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A calculation of the energy decay rate of a Josephson qubit from non-equilibrium quasiparticles
is made using the environmental P (E) theory. For a large-capacitance qubit, we extend the theory
to include the tunneling of quasiparticles, which has an electron- and hole-like charge components.

PACS numbers:

In this note, we calculate the dissipation due to the
tunneling of quasiparticles using the environmental P (E)
theory[1] to properly account for coupling to the qubit
from the charge transfer. We will first calculate the
damping rate for a inductor-capacitor resonator using
environmental theory; the prediction for phase qubits,
for example, will be similar since qubit and harmonic
oscillator matrix elements are nearly identical. We will
then consider the tunneling of quasiparticles, which has
tunneling of charge carriers that is both electron- and
hole-like.

Standard environmental theory gives a probability
P (E) for the environment to absorb energy from a tun-
neling event with charge transfer q

P (E) =
∫ ∞

−∞

dt

2π~
exp[J(t) + iEt/~] (1)

J(t) =
∫ ∞

−∞

dω

ω
Re{2Z(ω)/RK}(e−iωt − 1) , (2)

where Z(ω) is the environmental impedance, RK = h/q2,
and we have assumed for simplicity T = 0. We first
consider an inductor in parallel with a Josephson junc-
tion of capacitance C, which has a resonance frequency
ωr = 1/

√
LC. Here L is the parallel combination of the

external inductance and the Josephson inductance. The
impedance of the environment is

Z(ω) =
π

2C
[δ(ω + ωr) + δ(ω − ωr)] , (3)

which describes how the resonator can both absorb or
emit photons at frequency ωr. Defining the resonator
impedance Zr = 1/ωrC and inserting Eq. (3) into Eq. (2),
we find

P (E) =
∫ ∞

−∞

dt

2π~
eiEt/~ exp[π

Zr

RK
(e−iωrt − 1)] . (4)

For the case of large capacitance resonators where Zr ¿
RK , the second exponential can be expanded in a Tay-
lor’s series giving

P (E) ' (1− πZr/RK)δ(E) + (πZr/RK)δ(E − ~ωr) .
(5)

The probability for the environment to absorb a photon
is given by the second term, and can be rewritten as

p(~ωr) =
q2/2C

~ωr
. (6)

This probability is much smaller than one, which makes
physical sense since the charging energy q2/2C of the
tunneling event is much smaller than the environmen-
tal energy ~ωr. For the case where the environment has
initially one photon, the probability p(−ωr) for the envi-
ronment to emit a photon during tunneling has the same
magnitude as Eq. (6).

We have assumed in this calculation that charge q =
−e is transferred across the junction in a tunneling event.
This assumption must be modified since quasiparticles
are both electron (q = −e) and hole (q = e) like, and their
interference introduces coherence factors to the total tun-
neling rate. The environmental theory must be derived
in a way that properly accounts both for the quasiparti-
cle states and the transfer of charge to the environment.
The tunneling Hamiltonian is given by

HT =
∑

L,R,σ

tLRc†LσcRσe−iϕ + t∗LRcLσc†Rσe+iϕ , (7)

where tLR is the tunneling matrix element. Changes
to the internal (uncharged) state of the superconductor
is described by the creation and annihilation operators.
The L and R indices describe states in the left and right
superconductor, and σ describes the two spin states of
the electron. The change in the electrical circuit to a
tunneling event is represented by the charge displacement
operators e±ϕ, which describe the transfer of ±e from the
tunneling event. Here, ϕ is the conjugate coordinate to
charge q and corresponds to a dimensionless flux with
dϕ/dt = (e/h)V = (e/h)(q/C). It has a commutation
relation [q, ϕ] = ie and gives a charge displacement oper-
ator according to the relation eiϕqe−iϕ = q − e.

The electron operators need to be re-expressed in terms
of the quasiparticle operators γ because quasiparticles
are eigenstates of the superconducting leads. The four
electron operators are given by

ck↑ = ukγk0↑ + vkγ†k1↓ ck↓ = ukγk0↓ − vkγ†k1↑
c†k↑ = ukγ†k0↑ + vkγk1↓ c†k↓ = ukγ†k0↓ − vkγk1↑ .

(8)
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The standard electron and hole occupation factors uk and
vk are given by

u2
k = (1/2)(1 + ξk/Ek) (9)

v2
k = (1/2)(1− ξk/Ek) , (10)

where ξk is the energy of the electron/hole states referred
to the Fermi level, Ek =

√
ξ2
k + ∆2 is the quasiparticle

energy, and ∆ is the superconducting gap.
The tunneling Hamiltonian, written in terms of the

quasiparticle operators, is found by substituting Eq. (8)
into Eq. (7). Eight of the resulting terms correspond to
tunneling of a quasiparticle across the junction. For ex-
ample, the tunneling from the state L0 to R0 is given
by

−→
HT = tLR(uLuRe−iϕ − vLvReiϕ)γL0γ

†
R0 , (11)

where we have used tLR = t∗LR. As seen from the charge
displacement operators, the two terms corresponds to
charge tunneling in opposite directions.

