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In quantum information processing, qudits (d-level systems) are an

extension of qubits that could speed up certain computing tasks.

We demonstrate the operation of a superconducting phase qudit

with d = 5, showing how to manipulate and measure the qudit state,

including simultaneous control of multiple transitions. The qudit is

used to emulate the dynamics of single spins with principal quantum

number s = 1/2, 1 and 3/2, allowing a measurement of Berry’s phase

and the even (odd) parity of integer (half-integer) spins under 2π-

rotation. This extension of the two-level qubit to a multi-level qudit

holds promise for more complex quantum computational architec-

tures, and for richer simulations of quantum mechanical systems.

Quantum computers are typically thought of as being composed of qubits, or two-level

quantum systems (1). However, one can also use qutrits (three-level systems) or, more
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generally, qudits (d-level systems), which can simplify some quantum computations (2,3)

and improve robustness in quantum cryptography (4). The advantages of qudits are also

evident when one considers using a quantum computer not to perform computations,

but rather to “emulate” another quantum system by directly implementing an analogous

physical Hamiltonian. This requires a map between the Hilbert space and unitary opera-

tors of the emulator and the target system. If the target system contains parts with d > 2

levels, then it maps much more naturally to a set of qudits, making a qudit emulator

potentially more efficient.

We demonstrate the operation of a superconducting phase qudit, with full unitary

control and measurement of the state (5,6). This device, one of a family of superconduct-

ing quantum information processing devices (7), is typically operated as a qubit (8,9) by

restricting it to the two lowest-energy eigenstates. By relaxing this restriction, we can

operate it as a qudit where the number of levels d can be chosen as desired, in this case

up to d = 5.

Emulation of spin, or intrinsic angular momentum, naturally calls for qudits with d >

2. A spin state is described by two quantum numbers (10), the principal quantum number

s = 0, 1/2, 1, 3/2,... and the azimuthal quantum number m, limited to the d = 2s + 1

values m = s, s− 1,..., −s. For a given s, the general spin states |ψ〉 =
∑

m cm |s,m〉 span

a d-dimensional Hilbert space, so while qubits can be used to model spin-1/2 physics, a

qudit allows one to model spins s ≥ 1 (d ≥ 3).

When rotated about a closed path (Fig. 1), a spin state |s,m〉 acquires a phase

factor exp(−imΩ) where Ω is the solid angle enclosed by the path, as predicted by Berry

(11,12). For a 2π-rotation (Ω = 2π), integer spins are unchanged while half-integer spins

are multiplied by −1. This parity difference leads to the symmetric (anti-symmetric)

statistics of bosons (fermions) under exchange, as described by the spin-statistics theorem
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(13, 14). The effect of 2π-rotations was first observed on spins s = 1/2 via neutron

interferometry (15,16) and later for s = 1 and s = 3/2 in nuclear magnetic resonance (17).

In superconducting qubits, the spin-1/2 parity (18) and Berry’s phase (19) have been

measured. Here we measure Berry’s phase and spin parity for spin-1/2, spin-1 and spin-

3/2 at all solid angles using our qudit emulation (20).

Our flux-biased phase qudit (Fig. 2A) is a nonlinear resonator formed by a Josephson

junction, inductor and capacitor. Applied magnetic flux produces a cubic potential as a

function of the junction phase δ, with barrier height ∆U that can be tuned to change the

number of energy levels in the well (Fig. 2B). The cubic anharmonicity is crucial for qubit

operation (21), allowing microwaves at frequency ω10 = (E1 − E0)/h̄ to drive transitions

between |0〉 and |1〉, while minimizing “leakage” to |2〉 and higher (22). For measurement,

a brief current pulse I(1)
meas is applied to lower the barrier and cause |1〉 (but not |0〉) to

tunnel out of the well. An on-chip superconducting quantum interference device (SQUID)

detects this tunneling (23).

For qudit operation, anharmonicity is again crucial as it ensures that all transition

frequencies ωn,n−1 = (En −En−1)/h̄ are unique, allowing frequency-selective control of all

qudit states. In the present sample, transition frequencies are ∼ 6 GHz, separated from

each other by ∼ 200 MHz (Fig. 2B). This separation is large enough that transitions

can be selectively driven using fast pulses (compared to the state lifetimes), but small

enough that the total bandwidth required is within that of our microwave control (24).

This selective control of transitions between neighboring levels allows for the construction

of arbitrary unitary gates on the d-level qudit manifold (25).

To measure the qudit, d − 1 pulse amplitudes I(1)
meas > I(2)

meas > ... > I(d−1)
meas are chosen

(Fig. 2C), with each pulse I(n)
meas adjusted so the upper states |n〉, |n + 1〉,... tunnel out of

the well, while the lower states |n− 1〉, |n− 2〉,... do not. Each tunneling measurement
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is repeated ∼ 103 times on identically-prepared qudit states to obtain the cumulative

tunneling probability P≥n. From these, we obtain the individual occupation probabilities

Pn = P≥n −P≥n+1, which are the diagonal elements Pn = ρnn of the qudit density matrix

ρmn = 〈m| ρ̂ |n〉.

