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Quantum mechanics provides a highly accurate description of a wide variety of physical sys-

tems. However, a demonstration that quantum mechanics applies equally to macroscopic

mechanical systems has been a long-standing challenge, hindered by experimentalists’ in-

ability to cool a mechanical mode to its quantum ground state. The temperatures required

are typically far below those attainable with standard cryogenic methods, so significant ef-

fort has been devoted to developing alternative cooling techniques. Once in the ground state,

quantum-limited measurements must then be demonstrated. Here, using conventional cryo-

genic refrigeration, we show that we can demonstrably cool a mechanical mode to its quan-

tum ground state, by using a microwave-frequency “quantum drum” coupled to a quantum

bit, a device developed for quantum computation. We further show that we can controllably

create single quantum excitations in the resonator, thus taking the first steps to complete

quantum control of a mechanical system.
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Background

The bizarre, often counter-intuitive predictions of quantum mechanics have been observed in

atomic-scale, optical, and electrical systems. Efforts to demonstrate that quantum mechanics also

applies to a mechanical system, especially one that can be seen with the naked eye, have generated

significant interest1–13. Most approaches focus on measuring the behavior of a single mechani-

cal resonance. Cooling a mechanical resonance, also called a mode, to its quantum ground state

is typically an enormous challenge, as this requires temperatures T ¿ hf/kB, where f is the

mode frequency, and h and kB are Planck’s and Boltzmann’s constants, respectively. An audio

frequency mode at f = 1 kHz, for example, would need to be cooled to T ¿ 50 nK. However, the

resonant frequency scales inversely with the size of the system, with higher characteristic frequen-

cies displayed in smaller systems. Researchers have therefore pursued combinations of very small

mechanical resonators together with novel cooling techniques14–18. The use of nanomechanical

resonators, with mode frequencies in the MHz band, eases the stringent temperature requirements,

and when combined with quantum optics-based refrigeration, has allowed a number of demonstra-

tions of near-quantum-limited behavior19–22.

Here, using conventional cryogenic refrigeration, we show that we can demonstrably cool

a mechanical mode to its quantum ground state. We achieve this by using a micromechani-

cal resonator5 with an isolated mechanical mode near 6 GHz, a microwave-frequency “quantum

drum,” whose ground state is reached for temperatures below ∼ 0.1 K, easily achieved using a

dilution refrigerator. We perform quantum-limited measurements of the resonator using a super-
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conducting quantum bit (a qubit), an electronic device developed for quantum computation23, 24.

Coupling such a quantum device to the resonator should allow completely quantum-coherent mea-

surements, preserving the quantum states in the coupled system; by contrast, strongly coupling the

resonator directly to a classical measurement system typically causes rapid decoherence of these

states.

Using the qubit, we measure that the micromechanical resonator has been cooled to its

ground state, and estimate that the maximum number of phonons in the relevant mechanical mode

is 〈n〉max < 0.07, i.e. the resonator is in its ground state with greater than 93% probability. We use

our time-domain control of the qubit-resonator interaction to further show that we can controllably

create an individual quantum excitation (a phonon) in the resonator, and observe the exchange of

this quantized excitation between the resonator and the qubit. We also use a classical excitation to

generate a coherent state in the resonator, which yields a qubit response that is in good agreement

with theory. This demonstration provides strong evidence that quantum mechanics applies to a

mechanical object large enough to be seen with the naked eye.

Mechanical Resonator and Quantum Bit

We have chosen to use a micromechanical bulk dilatational resonator25, 26, with a fundamental di-

latational resonance frequency fr ∼ 6 GHz. We fabricate the resonator from a piezoelectric mate-

rial so that the mechanical motion generates electrical signals, and vice versa. This electromechan-

ical coupling allows us to measure the resonator with a quantum electrical circuit, a superconduct-
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ing phase qubit. Qubits allow straightforward quantum-limited measurements of resonators27, 28,

and here allow us to unambiguously demonstrate that the mechanical system can be cooled to its

ground state, as well as excited with individual mechanical quanta.

