrating complex pulse sequences with arbitrary phase and am-
plitude. Many of these problems are now resolved in the Josephson phase qubit. By using our
recent improvements in rapid measurements (/6,22), quantum state tomography (23,24) and

measurement fidelity, we can now explicitly demonstrate the coherent aspects of non-unitary



state evolution during a partial measurement. This further places the phase qubit as a major
candidate for scalable quantum information processing in the solid state.

A schematic of the phase qubit (/6,25) circuit is shown (Fig. 1A), where the superconduct-
ing phase difference across the Josephson junction (with critical current /) is J, and serves
as our quantum variable. A control flux bias is introduced into the inductor L, with the total
current [, = I4. + I,(t) biasing the junction and adjusting the cubic potential (see Figs. 1B,
1C). This, in turn, determines the height of the energy potential barrier AU and the energy split-
ting hiw;o between the qubit basis states |0) and |1). The qubit state is coherently manipulated
by on-resonant microwave-frequency pulses /,,,, (in the 5 — 10 GHz range) that drive transi-
tions between the basis states. Smooth control pulses 7, on the bias line (generated from room
temperature voltage pulses V, and a cold rf bias tee) are used to vary the frequency difference
w10/ 27 adiabatically, leading to the accumulation of a controlled phase between the |0) and |1)
states. When the bias current is pulsed to higher values /. + I feak (see Fig. 1C), the rate of
tunnelling T'; of the |1) state out of the meta-stable qubit potential becomes large. Tunnelling is
a selective measurement of the |1) state because the rate from the |0) state is typically about 200
times slower. Furthermore, I'; is exponentially sensitive to AU and we may vary the amplitude
of the measurement pulse /7°** to tunnel a controlled fraction p of the |1) state population out
of the well. Once tunneled, the state decays rapidly to an external ground state. The coherence
with the wavefunction component remaining in the qubit well is lost within a time less than 0.3
ns (25), and constitutes the partial collapse. The two components are distinguished at a later
time by the on-chip SQUID amplifier and readout circuitry.

The time-line of the experimental sequence is shown in Fig. 1D. We first apply a microwave
pulse (typically 7 ns duration) to prepare the qubit in a known state. This is followed by a short
(3.2 ns full-width at half maximum) partial measurement pulse (calibration shown in the inset of

Fig. 3B). The remaining qubit state is then analyzed by a second tomographic microwave pulse



(10 ns in duration) followed by a final full (p = 1) measurement pulse. For a given initial state
and partial measurement, the complete tomographic determination of a state involves scanning
over all phases and a range of amplitudes of the tomographic pulse, as shown in Fig. 2. For
each pixel in the 2-dimensional scan of tomography pulses, data is taken 200 times to acquire
sufficient statistics to determine the resulting qubit populations.

Ideally, the initial qubit state prepared by the first microwave pulse can be described as a
superposition |t1)y) = cos(6y/2)|0)+e~0 sin(fy/2)|1), where 6 and ¢, are polar and azimuthal
angles on the Bloch sphere (/2) in the rotating frame. This pulse is used to define the initial
phase ¢y = 0.

A partial measurement leads to a non-trivial evolution of the quantum state (2,12), with the

net probability for each eventuality on the right,

|ar) = %[COS(00/2)|O> +e7 M /T —psin(0y/2)[1)] 1 — psin®(6y/2)
Vo) — (D
tunnel out of qubit well psin?(6y/2)

where N = [cos?(0/2) + (1 — p)sin®(6,/2)]'/? is the normalization and ¢, is an acquired
phase. Casting 1) into a normalized form [1y;) = cos(0x;/2)|0) + e~ sin(0y,/2)[1) we
find

Oy = 2tan"'[y/1 — ptan(6y/2)]. (2)

For the subset of events that do not tunnel from the partial measurement, the change from
o to O, constitutes the coherent and non-unitary evolution of the qubit state due to partial
measurement. As p approaches unity, the state is fully projected into the state |0), as expected.
Note that because of the normalization factor, the amplitude of the state |0) increases despite
this state not being explicitly measured. Since these events did not undergo any tunnelling or
subsequent decay, the accumulated phase ¢,; can be calculated (in this simple model) from
the frequency dependence on the time varying bias current, and is given by fOTp [wio(Ls(t)) —

wio(Z4c)]dt, for a pulse of duration 7).



The resulting state ), is determined with the tomographic microwave pulse, which only
changes 1)), and does not influence the tunneled population outside the qubit well. The tomog-
raphy pulse, with components ¢, and 6, in the  — y plane of the Bloch sphere, rotates the qubit
state by an angle 6 = /62 + 62 around the direction ¢ = tan~'(6,/0,) (see Fig. 2F). The

resulting state is therefore given by
[hr) = [cos(Bar/2) cos(/2) — sin(By;/2) sin(8/2)e'¢~2)]|0)
+[cos(Aar/2) sin(8/2) + sin(fy;/2) cos(6/2)e@=92)]|1) 3)

The final measurement pulse causes tunnelling of the |1) state component of 7. This results in

the total measured probability of tunnelling

Pr = psin*(f/2) + [1 — psin®(fo/2)][(L|vr)|”

_1z pSHQl /2] [1+ cos(far) cos(6) — sin(far) sin(0) cos(¢ — dar)] (4

=1

which includes the original p sin®(6,/2) probability from the partial measurement pulse summed
with the additional probability from the final measurement.

