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MATERIALS AND METHODS

The device fabrication is similar to that published pre-
viously [1]. The half-wavelength superconducting copla-
nar waveguide resonators are made of rhenium deposited
on a c-axis single-crystal sapphire substrate, with a 5 ym-
wide center signal trace and 10 ym gaps to the ground
plane metallization on either side of the center trace. We
place a single lithographed shorting strap connecting the
two ground planes at the midpoint of each resonator to
improve the quality of the grounding. This point is a volt-
age node for the fundamental half-wave resonant mode,
so that there is minimal additional dielectric loss from
the shorting strap’s underlying amorphous Si insulating
film [2].

In the circuit layout (image in Fig. S1), the coupling
resonator C' is designed to have a higher resonance fre-
quency than the two state storage resonators A and B.
This prevents the qubit frequencies from having to cross
the C' resonator frequency during NOON state ampli-
fication. The two storage resonators A and B are de-
signed with slightly different resonance frequencies, to
avoid possible interference between the resonators. The
full frequency span in the design was chosen to be close
to 550 MHz, within the dynamic range of our custom
microwave electronics.

The two superconducting phase qubits and coplanar
waveguide resonators are fabricated together, using our
standard multi-layer process [3]. The phase qubit con-
sists of a 2 um? Al/AlO, /Al junction in parallel with a
1 pF Al/a-Si:H/Al shunt capacitor and a 720 pH induc-
tance loop (design values) [4]. The critical current of the
Al/AlO, /Al junction is approximately 2 uA. We use in-
terdigitated coupling capacitors between the qubits and
the resonators, designed to each have a capacitance of
1.9 fF. The actual coupling strengths vary slightly with
resonator frequency; the detailed component parameters
are listed in Table S1.

Devices were cooled down in a dilution refrigerator
with a base temperature of about 20 mK, giving neg-
ligible thermal excitation in relation to the qubit and
resonator operation frequencies; thus the qubits and res-
onators relax to their quantum ground states. Signal

FIG. S1: (Color online) Optical micrograph shows three
half-wavelength coplanar resonators A, B and C (sinusoidal
traces) and two qubits go and ¢i. The coupling resonator
C is between the two qubits, and the photon-state storage
resonators A and B are on either end of the circuit. The res-
onators are 8 to 9 mm long, yielding 6 to 7 GHz resonance
frequencies (see Table S1 for exact values). The center-to-
center distance between the storage resonators is ~ 2 mm.

lines are heavily filtered with either microwave attenu-
ators (for microwave and high frequency pulse lines) or
resistor-capacitor low-pass filters and copper-powder mi-
crowave filters (for low-frequency signal lines) [3]. A cus-
tom microwave arbitrary waveform generator was used
to generate pulses with sub-nanosecond resolution for the
pulse envelopes [5], which are essential for optimal qubit
control.

GENERATION SEQUENCE TUNE-UP

The time required for each qubit-resonator i-SWAP
is calibrated separately. The swap times obtained from
these calibrations scale correctly as y/n with the number
of photons n in the resonator [5] and also depend on the
state of the qubit. Examples of the swap calibrations for
a one-photon swap between qubit gy and resonator A are
shown in Fig. S2, for both the |g) < |e) and |e) < |f)
transitions. The swap time for the |e) < |f) transition is
approximately 1/1/2 times that for the |g) « |e) transi-
tion. This scaling is as expected, as the multi-level phase
qubit can be well-approximated as a weakly nonlinear
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circuit fr flgyle) Snontinear 11 Ty
component (GHz) (GHz) (GHz)  (ms) (ns)

A 6.340 - - 3500 >T
B 6.286 - - 3300 > T
C 6.816 - - 3400 > 11
qo - ~ 6.65 ~ 0.20 450 200 — 300
Q1 - ~6.58 or 6.68 =~ 0.20 320 200 — 300
Coupling strength qo — A @0 —C q—=B qC
g/ (MHz) 17.8 200 174 20.0