We first developed a method to fabricate the high frequency mechanical resonator. The

resonator is a film bulk acoustic resonator (FBAR) 25, comprising a thin film of aluminum nitride,

a strong piezoelectric 29, sandwiched between two aluminum metal electrodes. The active part

of the structure is mechanically suspended. The resonator responds to voltages by expanding or

contracting in the direction perpendicular to the metal electrodes, with a fundamental resonance

frequency fr = v/2t, where v is the average sound speed and t the resonator thickness. An

electron micrograph of a typical resonator, along with its equivalent electrical circuit and a classical

resonance measurement, are shown in Fig. 1. Extensive experiments were made on a variety of

mechanical resonators with this design to ensure that the resonance was indeed mechanical in

nature; see Supplementary Information.

We co-fabricated the mechanical resonator and superconducting qubit on a single chip by

first lithographically defining the mechanical structure and subsequently patterning the qubit. The

fabrication process involved 13 layers of lithography, including metal and dielectric deposition and

etching steps (see Supplementary Information). In the last step, the device was exposed to xenon

difluoride gas to release the mechanical resonator. A photomicrograph of a completed device is

shown in Fig. 2.

Our quantum electrical circuit is a Josephson phase qubit 23, 24, 30, comprising a Josephson
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junction shunted by a parallel capacitor and inductor. The qubit can be approximated as a two-

level quantum system, with a ground state |g〉 and excited state |e〉 separated in energy by ∆E,

whose transition frequency fq = ∆E/h can be set between 5 and 10 GHz. The qubit frequency

is precisely controlled by a current bias, which is applied using an external magnetic flux coupled

through the parallel inductor. The state of the qubit is measured using a single-shot procedure 23;

accumulating∼ 1000 such measurements allows us to determine the excited state occupation prob-

ability Pe (see Supplementary Information). We have previously used the phase qubit to perform

one- and two-qubit gate operations 24, to measure and quantum-control photons in an electromag-

netic resonator 27, 28, and to demonstrate the violation of a Bell inequality 31. Here, the qubit and

mechanical resonator are coupled through an interdigitated capacitor Cc ≈ 0.5 pF, so as to maxi-

mize the coupling strength between the qubit and resonator, while not overloading the qubit. The

coupled system can be modeled by the Jaynes-Cummings Hamiltonian 32, allowing us to estimate

the coupling energy g between the mechanical resonator and qubit, which involves the coupling

capacitance as well as the electrical and mechanical properties of the mechanical resonator, as de-

scribed in Ref. 5; the corresponding coupling frequency is designed to be Ω = 2g/h ≈ 110 MHz.

The equivalent electrical circuit for the combined resonator and qubit is shown in Fig. 2b.

Quantum Ground State

The completed device was mounted on the mixing chamber of a dilution refrigerator and cooled

to T ≈ 25 mK. At this temperature, both qubit and resonator should occupy their quantum ground

states. To evaluate the system, we performed microwave qubit spectroscopy 23 to reveal the reso-

5



nant frequencies of the combined system, using the pulse sequence shown in Fig. 2c. We measured

the excited state probability Pe as a function of the qubit frequency (horizontal axis, in units of flux

bias) and the microwave excitation frequency (vertical axis), as shown in Fig. 2d. The qubit fre-

quency tunes as expected23, 30, and displays the characteristic level avoidance of a coupled system

as its frequency crosses the fixed mechanical resonator frequency fr. Similar observations have

been made using optomechanical systems 33.

We note that the mechanical resonator produces two features in the classical transmission

measurement shown in Fig. 1d, generating a maximum (fr) and a minimum (fs) in the response.

When coupled and measured with the qubit as in Fig. 2, the lower frequency resonance fs does

not produce a response, as this resonance does not correspond to a sustainable excitation of the

complete circuit. The higher frequency feature at fr however does sustain such excitations, and

thus appears in the spectroscopic measurement.

In order to determine the coupling strength between the qubit and the mechanical resonator,

we fit the detailed behavior near the level avoidance, as shown in Fig. 2e. The fit qubit-resonator

coupling strength Ω ≈ 124 MHz corresponds to an energy transfer (Rabi swap) time of about 4.0

ns, and is in reasonable agreement with our design value.

We performed a second spectroscopy measurement, similar to the qubit spectroscopy but

coupling the microwaves to the mechanical resonator through the capacitor Cx (Fig. 2b), rather

than to the qubit. In this measurement, shown in Fig. 3, the mechanical resonator acts as a narrow

bandpass filter, so that significant qubit excitation (large Pe) should only occur near the mechanical
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resonance frequency fr, as observed. In general, the spectrum looks very similar to that measured

while exciting the qubit, providing strong support that the fixed resonance is indeed due to the

mechanical resonator.

