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We demonstrate new experimental procedures for measuring small errors in a superconducting
quantum bit (qubit). By carefully separating out gate and measurement errors, we construct a com-
plete error budget and demonstrate single qubit gate fidelities of 0.98, limited by energy relaxation.
We also introduce a new metrology tool — a Ramsey interference error filter — that can measure the
occupation probability of the state |2〉 down to 10−4, a magnitude near the fault tolerant threshold.

The immense computational power of a quantum com-
puter comes with a cost - the fragility of entangled
quantum states from coherence loss. Although decoher-
ence is present in all physical systems, the effect of the
resulting logic errors can be overcome by using error-
correcting codes, provided that gate errors fall below a
fault-tolerance threshold [1–5]. This threshold depends
on system architecture and the specific form of decoher-
ence, but is likely to be ∼ 10−4 range [1]. The mea-
surement of gate fidelity in this range is thus a critical
step in implementing fault-tolerant quantum computa-
tion. To date, high fidelity logic gates have only been
demonstrated in ion traps [6, 7]. Solid-state systems such
as Josephson qubits [8–20], which have the potential ad-
vantage of scalability, have not achieved equivalent fideli-
ties. Here, we measure the fidelity of a single qubit gate
for a Josephson phase qubit, demonstrating substantial
progress towards this goal. Using the new metrological
technique of “Ramsey filtering”, we also show how one
important error process can be measured and reduced to
the fault-tolerant threshold.

Coherence is typically quantified through the energy
decay time T1 and coherence time T2 (that includes de-
phasing) obtained from a Ramsey fringe experiment. The
fidelity of a gate operation is then computed as the ratio
of the gate time to coherence time. We note, however,
that such an analysis assumes no loss in fidelity during a
logic gate operation when the quantum state is changed,
and thus it more properly corresponds to the fidelity of
a memory operation. In addition, these coherence times
are typically determined by the relative decay in an ex-
perimental signal assumed to be proportional to the state
probability, thus ignoring any fidelity loss that might be
constant in time. A full measurement of gate fidelity, ap-
plicable to the fault-tolerance threshold, should include
gate errors that are determined via probabilities with an
absolute calibration.

To illustrate the importance of these issues, we note
that many experimental systems use qubit states |0〉 and
|1〉, often the ground and first excited states, chosen from
a larger set of basis states [21]. This encoding does not
preclude unwanted excitations to other available states

in the basis. For example, excitations to the next higher
energy state |2〉 are not necessarily small and correspond
to gate errors that may not be included in standard mea-
surements of T1 and T2.

In the experiments described here we used a supercon-
ducting phase qubit, where the superconducting phase
difference δ in a Josephson junction (with critical current
I0) serves as the quantum variable. When biased close
to the critical current, the junction and its loop induc-
tance L generate a cubic potential where the two lowest
energy eigenstates |0〉 and |1〉 have a transition frequency
ω10/2π ∼ 6.75 GHz (see Fig. 1A). This frequency can be
adjusted by ∼ 30% using the junction bias current. The
circuit layout and operation have been described previ-
ously [19, 22].

Single qubit logic operations, corresponding to rota-
tions about the x-, y-, and z-axes of the Bloch sphere, are
generated as follows: Rotations about the z-axis are pro-
duced from current pulses on the qubit bias line that adi-
abatically change the qubit frequency, leading to phase
accumulation between the states |0〉 and |1〉 [23]. Rota-
tions about any axis in the x-y plane are produced by
microwave pulses resonant with the qubit transition fre-
quency. The phase of the microwave pulses defines the
orientation of the rotation axis in the x-y plane, and the
pulse duration and amplitude control the rotation angle.

We perform single shot readout of the phase qubit by
applying a fast (∼ 1 ns rise time) current pulse Iz . This
fast pulse lowers the barrier height and increases the tun-
neling probability of the |1〉 state (Fig. 1B). Once tun-
neled, the state quickly decays into an external lower
energy state that can be easily distinguished from the
untunneled state |0〉 using an on-chip superconducting
quantum interference device (SQUID) [20].

Non-ideal behavior of the qubit can arise from errors
either in the logic gate or in the state measurement. The
measurement errors can be accounted for by thoroughly
understanding their physical mechanisms. In Josephson
phase qubits, measurement fidelities below unity are due
to stray tunneling of the |0〉 state, the |1〉 state leaking
energy to spurious two-level states (TLS) [24], and T1 re-
laxation. To quantitatively confirm TLS effects as mea-



2

0

0.5

1

0.1 0.5 0.8
0

0.5

1

Γ1

(B)

Iφ = Idc+
Measurement

peak
ZI

U

δ

(A) Operation

2

ħω10

Iuw

8 ns
Meas.

Iz
3 ns t

Xπ

IZ [a.u.]