TABLE S1: Resonator and qubit parameters. The qubit parameters are quoted for when the qubits are off-resonance (see
below). The qubit nonlinearity fnonlinear is the frequency difference between the |g) < |e) and |e) < |f) transitions. The
phase coherence time Ty is obtained using a Ramsey interference experiment, which yields the Ramsey time 75, from which
we calculate 1/Ty = 1/T5 — 1/(2T1). Ty measured for resonators similar to those used here [6] satisfies Ty, > Ti; we assume
the same applies here. Ty for the qubits decreases with increasing length of the pulse sequence due to the 1/f nature of the
phase noise. For most state generation sequences used in this experiment, of typical length 50 to 100 ns, the qubit Ty is in the
range of 200 to 300 ns. Coupling strengths correspond to the measured splitting in frequency units, with g appearing in the

Hamiltonian shown in Eq. (S1).

harmonic oscillator for the energy levels confined by the
qubit’s metastable potential well. The scaling confirms
that we can use harmonic-oscillator-like raising and low-
ering operators for the three-level qubit, as was done in
the numerical simulations (see below).

Figure S3 shows the detailed pulse sequence used to
generate and measure the N = 2 NOON state. Sequence
steps in general are calibrated and checked separately to
maximize preparation fidelity, when possible. For exam-
ple, we first optimize the qubit Bell state preparation at
the end of step I in the preparation sequence detailed in
Fig. S3. The fidelity for the Bell state is above 0.80, with
entanglement of formation 0.59, which agrees well with
numerical simulations, performed using a pure dephasing
time T, = 300 ns for the qubits (see below). State tomog-
raphy of the qubits is also as expected: Fig. S3(b) shows
the density matrices extracted from coupled qubit to-
mography, measured at different times during the N = 2
NOON state preparation. We note that at the end of
the sequence, both qubits should return to their ground
states. Experimentally we observe small populations in
the excited states |e) due to decoherence and pulse im-
perfections. The exact qubit state after the NOON state
generation is measured and is used as the initial state for
the qubits when performing Wigner tomography on the
storage resonators (see below).

NUMERICAL SIMULATIONS

Numerical simulations were performed using the model
Hamiltonian

H =

> Hy+ Y hw <bj+bj + ;)
qi=q0,q1 j=A,B,C
+ Z hgquj (at-;-bj + a’ql'b;)

(gi,5)

Y Lh[O e + (0], (S1)

4i=40,91

where H,, is the Hamiltonian of the qubit g, a; and
g, (b]+ and b;) are the raising and lowering operators
for the 3-level qubit ¢; (resonator j), gq,—; is the cou-
pling strength between qubit ¢; and resonator j, with a
sum over all possible qubit-resonator combinations, such
that (inj) € {(qO»A)ﬂ ((]0, C), (Qh B), (q17 C)} and th (t)
is the time-dependent, two-tone (fgy—jey and fieyosy)
microwave drive on qubit g;.

The 3-level qubit Hamiltonian H,, was approximated
as

0 0 0
Hy, =1 0 hfjgyeie) 0 ; (S2)
0 0 hfigen

qi
where for simplicity we assumed a constant nonlinear-
Ity figyoley = fieyolpy = 200 MHz, so that fig) s =
2f|g)sley — 200 MHz. We approximated the multi-level
qubit a(‘; and a4, by the raising and lower operators for
the lowest three levels of a harmonic oscillator, as dis-
cussed above.

Decoherence was approximated using the Lindblad
master equation taking into account the Markovian en-
vironment [7], where two characteristic decay times, the
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FIG. S2: (Color online) One-photon swaps between qubit go
and resonator A. (a) Pulse sequence for measuring swaps be-
tween the qubit |e) < |f) transition and resonator A. When
off-resonance, the qubit is excited by a pair of 7w pulses, with
the first pulse m1 taking the qubit from |g) to |e) and the sec-
ond pulse 72 making the transition from |e) to |f). The qubit
le) < |f) transition is then tuned close to resonance with res-
onator A and the qubit and resonator left to interact for a
time 7. The triangular pulse at the end is used to measure
the probability of the qubit being in the | f) state at the end of
the sequence. (b) Left: Qubit |g) < |e) swaps with resonator
A. The qubit is prepared as in (a), but without the second
pulse m2. The qubit |e) probability (color bar) is plotted as a
function of interaction time 7 and frequency tuning ®pias. Os-
cillations in probability are due to the qubit excitation swap-
ping with the resonator. Right: Qubit |e) < |f) swaps with
resonator A; the preparation of the qubit is as in (a) and
the plot shows the |f)-state probability as a function of in-
teraction time 7 and qubit flux bias ®pias. Red dashed lines
indicate the on-resonance ®pias values used in the experiment.
The swap frequency for the on-resonance |e) < |f) transition
is 1.403 ~ /2 times that for the on-resonance |g) « |e) tran-
sition.

energy relaxation time 77 and the pure dephasing time
Ty, were used for each resonator and qubit.