At higher microwave excitations, a new feature emerges in the resonator spectroscopy, as

shown in Fig. 3b. The qubit, although approximated as a two-level system, actually has a double

well potential with a small number of states in the left well, the two lowest being the qubit states

|g〉 and |e〉, separated from the right well by a barrier whose height changes with flux bias. When

the mechanical resonator is driven on resonance at higher excitation powers, there is sufficient

energy to excite the qubit over the barrier and into the right well, yielding a large value for Pe even

when the qubit energy level spacing is not resonant with the resonator. This effect is pronounced

at more positive flux bias, where the barrier height is lower, and generates the distinct horizontal

line in the right panel of Fig. 3b. From this line we obtain a precise determination of the resonator

frequency, fr = 6.175 GHz. We note further that the resonator frequency seen in this higher

power measurement agrees with that revealed in the lower power measurement, as expected for a

harmonic response.

These spectroscopic measurements are useful for probing the resonant modes of our circuit.

However, although the qubit is a quantum device, the measurement is essentially classical, re-

vealing little about the quantum behavior of the mechanical resonator. We therefore performed

an additional experiment, using the qubit to probe the energy state of the resonator when no mi-

crowave signal was applied, essentially using the qubit as a quantum thermometer. This allowed
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us to verify with high precision that the resonator is actually in its ground state.

We initially prepared the qubit in its ground state |g〉, with a transition frequency |g〉 ↔ |e〉

of 5.44 GHz, well out of resonance with the resonator, effectively turning off the qubit-resonator

interaction. We then applied a flux bias pulse to bring the qubit to within ∆ = fq − fr of the

resonator frequency, and kept the qubit at this frequency for 1 µs. After returning the qubit to its

original frequency, we measured the excited state probability Pe, as shown in Fig. 4. The qubit

remains in its ground state for all values of ∆, with no detectable increase in Pe from its baseline

value of 4%, even at resonance (∆ = 0). We also display numerical predictions for the expected

qubit Pe for a range of resonator phonon occupations 〈n〉. The expected response is peaked near

zero detuning, and clearly even for small 〈n〉, exceeds the measured response by a substantial

amount. We obtain a very conservative upper limit for the thermal occupation, 〈n〉max < 0.07 (see

Supplementary Information).

As a check, we performed the same experiment but just prior to measuring the qubit, applied

a microwave pulse to swap the qubit |g〉 and |e〉 populations. After this swap, the probability Pe is

about 92%, independent of ∆, again demonstrating negligible additional excitation of the qubit, as

otherwise Pe would drop near ∆ = 0.

This null result demonstrates that the resonator phonon occupation 〈n〉 ¿ 1, i.e. the res-

onator is with high probability in its quantum ground state.
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Quantum Excitations

We next used our time-domain control of the qubit to create and measure individual quantum

excitations in the resonator, allowing us to then measure the resonator’s single-excitation energy

and phase coherence times. We first characterized the qubit’s energy relaxation time T1q using the

standard Rabi decay technique23, described in detail in the Supplementary Information. From this

measurement we find T1q
∼= 17 ns. This time is significantly shorter than for our typical qubits

31, T1q ∼ 500 ns, which we attribute here to dielectric dissipation in the aluminum nitride and the

device substrate 34.

Despite the relatively short T1q, the qubit coherence time was sufficient to perform quantum

operations on the resonator. The coupling strength between the qubit and resonator is fixed at

Ω = 2g/h ∼= 124 MHz, as discussed above. When the qubit and resonator are tuned on-resonance,

energy will be exchanged (swapped) between the two at this frequency, with unit probability. When

the qubit is detuned from the resonator by a frequency ∆ = fq − fr, the swap frequency increases

to
√

Ω2 + ∆2, but the transfer probability should be reduced to Ω2/(Ω2 + ∆2).