Arbitrary unitary gates combined with state measurement make this system a uni-

versal single qudit (5, 25). By applying an appropriate set of unitaries before measure-

ment, one could for example reconstruct the entire qudit density matrix, similar to pre-

viously demonstrated single- and coupled-qubit state tomography (8, 9). Qudit-qudit

coupling (25) is also possible, but beyond the scope of this work.

The qudit is calibrated one transition at a time from the ground state upwards. First,

as for qubit operation, the system is initialized in |0〉 and a standard protocol (22) is

used to find I(1)
meas and ω10, and to calibrate a π-pulse |0〉 → |1〉. Next, this π-pulse is

applied to initialize the system in |1〉, and the protocol is repeated to find I(2)
meas and ω21,

and to calibrate a π-pulse |1〉 → |2〉. This process is repeated as desired, in this case up

to |d− 1〉 = |4〉. Each π-pulse has a 16 ns envelope (26), with the amplitudes scaled to

equalize the rotation rates (Fig. 3A-C), thus calibrating the transition matrix elements

δn,n−1 = 〈n| δ̂ |n− 1〉. The measured lifetimes of the excited states are T1 = 610 ns,

T2 = 320 ns, T3 = 220 ns, T4 = 170 ns, in good agreement with the Tn = T1/n scaling

seen in harmonic oscillators (27,28) due to the weak anharmonicity.

Evolution of the qudit state is best described in the basis of moving eigenkets |n′〉 =

exp(−iEnt/h̄) |n〉. In this basis, microwaves at ωn,n−1 appear as off-diagonal elements in

the Hamiltonian

H ′ =











0 A∗
10 0 0

A10 0 A∗
21 0

0 A21 0 A∗
32

0 0 A32 0











, (1)

where the An,n−1 are arbitrary complex numbers giving the amplitude and phase of the
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microwaves at ωn,n−1, and we have made the usual rotating-wave approximation by dis-

carding off-resonant terms. The calibration shown in Fig. 3A-C ensures that the An,n−1

are calibrated relative to each other.

To emulate a spin rotation, the applied qudit Hamiltonian should be the appropriate

rotation generator. The generators of rotation about X for s = 1/2, 1 and 3/2 are (10)

X(1/2) =

(

0 1
1 0

)

X(1) =







0 1 0
1 0 1
0 1 0







X(3/2) =















0
√

3
2

0 0√
3

2
0 1 0

0 1 0
√

3
2

0 0
√

3
2

0















,

(2)

where the largest element in each matrix has been normalized to 1. Generators of Y -

rotation are similar, but with imaginary off-diagonal terms. These operators all have the

form Eq. 1 of microwave drive Hamiltonians, allowing us to use microwaves to emulate

spin rotations about X, Y or any other axis in the X-Y plane.

The evolution of the qudit state under emulated spin rotation is shown in Fig. 3 for

spin-1 (D) and spin-3/2 (E). In both cases, the ground state |0〉 is reserved as a phase

reference, so the spin is mapped to |1〉 ≡ |s, s〉, |2〉 ≡ |s, s− 1〉,..., |1 + 2s〉 ≡ |s,−s〉.

The spin starts in |1〉, rotates to |3〉 (spin-1) or |4〉 (spin-3/2), then back to |1〉 and so

on. While the state populations evolve in a complicated fashion, the expectation value

〈Ẑ〉 =
∑

mmP|s,m〉 evolves sinusoidally (dashed line), as expected for a rotating spin.

Compared to spin-1/2 (A-C), the rotation is slowed by a factor
√

2 (spin-1) or 2 (spin-

3/2), in agreement with direct exponentiation of the matrices in Eq. 2.

Next, these emulated spin rotations are used to measure Berry’s phase, as described in

Fig. 1. The phase measurement is made using Ramsey interference with |0〉 as a reference.
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First, a π/2-pulse is applied to prepare the superposition (|0〉 + |1〉) /
√

2. Then two

emulated π-pulses are applied with angle Θ between their rotation axes, rotating the spin

component |1〉 ≡ |s, s〉 about a closed path and giving the state (|0〉 + exp (−isΩ) |1〉) /
√

2.

Finally, a second π/2-pulse is applied to detect the phase of |1〉. As the rotation axis φ

of the latter π/2-pulse is varied, P1 traces out a sinusoid—a Ramsey fringe—whose phase

corresponds to the acquired spin phase.