The simulations do not directly account for the non-
Markovian 1/ f character of the phase noise in the qubits.
To account for this, we used a sequence-time dependent
T, for each qubit, as obtained from Ramsey interference
measurements. We used Ty = 300 ns for ~50 ns-long
sequences and Ty = 200 ns for ~100 ns-long sequences.
The resulting simulations agree reasonably well with the
experimental measurements.

S3
BIPARTITE WIGNER TOMOGRAPHY

Displacement Pulses

The bipartite Wigner tomography is an extension of a
method described elsewhere [5, 6, 8]. We displace each
resonator with Gaussian pulses |a) and |3) (resonator
A and B, respectively), with variable phase and ampli-
tude. The values of o and 3 are distributed over several
concentric circles in the complex plane, centered on the
origin, where the distribution of values varies approxi-
mately with the size N of the NOON state. The radii of
the circles run through the set r; € {0,0.2,0.7,0.9,1.3},
in square-root of photon number units [5]. The pulse val-
ues are evenly distributed on each circle, with complex
values r; exp(i2ml/N,;), where £ ranges from 1 to N,,
and N, is an integer ranging from 1 (r; = 0), 5 or 6
(rj = 0.2), up to 9 to 15 (r; = 1.3), depending on the
number of photons in the NOON state.

We use every possible combination of values of « and 3
distributed over the circles of the same radius for tomog-
raphy, i.e., for each value of o, we use all 3 values with the
same amplitude as «. The total number of displacement
pulse combinations is thus quite large and increases with
the photon number N in the NOON state, typically in-
volving of order a few hundred pulses. The displacement
pulses can be expressed as

Dap(aj, Br) = Da(aj) ® Dp(Br)
= eMbhajba g oPRbE—Bibs  (83)

Photon Populations

For an initial joint-resonator density matrix pinitial, the
displacement pulses shift the density matrix to

p = Dap(—aj, —Bk)pinitiaDas(a;, Br) - (54)

By bringing both qubits (initially in their |g) states) on
resonance with the resonators, the joint number states
contained in two resonators, i.e., the diagonal elements
of p, can be read out, as each diagonal element swaps with
the qubits at a different rate [5], resulting in a distinct
time-dependence for the probabilities Pyg, Pye, Peg, and
P... These can be numerically simulated using the device
parameters from Table S1.

As displayed in Fig. S3(b), there is a small non-
zero occupation of the excited state of each qubit af-
ter the state generation sequence, due to decoherence
and pulse imperfections. We use the measured qubit
state after the state generation sequence as the qubit
initial condition when numerically simulating the tomog-
raphy. Using these simulations, we obtain the time
dependence for the each of the probabilities Pyy, Pye,
P.,, and P.. corresponding to different combinations
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FIG. S3: (Color online) NOON state preparation. (a) Sequence to generate and measure N = 2 NOON state. Qubit transition
frequencies |g) < |e) (dark-color solid lines) and |e) < |f) (light solid lines) are tuned to control coupling of each qubit to
resonators (dashed lines); go in red, g1 in blue. Vertical lines divide sequence into steps; circled numbers indicate points where
qubit tomography was performed. Step I: A m4)_ |y pulse excites go to |e), followed by a vi-SWAP entangling go and resonator
C. A full i-SWAP between C and ¢; disentangles the resonator and generates the qubit Bell state |eg) + |ge). For the N =1
NOON state this entanglement is transferred to the storage resonators (not shown). For N > 1, mey_ s pulses excite each
qubit to yield |fg) + |gf). Both qubits’ |e) < |f) transitions are then tuned to the respective storage resonators, and an
1-SWAP transfers one photon to the resonators. For N = 3, this is repeated to transfer a second photon (not shown). In
step III, both qubits’ |g) < |e) transitions are tuned to the resonators and an i-SWAP transfers the remaining excitation to
the resonators, completing the generation, leaving both qubits in their ground states. Step I'V: State analysis. The storage
resonator A (B) is displaced in phase space by a Gaussian pulse |a) (|8)), followed by an on-resonance interaction with each
qubit’s |g) < |e) transition for a time 7, followed by joint-qubit state readout. Many repetitions of this sequence are combined
to generate joint-qubit state probabilities Pyy, Pge, Peg, and Pe. versus 7. The joint-qubit state probabilities can be used to
obtain the two-resonator density matrix (see text). (b) Qubit density matrices extracted from tomography at circled points
in (a). (1) Qubit Bell state. (2) Qubit state after transferring first photon into resonators. This is a state with qubits and
resonators entangled, so the density matrix is as expected. (3) Qubit state after N = 2 NOON state generation. Both qubits
are very nearly in their ground states, and thus can be used to measure the resonators.