(C) (D)ω10/2π = 7.22GHz

0

0.5

1

0.1 0.5 0.8

01 01

ω10/2π = 6.75GHz

∆U

0.850 0.895

P
tu

nn
el

1

0

1

0

0.1 0.5 0.8IZ [a.u.]

FIG. 1: Qubit operation and state measurement. (A) The po-
tential energy U of a Josephson phase qubit versus junction
phase δ. The qubit is formed from the two lowest eigenstates
|0〉 and |1〉, with a transition frequency ω10/2π ' 6.75 GHz
that can be adjusted by varying the dc bias Iφ = Idc + Iz.
(B) A measurement pulse lowers the energy barrier ∆U , in-
creasing the |1〉 state tunneling probability. (C) Tunneling
probability versus measurement amplitude Iz for the qubit in
the states |0〉 (open circles) and |1〉 (filled circles) at qubit fre-
quency ω10/2π = 7.22 GHz. Fits are shown by the solid lines.
(D) Data as for C but with a larger current bias, Idc giving a
smaller qubit transition frequency ω10/2π = 6.75 GHz. The
visibility between states |0〉 and |1〉 is 0.85 and 0.895 for data
in C and D, respectively. The difference is directly attributed
to coupling to a two-level state (TLS) located at 7.05 GHz,
as observed with spectroscopy. The inset illustrates the pulse
sequence. The |1〉 state is prepared by applying a shaped mi-
crowave pulse for τ = 8ns, with amplitude chosen to generate
a π rotation. For the |0〉 state we apply no microwaves. Af-
ter state preparation, the current Iz is pulsed to measure the
qubit state.

surement errors, we determined the measurement fidelity
above and below a large TLS splitting at 7.05 GHz (see
supplementary material section), as shown in Fig. 1C
and 1D. For each data set, the tunneling probability of
the ground state |0〉 is determined versus measurement
pulse amplitude Iz . The X pulse is then calibrated for a
π-rotation to give maximum probability of the |1〉 state,
and the |1〉 state probability P1 is determined versus Iz.
After this calibration, Iz is chosen to give maximum vis-
ibility, which is displayed in each figure by an arrow.

Theoretical predictions for the tunneling probabilities
are given by the solid black and gray lines in Fig. 1C
and 1D. The |0〉 state is misidentified as a |1〉 state with
a probability of 0.034. This error is consistent with the-
ory, and corresponds to stray tunneling events during
measurement [24]. At ω10/2π = 6.75 GHz the |1〉 state is
misidentified as the |0〉 state with a probability of 0.061,

but at a higher qubit frequency, ω10/2π = 7.22 GHz this
error increases to 0.106. The increase in measurement er-
ror with qubit frequency is attributed to a TLS located
between these two frequencies. With a measurement of
the TLS splitting using spectroscopy (see data in supple-
mentary material section), we predict a |1〉 state popula-
tion decrease of 0.045, a value consistent with our data.
The remaining measurement error is accounted for with
an error budget of 0.010 for T1 decay, 0.050 for coupling
to other TLS, and 0.011 for no tunneling of the |1〉 state
during measurement.

With good agreement between experiment and theory,
we can reliably account for measurement errors in our
data. Because the error for the |0〉 state — due solely to
stray tunneling — is simpler and less dependent on sys-
tematics, we choose to perform logic gate experiments
that bring the final state close to |0〉, thus reducing un-
certainties due to state measurement.

The fidelity of a gate is determined by applying two
π-pulses that produce the transitions |0〉 → |1〉 → |0〉,
and then measuring the state of the qubit. A π-pulse
represents the maximum rotation of a single qubit op-
eration and thus gives a measure of the maximum er-
ror for a gate. Both microwave π-pulses were designed
to have Gaussian envelopes (see supplementary material
section), with a duration 8 ns full-width at half maximum
(FWHM). The correct sequential operation of this gate
is checked by testing whether the probability for the final
state is independent of the phase Θ between the two mi-
crowave pulses, as illustrated in Fig. 2A. In Fig. 2B (2C)
the experimental (theoretical) state tomography data is
shown as a function of Θ and microwave detuning ∆ from
the qubit transition frequency ω10/2π. The experimen-
tal data is in excellent correspondence with theoretical
predictions. On resonance (∆ = 0), the phase Θ has
no effect, as expected, which demonstrates that the two
pulses are calibrated properly as π-pulses.

Gate error is directly measured by repeating this exper-
iment with variable time separation tsep between the two
π-pulses, as shown in Fig. 2D. The gate error grows with
increasing time tsep > 9 ns because the |1〉 state decays,
and the error has a slope consistent with separate mea-
surements of T1. The error also increases at small times
due to the overlap of the two Gaussian microwave pulses.
The horizontal dashed line indicates P1 = 0.034 taken
without the application of microwaves; the difference be-
tween the data and the dashed line is the gate error.
When the pulses are separated by a time tsep = 12 ns,
we find an error ∆P1 = 0.04. Since two gate operations
are used for this protocol, the fidelity for a single gate
operation is 0.98 [25].