We generated an excitation in the resonator by first exciting the qubit and then swapping the

excitation to the resonator, using the pulse sequence shown in Fig. 5a. The qubit was excited from

|g〉 to |e〉 with a π-pulse, while the qubit was at its resting frequency of 5.44 GHz, detuned by

∆ = −735 MHz from the resonator. We then increased the qubit frequency towards the resonator

frequency, performing the experiment for interaction detunings ∆ ranging from -150 MHz (qubit

below fr) to +90 MHz. After a variable delay, the qubit was returned to its resting frequency and its
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excited state probability Pe was measured. This response was mapped out as a function of delay τ

and detuning ∆, yielding the data in Fig. 5b, with simulations in the left panel and the experiment

on right. Experiment and simulation are in good agreement.

When the qubit frequency is close to the resonator, we observe oscillations in Pe(τ). The

oscillation period is longest at resonance ∆ = 0, and shortest at the largest values of |∆|, as

anticipated; we fit the sequence of local maxima in Pe, as a function of τ and detuning, to the

expected Lorentzian dependence for the swap period, as shown by the dash-dotted lines in Fig.

5b. The corresponding minimum swap frequency is found to be Ω = 132 MHz, close to that

determined from spectroscopy.

The amplitudes of the swap oscillations in Pe for ∆ < 0 are seen to be smaller than the

corresponding amplitudes for ∆ > 0, not displaying the expected symmetric dependence for the

transfer probability. This is due to the non-zero rise and fall times (∼ 1 ns) of the frequency tuning

pulse, which yields a higher swap efficiency for larger values of ∆: The qubit-resonator swap is

initiated as the tuning pulse brings the qubit towards the resonator, swapping some of the qubit

excitation into the resonator before the qubit is at the interaction frequency, and further continuing

the swap when the qubit is returning to its resting frequency. This causes an interference that affects

the swap visibility, with a reduction for small ∆, where the frequency tuning is proportionally

more adiabatic than for larger ∆. Hence the exchange probability is maximized35, 36 for larger ∆.

The simulations, which use trapezoidal tuning pulses to approximate the experiment, support this

explanation; see Supplementary Information.
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In Fig. 5c we show Pe(τ) for the interaction frequency indicated by the white dashed line

in panel b. Five complete cycles are visible, where each minimum corresponds to a transfer of the

excitation from qubit to resonator, and each maximum corresponds to a return of the excitation

from resonator to qubit, with decay due to dissipation (see below). At τ = 0, the system is in the

state |e0〉, where the first state vector element represents the qubit and the second the resonator. At

a quarter of the first Rabi oscillation, τ ∼= 1.9 ns, the qubit and mechanical resonator are entangled

in the state |g1〉+ |e0〉. At τ = τph
∼= 3.8 ns, the qubit state has been completely transferred to the

mechanical resonator, generating a single phonon and leaving the system in the |g1〉 state. After a

full Rabi period, τ = 2τph
∼= 7.6 ns, the excitation is exchanged back to the qubit, returning the

system to the |e0〉 state with the resonator in its ground state.

The data shown in Fig. 5 provide clear and compelling evidence that we have created a

single quantum excitation in a macroscopic mechanical object, and that the system’s quantum

coherence is sufficient to allow us to transfer this excitation multiple times between the qubit and

the mechanical resonator. In this process, the system exists at times in an entangled qubit-resonator

quantum state.

Using the ability to generate a single phonon, we next determined the resonator’s energy

relaxation time T1r by injecting a single phonon into the resonator and measuring its decay, as

shown in Fig. 6a and b. The results are fit using a resonator decay time T1r
∼= 6.1 ns, in reasonable

agreement with the expected decay time Q/2πfr ≈ 6.7 ns from the classically-measured quality

factor Q ≈ 260.
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We also attempted to measure the resonator’s de-phasing time T2r, as shown in Fig. 6c

and d. This measurement is performed using a Ramsey fringe experiment, with the de-phasing

time revealed by the evolution of the superposed state |g0〉 + |g1〉, corresponding to the resonator

simultaneously having zero and one phonon, i.e. this involves placing the mechanical system in

a quantum superposition. The fit de-phasing time is T2r ∼ 20 ns, anomalously longer than the

expected maximum 2T1r
∼= 12 ns. This measurement is however relatively complex, requiring

several pulses with good pulse control, and errors can result in longer-than-expected dephasing

times; we can however conclude from this measurement that pure dephasing is not a dominant

decay in and of itself.

In order to illustrate the resonator’s bosonic nature, we also performed measurements in

which we directly excited the mechanical resonator with a classical microwave pulse. With the

qubit at its resting frequency, we applied a variable-amplitude Gaussian pulse to the resonator. The

qubit was then brought into resonance with the resonator (∆ = 0), and held there for an interaction

time τ . Finally, the qubit was returned to its resting frequency and Pe measured.