of photon number (Fock) states in the two storage res-
onators. Examples of these probability traces are shown
in Fig. S4(a) for some selected initial states. The time-
dependent traces for these probabilities, for the set of
Fock states {|m),[n)p,m=0,1,2,...,n=0,1,2,...},
are then used to decompose the experimentally-measured
time traces, which yields the probability distribution for

the Fock number states contained in the storage res-
onators. This thus yields the diagonal elements of the
experimentally-measured displaced density matrix p.

We obtain the diagonal elements of p by doing a least-
squares fit of the time-dependent probabilities, corrected
for measurement fidelity. We use the MATLAB pack-
ages YALMIP and SeDuMi for the fitting. The num-



ber of fitting parameters is the number of diagonal el-
ements, directly determined by the maximum photon
number state contained in the resonators, plus the num-
ber of photon quanta added by the displacement pulses
|a) and |5). Fits are done with constraints Py, > 0 and

m.n Pmn = 1 to return meaningful probability values.
Examples of these fits are shown in Fig. S4, for the N =1
NOON state.

Joint-Resonator Density Matrices

With the diagonal elements of p measured for a set
of displacements {Dap(c;,0k)}, Pinitiar can be solved
for by inverting Eq. (S4) through a linear least-squares
fit, while restricting the density matrix to be Hermitian.
The resulting density matrices may have small negative
eigenvalues due to noise. We use the MATLAB packages
YALMIP and SeDuMi to perform semi-definite convex
optimization programming, allowing us to find a physi-
cal density matrix that is closest to the actual matrix.

When solving for pinitial of @ NOON state, we restrict
the dimension of pipjtia1 to an N x N matrix, even though
the dimension of p can be significantly larger than this
due to the displacement pulses. We zero-pad the ele-
ments in pinitia] that have photon indices larger than N.
This approach is validated by the coincidence measure-
ments (see main text), as we do not detect any frequency
components for number states above N prior to injecting
a displacement pulse.

NOON STATE DECAY DYNAMICS

The Wigner tomography allows us to study the de-
coherence dynamics of the bipartite system [6]. The ex-
perimental results, compared with numerical simulations,
are shown in Fig. S5, with relevant elements in Table S2.
We note that the time evolution of the off-diagonal ele-
ments in the two-resonator density matrix, which repre-
sent inter-resonator coherence, is different from the evo-
lution of the corresponding off-diagonal elements for a
single resonator, which represent intra-resonator coher-
ence [6].

Error Analysis

Statistical errors in the qubit probability measure-
ments as well as uncertainty in the amplitude calibra-
tion for the displacement pulses a; and (i are used to
estimate the uncertainty in the amplitude and phase of
each density matrix element. These errors are found to
be small, in part because the constraints on the analysis
filters unrealistic values. Instead we find that slow phase
drifts in the electronics, perhaps dominated by ambient