Initial experiments did not reach this level of perfor-
mance. We only achieved high fidelity gates by using
carefully shaped microwave pulses (see supplementary
material section) to minimize excitation of the |2〉 state
[26]. There is a tradeoff between using a fast pulse for
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FIG. 2: Measurement of a high fidelity gate. (A) The pulse
sequence consists of two 8 ns Gaussian-shaped π-pulses, sep-
arated in time by tsep, followed by a measure pulse Iz. The
first π-pulse defines the rotation axes; by convention this is
the x-axis. For the second pulse, which is delayed by tsep,
we sweep the rotation axis Θ by changing the phase of the
microwaves and detune the microwaves by sideband mixing.
This sequence ideally returns the qubit to the |0〉 state. (B)
Gray scale plot of measured |1〉 state probability P1 versus
detuning ∆ and phase Θ with tsep = 12 ns and (C) quantum
simulation. On resonance, the phase Θ does not change P1,
as expected. (D) Plot of P1 versus tsep. Measurement error
of the |0〉 state is 0.034, as obtained by performing the exper-
iment with no microwaves. The difference between the data
and this stray tunneling is 0.04 at tsep = 12 ns, corresponding
to an error of magnitude 0.02 for each π-pulse, and a single
qubit gate fidelity of 0.98.

small T1 errors, or a slow pulse for small Fourier ampli-
tude at the |1〉 → |2〉 transition frequency, as illustrated
in the inset of Fig. 4. The measurement of this error
is explicitly shown in Fig. 3A, where Ptunnel is plotted
versus Iz for a single π-pulse using 4, 5, and 8 ns FWHM
Gaussian pulses. Excitation to the |2〉 state produces a
shoulder in Ptunnel at a value of measurement current Iz

below the rise from the |1〉 state, as indicated by the ar-
row. This probability is plotted versus Gaussian width τ
in Fig. 4 and shows that this error decreases with increas-
ing pulse width, as expected. Errors become difficult to
measure below ∼ 0.01 because of stray tunneling of the
|1〉 state.

The |2〉 state error may be measured with much greater
sensitivity by recognizing that excitation to the |2〉 state
is a coherent quantum process. Using a two-pulse se-
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FIG. 3: Ramsey interference error filter. (A) For a singe-
pulse sequence, plot of tunneling probability Ptunnel versus
Iz for |0〉 and |1〉 state (gray) for τ = 4, 5, and 8 ns FWHM
Gaussian-shaped Xπ-pulses. (B) For two-pulse sequence plot
of |2〉 state probability P2 vs. tsep for τ = 5 ns. The two
Xπ-pulses are followed by a measure pulse with an amplitude
calibrated to tunnel only the |2〉 state. During the first Xπ-
pulse both of the states |1〉 and |2〉 are excited. The second
Xπ-pulse causes the coherent beating of the |2〉 state. The
amplitude of the oscillation is 4 times the error probability,
whereas the beat frequency 1/T = 1/(5 ns) corresponds to
the qubit nonlinearity (ω10 − ω21)/2π. The insets in A and
B illustrate the microwave control pulses. B also depicts the
three-level system and the unwanted transitions to the |2〉
state.

quence with variable time delay as illustrated in the inset
of Fig. 3B, a Ramsey fringe may be set up between the
transitions to the |2〉 state from the two pulses. We plot
in Fig. 3B the |2〉 state probability P2 versus pulse delay
time tsep. Since the periodic oscillation is due to coher-
ent interference between the two pulses, the magnitude
of this oscillation is four times the probability of excit-
ing the |2〉 state for a single pulse. More importantly,
the “up-conversion” of a constant error to an oscillation
allows a determination of the amplitude with fewer sys-
tematic errors; this error can now be reliably measured
down to 10−4 using this “Ramsey filter”. The oscilla-
tion frequency matches the beat frequency (ω10−ω21)/2π
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measured via spectroscopy (see supplementary material
section), and represents a further check of this measure-
ment technique.
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FIG. 4: Error from |2〉 state occupation, measured to the
fault-tolerant threshold. (A) Plot of |2〉 state error versus
Gaussian pulse width for both single π-pulses (black circles)
and Ramsey error (gray circles) data. The 8 ns FWHM Gaus-
sian produces a |2〉 probability of 10−4. The solid line is
the quantum prediction obtained from numerical simulation.
Spectrum analyzer data for the Gaussian shaped pulses (as-
terisks) are also plotted with the Fourier transform theory
curve (solid gray line). The inset illustrates that a 4 ns pulse
produces a significant amount of spectral power at ω21/2π.