The result of this experiment is shown in Fig. 4. For spin-0 no π-rotations are

performed (the rotation generator is X(0) = 0) so the Ramsey fringes are stationary. For

s = 1/2, 1, and 3/2, the Ramsey fringes shift by −2π, −4π, and −6π, respectively, as Θ

increases from 0 to 2π (Ω changes by 4π), in agreement with the predicted Berry phase

factor exp (−isΩ). The slices at Θ = π (Ω = 0) and Θ = 0 (Ω = 2π) clearly show the

parity difference between integer spins s = 0, 1 and half-integer spins s = 1/2, 3/2, with

in- and out-of-phase Ramsey fringes, respectively.

The Ramsey fringes show reduced contrast when higher qudit states are used in the

sequence, due largely to the reduced lifetimes Tn ≈ T1/n of the higher states. In addition,

using higher states leads to imperfections in the microwave control due to the large band-

width required and the effect of off-resonant terms dropped from Eq. 1. Ongoing work

to reduce decoherence in superconducting quantum circuits (29) will improve the state

lifetimes, and the off-resonant terms could be taken into account to improve the fidelity

of qudit operation (21).

We have shown that the superconducting phase qubit can be extended to operate as

a qudit up to d = 5 levels. The qudit state can be readily manipulated and measured

using our existing control electronics, allowing us to perform non-trivial qudit protocols

to emulate spins s = 1/2, 1 and 3/2. We reproduced the quantum phase acquired by

each spin under closed-path rotation, in particular the even (odd) parity of integer (half-
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integer) spins under 2π-rotation. This demonstration opens possibilities for using phase

qudits in quantum information processing.
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Fig. 1. Effect of rotation on a spin. The spin begins in the up state |↑〉 = |s,+s〉. After

two π-rotations (blue, red) with angle Θ between the rotation axes (dotted arrows), the

spin returns to |↑〉 with a phase factor depending on Θ and s. In (A), the second rotation

reverses the first, giving a phase factor 1 which leaves the spin state unchanged. In (B),

both rotations are about the same axis. The spin traces out a great circle and acquires a

phase factor exp(−i2πs). For integer spins (bosons) this has no effect, but for half-integer

spins (fermions) this gives a factor of −1. In the general case (C), the acquired phase

factor is exp(−isΩ), where Ω = 2α is the enclosed solid angle.

Fig. 2. Operation and measurement of a superconducting phase qudit. (A) Schematic of

qudit circuit and control electronics. Current Idc biases the junction, microwave drive Iµw

manipulates the qudit state, and an on-chip SQUID detects tunnelling events for readout.

(B) The potential energy as a function of junction phase δ forms a well with several

energy levels. The frequencies ωn,n−1 = (En − En−1)/h̄ are distinct, allowing transitions

to be driven independently. (C) For measurement, a brief current pulse I(n)
meas is applied

to lower the potential energy barrier, causing states |n〉, |n+ 1〉,... to tunnel out of the

well. For each n, this is repeated ∼ 103 times to obtain a probability.

Fig. 3. Manipulation of the qudit state with microwaves. (A) Left, the pulse sequence

used to calibrate microwaves |1〉 → |2〉. A π-pulse excites the qubit to |1〉, then a second

pulse drives Rabi oscillations between |1〉 and |2〉. Right, occupation probabilities Pn

plotted versus the integrated area of the Rabi pulse, where π corresponds to a standard

16 ns pulse envelope with amplitude adjusted to create a pi-rotation (swap) from |1〉 to

|2〉. (B, C) Similar calibration for |2〉 → |3〉 and |3〉 → |4〉. (D) Left, the pulse sequence

for generating spin-1 rotations by simultaneously driving |1〉 → |2〉 and |2〉 → |3〉. Right,

a plot of Pn versus the integrated pulse area of the single drives. The spin-1 π-rotation

(from |1〉 to |3〉) is
√

2 longer than a spin-1/2 rotation. The dashed line shows 〈Ẑ〉, which
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varies sinusoidally. (E) Generation of spin-3/2 rotations by driving three transitions, with

the outer drives scaled by
√

3/2. The π-rotation is 2 times longer than a spin-1/2 rotation.

The dashed line shows 〈Ẑ〉.

Fig. 4. Measurement of spin parity. The upper panels show the microwave control

sequence: the central π-pulses implement a closed-path spin rotation, while the outer

π/2-pulses use Ramsey interference to detect the phase shift of |1〉. For spin-0 no π-

rotations are applied. The middle panels show P1 in color as a function of the angle Θ

between the π-pulse rotation axes and the angle φ between the π/2-pulse rotation axes.

The lower panels show Ramsey fringe slices at Θ = π (Ω = 0 or no rotation, black)

and Θ = 0 (Ω = 2π or one full rotation, gray), giving the relative phase shift due to a

2π-rotation. In phase fringes (integer spins A, C) indicate a relative phase factor of 1,

while out-of-phase fringes (half-integer spins B, D) indicate a relative phase factor of −1.
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