S5

Delay

(ns) [(01[pl01) | (10[p[10)| (O1|p[10) |A[(01]p]10)]
16 | 0.36(1) |0.386(9) | 0.328-0.037i 0.009
250 | 0.31(1) | 0.32(1) | 0.31+0.01i 0.01
500 | 0.32(1) | 0.31(1) | 0.285-0.0681 0.009
750 | 0.27(1) | 0.27(1) [0.259+40.017i 0.008
1000 | 0.27(1) | 0.28(1) |0.26140.010i|  0.008
1250 | 0.23(1) | 0.24(1) |0.215-0.037i 0.008
1500 | 0.24(1) | 0.23(1) | 0.229-0.033i 0.008
2000 | 0.20(1) | 0.20(1) |0.19840.001i|  0.006
2500 | 0.17(1) | 0.17(2) | 0.155-0.005i 0.008
3000 | 0.14(2) | 0.15(2) | 0.1340.04i 0.01
4000 | 0.08(2) | 0.09(4) | 0.06+0.03i 0.01

TABLE S2: Density matrix elements as a function of delay
time for the N = 1 NOON state shown in Fig. S5. Uncer-
tainties for the diagonal elements are in parentheses, while
the magnitude of the uncertainty for the off-diagonal terms
are given in the last column.

temperature fluctuations, give the main phase uncertain-
ties, especially during long measurements. Evaluating a
single density matrix usually takes a relatively short time
during which these drifts are minimal. However, measur-
ing a series of density matrices such as Fig. 5 in the main
paper, takes a much longer time, typically 12 to 20 hours,
allowing for more significant drifts. These mostly affect
the phases of the density matrix elements, rather than
the amplitudes.

Validation

The bipartite Wigner tomography was validated by
several consistency checks. (1) The density matrix is
as expected for a range of different states, including
the highly entangled NOON states, the energy eigen-
states |2)4|0)p (Fig. S6(a)), the separable (product)
state (]0) — [1))a(|0) — |1))p (Fig. S6(b)) and the un-
entangled mixed states (see below). (2) The NOON
states display the expected phase sensitivity as a func-
tion of photon number N, as shown in Fig. 5 in the main
paper and Table S3. (3) The NOON state fidelity and
entanglement of formation agree reasonably well with nu-
merical simulations. (4) The time-dependence of the den-
sity matrix elements, showing uniform exponential decay
of all elements, is as expected and agrees with numerical
simulations, as shown in Fig. S5 and Table S2. (5) The
calculated negativities are significantly above zero for the
NOON states and precisely zero (within the measurement
error) for the unentangled mixed state (see below).

We note that bipartite Wigner tomography can mea-
sure any matrix element with a relatively high accuracy,
as we can displace the system by an arbitrary amount
in phase space. Even for relatively small off-diagonal ele-
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FIG. S4: (Color online) Joint-state probabilities and photon number distribution analysis for N = 1 NOON state. (a) Joint-
qubit state probabilities from numerical simulations, for a few selected initial resonator states in A and B, as indicated. Lines
are a guide to the eye. Device parameters are as in Table S1. (b) Left panel, measured joint-qubit state probabilities for null
displacement pulses «, 3 = 0. Lines are fits to the data. The fit joint-photon probability distributions pjm,y ,n), are displayed
in the right panel. The most significant occupations are in |0)4|1)p and |1)4]0)p, as expected for this state. (c) Left panel,
measured joint-qubit state probabilities for the displaced state with o = 0.7 and 8 = 0.7 (square-root of photon number units).
Lines are fits to the data. The fit joint-photon probability distributions pj,.) ,|n);, shown in the right panel, are significantly
different from those shown in (b) due to the displacement. The matrix elements for the higher photon number states are
omitted for viewing, although these may not be negligible for larger displacement pulses.

’ color (01|p|01) (10|p|10)  (01|p|10) ‘ tanglement. The ensemble comprises a mixture of 50%
1) 4]0) 5 and 50% |0) 4|1) g states, i.e., an ensemble with
the same probability of being measured in either of the
states forming the N =1 NOON state, but without any
entanglement. This is done by generating the pure state
. . . 1) 4|0) 5 and measuring the time-dependent joint proba-
TABLE S3: (Color online) Density matrix elements for the Jbiiiti|es> Pyy(1), Pye(7), Pog(r), and Pue(r) for this state.