Fig. 7 shows the resulting Pe(τ) as a function of the Gaussian pulse amplitude, along with the

results of a quantum simulation (see Supplementary Information). As the microwave amplitude is

increased, the frequency of the oscillations in Pe increases. This is a clear indication of the bosonic

nature of the resonator, as the coupling strength between the qubit and the mechanical resonator is

proportional to the number of phonons in the resonator 27, 28, 37; the comparison with the simulation

shows good agreement. We note that there was little or no direct microwave excitation of the
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qubit, as for small interaction times τ , the qubit was always measured to be in its ground state. We

further note that if the resonator were instead behaving as a few-level quantum system, simulations

demonstrate that the measured response would be markedly different, providing good evidence

that the resonator is behaving as a harmonic system.

In conclusion, we have constructed a unique system for testing quantum mechanics in a me-

chanical system, comprising a 6 GHz mechanical resonator strongly coupled to a superconducting

phase qubit. Spectroscopic measurements display the expected, but essentially classical, avoided-

level crossing as the qubit is tuned through the mechanical resonator frequency. Employing the

qubit as a quantum thermometer, we measured the residual resonator phonon number 〈n〉, demon-

strating that there is no detectable excitation of the qubit due to the resonator. This constitutes

strong evidence that we have succeeded in cooling a mechanical resonant mode to its quantum

ground state. In addition, using time-domain control of the qubit, we have controllably created a

single phonon state in the resonator, as well as entangled resonator-qubit states. Using the single-

phonon capability, we have measured the mechanical resonator’s energy relaxation time T1r, and

by creating a superposition state in the resonator, placed an upper limit on the dephasing time T2r.

A classical excitation of the resonator, by contrast, places it in a coherent state, also in good agree-

ment with simulations. This set of measurements provide strong evidence that we have achieved

reasonable quantum control over a macroscopic mechanical system. We note that full Wigner to-

mography of the resonator states, revealing quantum phase coherence for the entangled states28,

would provide further strong evidence of quantum behavior in this system; however, the resonator

T1r lifetime is too short, in comparison to the state preparation and measurement times, to permit
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such an analysis.

Methods

The mechanical resonator, made of AlN and Al, and the qubit, SQUID, and superconducting

wiring, made of Al, were fabricated on an oxidized Si wafer using standard semiconductor pro-

cessing. The wafer was diced into 6 mm square chips and placed in an aluminum mount, using

wire-bonded electrical connections. Measurements of the resonator, shown in Fig. 1, were made

at room temperature using a commercial microwave network analyzer. Qubit measurements of the

resonator were made on a custom-built dilution refrigerator. The device mount was attached to

the mixing chamber of a dilution refrigerator, and the device operated in vacuum at a temperature

of 25 mK. Measurement cabling from room temperature to the device was heavily filtered and

attenuated. Microwave signals were generated by a commercial microwave synthesizer, and were

amplitude- and frequency-controlled using an I/Q modulator. Control signals for the modulator

were generated by a high-speed digital-to-analog converter, controlled by a computer. The qubit

and SQUID bias were generated using custom electronics controlled by computer via fiber optic

lines. The SQUID measurement output was amplified and transmitted via fiber-optic to the same

computer. Typical measurements of the excited state probability P (e) involved accumulating of

order 1,000 separate single-shot measurements. Full details may be found in the Supplementary

Information.
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Figure 1 Dilatational resonator. a, Scanning electron micrograph of a suspended FBAR.

Details for the resonator fabrication appear in the Supplementary Information. The me-

chanical structure was released from the substrate by exposing the device to xenon diflu-

oride, which isotropically etches any exposed silicon; the suspended structure comprises,

from bottom to top, 150 nm SiO2, 130 nm Al, 330 nm AlN and 130 nm Al. The dashed box

encloses the mechanically active part of structure. b, Illustration of the fundamental dilata-

tional resonant mode for the mechanically active part of the resonator. The thickness of

the structure changes through the oscillation cycle. c, Equivalent lumped element circuit

representation of the mechanical resonator, based on a modified van Dyke-Butterworth

model 26,38. This circuit includes a series-connected equivalent mechanical inductance Lm