The tunneling of a quasiparticle produces both an
electron-like and hole-like transfer of charge to the en-
vironment. The superposition of charge transfer has not
been considered previously for environmental theory, and
can be incorporated readily into the formalism with only
a change in the environmental displacement correlator
(see Eq. (44) in Ref. [1])

eJ(t) = 〈eiϕ(t)e−iϕ(0)〉 (12)

→ 〈(ue−iϕ(t) − veiϕ(t))(ueiϕ(0) − ve−iϕ(0))〉 , (13)

where u = uLuR and v = vLvR. The 4 correlators can
be simplified by noting that for a harmonic oscillator the
function is Gaussian, and therefore determined by its first
and second moments [1]. Expanding terms to second
order, one finds

〈e±iϕ(t)e∓iϕ(0)〉
' 〈[1± iϕ(t) + (iϕ(t))2/2][1∓ iϕ(0) + (iϕ(0))2/2] (14)

= 〈1± i[ϕ(t)− ϕ(0)] + ϕ(t)ϕ(0)− [ϕ(t)2 + ϕ(0)2]/2〉
= 〈1 + [ϕ(t)− ϕ(0)]ϕ(0)〉 (15)

' e〈[ϕ(t)−ϕ(0)]ϕ(0)〉 , (16)

where we have used 〈ϕ(t) − ϕ(0)〉 = 0 and 〈ϕ(t)2〉 =
〈ϕ(0)2〉. One similarly finds

〈eiϕ(t)eiϕ(0) + e−iϕ(t)e−iϕ(0)〉 (17)

' 〈2− 2ϕ(t)ϕ(0)− [ϕ(t)2 + ϕ(0)2]〉 (18)
= 2〈1− [ϕ(t) + ϕ(0)]ϕ(0)〉 (19)

' 2e−〈[ϕ(t)+ϕ(0)]ϕ(0)〉 . (20)

Equation (13) can thus be written as

eJ(t) =[(u2 + v2)e〈ϕ(t)ϕ(0)〉 − 2uve−〈ϕ(t)ϕ(0)〉]

× e−〈ϕ(0)ϕ(0)〉 . (21)

Note that the quantity 〈ϕ(t)ϕ(0)〉 is the noise correla-
tion function for the (dimensionless) flux fluctuations.
As shown in Eq. (2), it can be computed as the Fourier
transform of the noise spectrum obtained from the fluc-
tuation dissipation theorem.

For the case Zr ¿ RK , corresponding to large capaci-
tance junctions where ϕ is small, the exponential in Eq.
(21) can be expanded in a Taylor series

eJ(t) ' (u− v)2 + (u + v)2〈ϕ(t)ϕ(0)〉 . (22)

Because the density of quasiparticles are small and they
mostly thermalize to energies close to the gap, the oc-
cupation probabilities are all approximately the same
u2

L = v2
L = u2

R = v2
R = 1/2. In this limit, the proba-

bility for a quasiparticle to tunnel without a change in
energy is given by the (u − v)2 ' 0, showing a large
suppression of tunneling due to the electron- and hole-
like nature of the quasiparticle. However, the coherence
factors when absorbing or emitting a photon to the en-
vironment is proportional to the second term, which is
near-unity u2 + v2 ' 1.

The coherence factors can be computed using Eqs. (9)
and (10)

(uLuR ± vLvR)2 =
1
2

ELER + ξLξR ±∆L∆R

ELER
(23)

=
1
2

ELER ±∆L∆R

ELER
, (24)

where in the second equation the terms ξLξR have been
averaged to zero for typical integrations over quasiparti-
cle states.

We first compute the quasiparticle tunneling rate (from
left to right) corresponding to the first term in Eq. (22).
This process is equivalent to a thermal current across the
junction, as there is no charge transfer from tunneling.
The average tunneling rate is

−→
Γ T =

1
e2Rt

∫ ∞

∆

dE 2ρL2ρR(u− v)2fL(E)[1− fR(E)]

(25)

=
2

e2Rt

∫ ∞

∆

dE
E2 −∆2

(
√

E2 −∆2 )2
fL(E)[1− fR(E)]

(26)

=
2

e2Rt

∫ ∞

∆

dE fL(E)[1− fR(E)] , (27)

where RT is the (normal state) resistance of the tunnel
junction, and ρ = E/ξ = E/

√
E2 −∆2 is the normal-

ized quasiparticle density of states. The factor of 2 for
each ρ accounts for summing over both positive and neg-
ative ξ. Note that without interaction to the environ-
ment, the final energy of the quasiparticle excitation is
unchanged from the initial energy. The integral, having
only occupation factors, corresponds to simple tunneling
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of the excitations through the junction, as appropriate
for quasiparticles diffusing through the superconductor.