The measured distributions of P are shown in Fig. 2(A-C) as a function of the tomographic
parameters (26). We see a change in the symmetry of the distributions from an anti-symmetric
pattern (Fig. 2A) to a symmetric one (Fig. 2C), demonstrating the evolution of the qubit state
due to the partial measurement, as 6,; changes continuously from the initial-state value of ~
7/2 to ~ 0. In addition to the change in #,;, we also observe a rapid and repeatable rotation
of the distribution of Pr due to the expected coherent accumulation of phase ¢, (Fig. 2B).
Theoretical fits to Pr are used to determine #,; and ¢,;, with p, 0y, ¢g, 6 and ¢ calibrated
separately. Fitted distributions, displayed in figures 2(D-F), capture the main features of the
data.

In the plots of ), and ¢y, versus probability p and pulse amplitude V?¢* (Figs. 3A and

3B), the measurements were carried out for two different initial states 6,/7 = 0.53(2) and
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0p/m = 0.66(2). We observe convincing agreement between Eq. 2 and experiment with no
fit parameters, indicating the validity of the non-unitary description of the partial measurement
operator in Eq. 1. The agreement (25) of the measured ¢,; with the expected phase calculated
from wyo(/,) indicates that rapid pulsing of the flux bias can also be used as a high-fidelity
z-gate.

This idealized picture of state evolution is not fully realized in our experiment because of
energy relaxation and dephasing. Ideally, the measured probabilities in Fig. 2 should oscillate
between psin®(fy/2) and unity, leading to a visibility Vg = 1 — psin®(6y/2) in Pr. In
practice the experimental visibility is less. Figure 3C shows the measured visibility v,,,cqs Of
the experiment divided by v;4.;. We calculate the expected visibility by solving the optical
Bloch equations (/2) using the experimental parameters of energy relaxation time (77 = 110
ns) and dephasing time (75 = 80 ns) obtained in a separate experiment. In the calculation,
the measurement is taken to be an instantaneous change of the Bloch vector according to the
generalized quantum description of the partial measurement operator acting on a density matrix
state (/2). The good agreement between experiment and simulation, with no fit parameters,
shows that the partial measurement is indeed applying a rapid evolution of the state, in full
agreement with Eq. 1, with very little added decoherence (less than 4%). We also note that the
slight asymmetries in the experimental patterns, barely visible on Figures 2(A-C), are traced to
the effect of the off-resonant state |2) (as shown in Fig. 1B), with a population that is measured
to never exceed 2% during the entire experiment. Further enhancements in qubit lifetimes and
careful shaping of the microwave pulses will allow us to reduce this unwanted occupation even
further.

Measurement is a critical component of fault-tolerant quantum computation as it is widely
used in quantum error-correction algorithms (27). Instantaneous measurement of a qubit state is

typically used to project the remaining encoded qubits to the correct state, improving the fidelity



of the calculation. This experiment shows in detail that the evolution of the quantum state with
measurement is obeying the quantum mechanical predictions. In any realistic, experimental
implementation, slow and incoherent measurements will rapidly degrade the success of error
correction by adding uncontrolled decoherence. Our measurement scheme is thus attractive
since it is both fast and coherent.

Rapid pulsing of the bias for a phase qubit has been shown to be a well-defined quantum
operator of partial measurement and high fidelity z-rotation. The speed, visibility and coherence
of this measurement technique are expected to be well-suited for determining multiple qubit-
states, including violation of Bell inequalities for two qubit states, and for use in quantum

error-correction codes.
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Fig. 1. Qubit circuit and experimental operation. (A) Circuit schematic for the Josephson
phase qubit, where ”X” represents the Josephson junction. The measurement operation is im-
plemented with a broadband 50 €2 transmission line with cold attenuators, which is connected
to the flux bias line with a bias tee. Pulses V, of amplitude V?°** are used. (B) Operation
mode of the qubit. The qubit is formed out of the two lowest eigenstates |0) and |1), with the
transition frequency wyo/2m = 5.8095 GHz. (C) Measurement mode of the qubit. During the
measurement pulse, the energy barrier AU is lowered so that the tunnelling probability of |1)
increases. (D) Timing of the experiment. The microwave sequence /,,,,(¢) includes the initial
preparatory pulse and the later tomographic pulse. The bias current /() is held at the constant
value /,. during the microwave pulses and is pulsed to higher values I, + I.(t) for the partial
and full measurements. The experimental bias current is shown, including a ~ 3% ringing after
the pulses.

Fig. 2. Tomographic scan of the qubit state, initially at 6y/7 = 0.53(2), following partial
measurements. The central spots mark & = 0 and the circles correspond to § = 7. (A-C)
Experimental tomographic probabilities P for p = 0, 0.25 and 0.96. We observe a clear change
in Pr from an anti-symmetric (p = 0) to a nearly symmetric (p = 0.96) distribution. (D-F)
Fitted distributions for the data of A-C. The distributions are in striking agreement, given the
simplicity of the model. The primary difference is the reduced visibility of the experimental
data, which is quantified in Fig. 3C.

Fig. 3. State evolution due to partial measurement, for two initial states 6y/m = 0.53(2) (e)
and 0y/m = 0.66(2) (). (A) The evolution of the polar angle #,, due to a partial measurement
with probability p. The experimental measurement is shown to be in close agreement with the
ideal partial measurement (solid line). (B) The evolution of the measurement phase angle ¢,
as a function of pulse height for both initial states. The phase accumulates in agreement with a

simple model integrating over the time-dependent qubit frequency during the pulse (solid line).
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Note the initial polar angle ¢, does not influence this rotation. Inset: Calibration of the measure-
ment probability p of the |1) state vs. pulse amplitude VP*** (C) Visibility of the tomographic
SCan Vy,eqs Normalized to ideal visibility vigeq = 1 — psin®(6y/2), versus measurement prob-
ability p. Data compares well with an optical Bloch equations simulation (solid lines) using

experimental values for decoherence.
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