and capacitance Cm, the parallel geometric capacitance C0, with mechanical dissipation

modeled as Rm and dielectric loss as R0. d, Measured classical transmission |S21| (blue)

and fit (red) of a typical mechanical resonance. The transmission displays two features,

one at the frequency fs ≈ 1/2π
√

LmCm ≈ 6.07 GHz due to the series resonance of the

equivalent mechanical components Lm and Cm, the other at the slightly higher frequency

fr ≈ 1/2π
√

LmCs ≈ 6.10 GHz, due to Lm and the equivalent capacitance Cs of the ca-

pacitors Cm and C0 in series; the expressions are approximate, as these ignore the effect

of the dissipative elements and external circuit loading. Only the higher frequency me-

chanical mode fr is involved in this experiment (see Supplementary Information). Inset:

Equivalent circuit for the resonator embedded in the measurement circuit, including two

on-chip external coupling capacitors Cx = 37 fF and an inductive element Ls ≈ 1 nH that
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accounts for stray on-chip wiring inductance. Measurement is using a calibrated network

analyzer that measures the transmission from port 1 to port 2. We calculate C0 = 0.19

pF scaling from the geometry, and from the fit we obtain Cm = 0.655 fF, Lm = 1.043 µH,

Rm = 146 Ω, and R0 = 8 Ω. These values are compatible with the geometry and mea-

sured properties of aluminum nitride 29. We calculate a mechanical quality factor Q ≈ 260

and a piezoelectric coupling coefficient k2
eff ≈ 1.2% 38.

Figure 2 Coupled qubit-resonator. a, Optical micrograph of mechanical resonator cou-

pled to qubit (blemishes removed for clarity); fabrication details are in the Supplemen-

tary Information. b, Circuit representation. The Josephson junction is represented by a

cross, with parallel loop inductance Lq and capacitance Cq, the latter including the parallel

combination of a 1 pF interdigitated shunting capacitor and the junction capacitance (not

shown). The resonator has C0 = 0.2 pF coming from the geometry and AlN thickness of

300 nm, with coupling capacitance Cc ≈ 0.5 pF. The capacitor Cx = 0.5 fF is used to cou-

ple external microwave signals to the resonator. The junction is modulated by magnetic

flux applied through the flux bias wire FB, which controls the qubit |g〉 ↔ |e〉 transition

frequency. Microwave excitation of the qubit is also through FB. The shunting capacitor

and the coupling capacitor Cc include a number of crossover shorting straps to eliminate

potential electrical resonances. c, Qubit spectroscopy pulse sequence. The qubit (blue)

is tuned to within ∆ = fq − fr of the resonator (red) and a 1 µs microwave tone applied to

the qubit; the qubit state is then measured in a single-shot manner using a flux-bias pulse,

from which the excited state probability Pe is evaluated. d, Qubit spectroscopy, showing
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Pe vs. flux bias (horizontal) and microwave frequency (vertical). The qubit frequency be-

haves as expected, with a prominent splitting as the qubit is tuned through the resonator

frequency fr = 6.17 GHz. Dashed box outlines expanded data shown in e, detail of qubit

spectroscopy. Horizontal dash-dotted line shows resonator frequency fr, with coupled

mode frequencies fit by dashed lines, with fit coupling frequency Ω = 2g/h ≈ 124 MHz.

Figure 3 Resonator spectroscopy. a, Pulse sequence applied to qubit (blue) and me-

chanical resonator (red). The qubit is tuned to within ∆ of the resonator frequency, and a

1 µs microwave tone applied to the resonator through Cx. The resulting qubit Pe is then

evaluated. b, Left: Spectroscopic Pe as a function of qubit flux bias (horizontal scale) and

applied microwave frequency (vertical scale). Right: Same as left panel but with higher

microwave power, showing qubit state ejection due to interaction with a highly excited

mechanical resonator. Qubit well level structure shown schematically as a function of flux

bias, showing marginal excited state confinement at more positive flux bias. Inset, De-

tail for highest flux bias, with a very shallow well depth, highlighting qubit ejection at the

resonant frequency of the mechanical resonator.