The second term in Eq. (22) corresponds to a tunneling
event that couples energy from the qubit to a quasipar-
ticle. The rate for this process has been written down in
the main article.

QP DAMPING IN A COPLANAR RESONATOR

In this section we compute the Q-factor (damping) for
a coplanar resonator due to non-equilibrium quasiparti-
cles in the superconductor. The discussion follows the
Ph.D. thesis of J. Gao [2].

A bulk superconductor has complex conductivity σ =
σ1 − iσ2 given by the Mattis-Bardeen theory

σ1

σn
'
√

2
( ∆
~ω

)3/2 nqp

D(EF )∆
, (28)

σ2

σn
' π

∆
~ω

− 2
√

2
( ∆
~ω

)3/2 nqp

D(EF )∆
, (29)

= π
∆
~ω

− 2
σ1

σn
, (30)

where parameters have been defined in the main text,
and σn is the normal state conductivity. We will assume
that the quasiparticle density is small, giving σ1 ¿ σ2

and little dissipation.
The surface impedance of a superconductor depends

on details of the superconductor and interface. In the
thin film limit, the surface impedance is obtained via the
geometrical factor of the film thickness d

Zs =
1
d

1
(σ1 − iσ2)

' 1
d

(σ1

σ2
2

+ i
1
σ2

)
. (31)

The ratio of the real to imaginary impedance is

Re(Zs)
Im(Zs)

= γ
σ1

σ2
, (32)

where here, for the thin film limit, γ = 1. For the
case of thick films in the local (dirty) limit, the surface
impedance is given by standard electromagnetic theory

Zs =
( iµ0ω

σ1 − iσ2

)1/2

. (33)

For σ1 ¿ σ2, the ratio of the impedances is the same
form as Eq. (32), but with γ = 1/2 in the local (dirty)
limit and 1/3 in the extreme anomalous (clean) limit [3].

The quality factor Q may be computed taking into ac-
count the field distribution in the coplanar transmission
line. For a resonance frequency ω, standard microwave
theory gives 1/Q = R/ωL, the ratio of the dissipative
to total dispersive impedance. Here, L = Lm + Ls and
R = (g/s)Re(Zs) are the total inductance and resistance
per length of the line, Lm is the geometric inductance
coming from the magnetic field, Ls = (g/s)Im(Zs/ω) is

the kinetic inductance, s is the width of the center line,
and g ' 1.0−1.2 is a geometric factor accounting for the
coplanar geometry [4]. Defining the fractional contribu-
tion of the kinetic inductance as α = Ls/L, one finds

1
Q

= αγ
σ1

σ2
. (34)

For typical transmission lines the effect of the kinetic
inductance is small, corresponding to α ¿ 1.

In the thin-film limit, the fractional kinetic inductance
using Eq. (31) is α ' g/(dsσ2)/Lm, which gives

1
Q

=
[ Rn

ωLm

]
g

√
2

π2

(~ω
∆

)1/2 nqp

D(EF )∆
, (35)

where Rn = 1/dsσn is the normal state resistance per
unit length of the coplanar line. The first term is the
expected damping factor for a normal-state transmission
line, while the remaining factors represents the suppres-
sion of dissipation due to the small number of quasipar-
ticles in the superconducting state.

In the thick-film limit, the inductances may be param-
eterized by Im(Zs/ω) ≡ µ0λ and Lm ≡ µ0gm. In the lo-
cal (dirty) limit, the penetration depth may be obtained
from Eq. (33)

λ =
( 1

µ0ωσ2

)1/2

=
( 1

πµ0σn∆/~

)1/2

, (36)

with a magnitude λ ∼ 50 nm for Al [5]. The magnetic in-
ductance is described by a geometrical factor gm ' 0.31
that is only logarithmicly dependent on design parame-
ters [4]. Using Eq. (34), the quality factor is given by

1
Q

=
λ

s

g

gm
γ

√
2

π

( ∆
~ω

)1/2 nqp

D(EF )∆
. (37)

Note that the Q scales as σ
1/2
n , which is a smaller power

law than for the thin-film limit.
We have not yet accounted for the change δσ2 from

nqp in Eqs. (29) and (30), which slightly decreases the ki-
netic inductance and increases the resonance frequency.
The fractional change in frequency is computed as
δω/ω = − δLs/2L = −α δLs/2Ls = −αγ δσ2/2σ2 =
αγ δσ1/σ2 = 1/Q, so that the fractional frequency change
is the same magnitude as 1/Q.
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