The |2〉 state errors determined in this manner are also
plotted in Fig. 4. For Gaussian pulses with width 4 and 5
ns, the data from the two methods give a consistent error
probability. The error drops exponentially with increas-
ing pulse width, reaching the value 10−4 at 8 ns. A sim-
ple Fourier-transform prediction [26] is plotted as a solid
gray line, which is computed from the power spectrum of
the Gaussian pulse at frequency ω21, normalized to the
power at frequency ω10. The asterisks are a measurement
of this normalized power taken from the actual control
pulses; this simple comparison is an excellent check on
the shaping of the microwave pulses as we have found
that large spectral leakage gives large qubit error. The
solid black line is a prediction of the error obtained from
numerical calculations [26], which shows good agreement
with the data.

In conclusion, we have demonstrated for single qubits
an absolute gate fidelity of 0.98, the highest demon-
strated in any solid state system to date. This level of
performance was achieved through careful shaping of the
microwave control signals. A new metrology tool, Ram-
sey error filtering, has been introduced, which uses the
coherence of an error process for more accurate measure-
ment. We have demonstrated that the probability of the
|2〉 state in our system can be reduced down to 10−4, a
magnitude near the fault-tolerant threshold and that our
quantum system remains in the qubit manifold during
our single qubit operations. These measurements further

demonstrate that superconducting qubits are a leading
candidate for a solid-state quantum computer.
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SUPPLEMENTARY MATERIAL

High-power spectroscopy reveals the transition fre-
quencies between states |0〉, |1〉, and |2〉 and directly
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measures the nonlinearity of the qubit. The probability
of tunneling versus frequency is plotted in the Fig. 5A.
The peak at 6.25 GHz corresponds to the qubit |0〉 → |1〉
transition. The |1〉 → |2〉 transition is 200 MHz lower in
frequency, a value equal to the Ramsey error frequency.
For this peak, the |1〉 state is populated by off-resonant
excitation of the |0〉 → |1〉 transition due to the high
power. A two-photon |0〉 → |2〉 transition is also ob-
served centered between these two resonances.
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FIG. 5: Supplemental data. (A) Plot of high power spec-
troscopy. Inset illustates the transtions. (B) Plot of qubit
spectroscopy. (C) Plot of microwave amplitude versus time.

The Ramsey error filter data was taken for 4, 5, 6, 6.5,
7, 7.5, and 8 ns FWHM Gaussian pulses. For the longest
length pulses, the experiment was repeated 106 times.

Qubit spectroscopy is shown in Fig. 5B, where the
probability of tunneling is plotted in grayscale for qubit
frequency and qubit bias [24]. A two-level state (TLS)

gives a resonance at 7.05 GHz that couples to the qubit
with splitting size 50 MHz The qubit was operated above
(7.22 GHz) and below (6.75 GHz) the TLS resonance.

Shown in Fig. 5C is an example of a Gaussian-shaped
microwave pulse taken with a high-speed sampling oscil-
loscope. These pulses have nearly ideal spectral quality,
and are significantly improved compared to those used
in previous experiments [22]. They are created with a
continuous microwave source controlled by an IQ mixer
fed by dual 1 GHz digital to analog converters (DAC).
The microwave source drives in saturation the local os-
cillator input of the mixer at frequency f0. The DAC
channels are generated in a custom board using AD9736
chips that have 14 bit resolution. They drive the I and
Q ports through 250 MHz (−3 dB frequency) dissipative
Gaussian lowpass filters and low distortion differential
amplifiers. The microwave output of the mixer is filtered
by a 7 pole Chebyshev lowpass filter at 8.5 GHz to sup-
press harmonics of f0. The large bandwidth of the control
signal allows for sideband mixing. By applying sine and
cosine waves at fsb to the I and Q ports, the mixer gen-
erates an output signal at frequency f0 + fsb. Sideband
mixing allows for very high on/off ratios of qubit control
since the (small) carrier leakage at f0 is off resonance
with the qubit. The digital control allows imperfections
of the DAC chain and the IQ mixer to be corrected by
first measuring its response function and then correct-
ing it with deconvolution. The relative amplitudes and
phases of the I and Q mixer channels are calibrated by
minimizing the power at the opposite sideband f0 − fsb.
This is done at enough sideband frequencies so that all
Fourier component of an arbitrary digital input signal can
be corrected. In total, we obtain accurate pulse shapes
with greater than 60 dB suppression of spurious frequen-
cies and harmonics.

For the gate fidelity measurements, the shape of the
control pulses were Slepian [27]. These pulses have simi-
lar envelopes to Gaussians, but have tails that are strictly
set to zero.