Figure 4 Qubit thermometry of resonator. a, Pulse sequence. Qubit in its ground state is

tuned to within ∆ of the resonator frequency for 1 µs, and in one set of measurements its

excited state probability Pe then measured. In another set of measurements, a microwave

swap pulse (Xπ) was applied to the qubit prior to measurement, exchanging the |g〉 and |e〉

populations, followed by a Pe measurement. The detuning ∆ was scanned over the range
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±210 MHz. b, Probability Pe with (green) and without (blue) the Xπ pulse, as a function of

detuning ∆. The mechanical resonance at fr (∆ = 0) is marked by the vertical dash-dot

line, and the dashed lines are the numerically calculated Pe for different resonator mean

phonon occupations 〈n〉 (see Supplementary Information); the shift in peak response

from ∆ = 0 for larger 〈n〉 is due to the higher energy levels in the qubit, which come into

resonance for ∆ > 0. Note that in the experiment, the resonator does not excite the qubit

from its ground state, indicating the resonator itself is in the ground state.

Figure 5 Qubit-resonator swap oscillations. a, Pulse sequence used to generate quan-

tum state exchange between the qubit and resonator. The qubit is initially in the ground

state |g〉, at its resting frequency of 5.44 GHz, and is excited to the |e〉 state by a mi-

crowave π-pulse (Xπ). The qubit is then brought to a detuning ∆ = fq − fr from the

resonator, and kept there for a time τ . After returning the qubit to its resting frequency,

its excited state probability Pe is evaluated. Pulse sequence shown using compressed

format, combining flux bias and microwave excitation. b, Qubit excited state probability Pe

as a function of interaction time τ (horizontal axis) and detuning ∆ (vertical axis), showing

state transfer between the qubit and resonator, in which a qubit excitation is exchanged

with a phonon in the mechanical resonator. Left panel shows simulations, right panel is

experiment. Red dashed line is at resonator frequency fr; white dashed line in right panel

is for c, line cut through data for a fixed detuning (∆ = 72 MHz, the value with the highest

visibility swaps). Maxima correspond to the qubit being in its excited state, while minima

correspond to state transfer to the resonator, creating a single phonon. The swap time
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needed to generate one phonon is τph
∼= 3.8 ns. The nearly-complete swaps for ∆ > 0 are

due to the time dependence of the tuning pulse, and the resulting complicated dynamics,

as borne out by simulations; see Supplementary Information.

Figure 6 Resonator energy decay and dephasing times. a, Pulse sequence used to

inject one phonon in the resonator and measure its decay. The qubit was first excited

from |g〉 → |e〉 while at its resting frequency, using a microwave π-pulse. The qubit was

then tuned to the interaction frequency of 6.25 GHz (∆ = 72 MHz, the detuning chosen

for the highest visibility swaps), and left there for the time τph, transferring a phonon to

the resonator and leaving the qubit in its ground state. After returning the qubit to its

resting frequency for a time τ , the qubit was brought back to the interaction frequency

for τph, transferring any remaining excitation back to the qubit, and the probability Pe then

evaluated. b, Measured Pe(τ), showing exponential decrease of the single-phonon state

(blue points). We fit a mechanical resonator energy relaxation time T1r
∼= 6.1 ns (red line).

c, Pulse sequence used to measure resonator phase coherence time; this is similar to a,

except we replace the initial π-pulse by a π/2-pulse (Xπ/2) to excite the |g〉+|e〉 qubit state,

and after the second resonator transfer, use a second π/2-pulse (φπ/2) prior to measuring

Pe, thus performing a Ramsey fringe measurement. The phase of the second π/2 pulse is

swept at a rate that determines the frequency of the resulting oscillations. d, Measured Pe

as a function of delay τ , representing dephasing in the mechanical resonator (blue dots),

with a fit (red line) using a dephasing time T2r ∼ 20 ns.
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Figure 7 Resonator coherent state. a, Pulse sequence to generate coherent phonon

states. With the qubit at its resting frequency, an on-resonance Gaussian pulse of fixed

duration (5.0 ns) and variable amplitude is applied to the resonator. The qubit is then

tuned to ∆ = 0, left for an interaction time τ , and the qubit excited state probability Pe then

evaluated. b, Measured Pe(τ) as a function of pulse amplitude (vertical axis, arbitrary

units) and interaction time τ (horizontal axis). c, Simulation of coherent state evolution,

with vertical axis in units of
√
〈n〉, where 〈n〉 is the mean number of injected phonons; see

Supplementary Information.
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