data shown in Figs. 5(a) of the main paper, coded by color
(uncertainties not shown). The phase uncertainty in the off- We then generate the other component of the ensemble,

diagonal elements is dominated by the slow phase drift of our the pure state |0)4[1) 5, and repeat the generation and
electronics (see text). measurement procedure. Each value of 7 involves 300 re-

peats of the preparation and measurement sequence for
each of the pure states. We then combine the measure-

ments, such as the desired off-diagonal term in the N = 3 ment results with equal weights, creating the joint prob-

black 0.327  0.460 -0.229+0.239i
Fig. 5(a) blue 0.318  0.464  0.204--0.200i
red 0301  0.439  0.196-0.156i

NOON state, the tomography can unambiguously evalu- abilities for the synthetic ensemble; these data are shown
ate this element and measure its sensitivity to external in the main paper. The tomographic analysis yielding
phase perturbations. the density matrices is done in the usual way. The out-

come of the ensemble measurements are shown in the
main text, with the joint probabilities evolving in a way
indistinguishable from the entangled NOON states, but
the density matrix for the ensemble revealing a complete
lack of entanglement, as witnessed by the negligible val-
ues for the off-diagonal elements.

Ensemble of Mixed States

We use a synthetic ensemble of mixed states to illus-
trate the hazards involved in relying purely on coinci-
dence measurements for demonstrating NOON-state en-
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FIG. S5: (Color online) Decay of the N = 1 NOON state. (a) Density matrix amplitudes for the N = 1 NOON state at
selected delay times. Bar heights and colors represent the matrix element amplitude, scale on right. The off-diagonal element
amplitudes decrease at a rate close to that of the diagonal counterparts. Values for the relevant elements are tabulated in
Table S2. (b) Left: Experimental data, showing amplitude of the off-diagonal element as marked by a green ellipse in the first
panel in (a), plotted versus post-preparation time. Line is a fit yielding a single decay time 7p, consistent with a Markovian
dissipative environment [9]. Right: Numerical simulation of the same density matrix element as the experiment, with the line
an exponential fit. The simulation uses the measured density matrix as the initial condition and the resonator 77 value listed
in Table S1. The simulated decay time 7p is in good agreement with experiment.
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FIG. S6: (Color online) Benchmark resonator states used to validate the bipartite Wigner tomography. (a) Photon-number
representation of the two-resonator density matrix (error bars not shown), for the energy eigenstate |2)4|0) 5, generated by
pumping two photons into resonator A while leaving B in its ground state. The magnitude of each matrix element is represented
by the full length of the corresponding arrow and the phase angle determined by the direction of the arrow in the complex plane
(scale on bottom left). Density matrix is as expected from state preparation. (b) Two-resonator density matrix (error bars not
shown) for the test resonator state (|0) —|1))4(|0) — |1))B, generated by creating the |g) — i|e) state in each qubit, followed by
a complete i-SWAP transfer to each storage resonator. Non-idealities are likely due to inaccuracies in the preparation pulses.

MOON STATE

The NOON-state generation protocol can be simply
generalized to generate MOON states, with different pho-
ton numbers in the two entangled resonators. The gen-
eration is similar to the NOON state sequence shown in
Fig. S3. We assume M > N: After generating the Bell

entanglement between two qubits at the end of step I
(Fig. S3(a)), we repeat step II N — 1 times, yielding the
four-fold entangled state |eg(N —1)0)+|ge0(N —1)). The
photon amplification and transfer process (step II) is then
applied M — N times, but only to qubit ¢y and resonator
A, yielding the state |eg(M — 1)0) + |geO(N — 1)). The
final qubit excitations are then transferred in step III,
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FIG. S7: (Color online) Measured density matrix (errors not
shown) of the MOON state with M = 2 and N = 1. The
generation sequence is as described in the text. The state
fidelity is 0.42 4+ 0.01, lower than our typical NOON state
fidelity, due to technical issues with the particular device used
for this experiment; the entanglement of formation is 0.16.
The negativity is Ne = 0.14 4+ 0.01, indicating a statistically
significant entanglement.

S8

resulting in the MOON state |gg) ® (|]M0) 4+ |[ON)), with
the qubits disentangled from the resonators. A MOON
state generated in this fashion, with M =2 and N =1,
is shown in Fig. S7.
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