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Supplementary material is presented for the paper “Energy decay and frequency shift of a super-
conducting qubit from non-equilibrium quasiparticles”. First, we discuss quasiparticle data for a
superconducting coplanar resonator. We then document how the energy dependence of the occupa-
tion can be calculated numerically. We calculate analytically the total quasiparticle decay rate and
time dependence with both a bulk model and, numerically, one including diffusion. We also com-
pute the quasiparticle dependence of the gap, occupation probability, current-phase relationship,
and how the frequency shift and dissipation are related. Finally, we calculate the Josephson current
for non-equilibrium quasiparticles.

PACS numbers: 74.81.Fa, 03.65.Yz, 74.25.Nf, 74.50.+r

We are interested in how non-equilibrium quasiparti-
cles affect the properties of a Josephson junction in qubit
devices. Since we are concerned with very low temper-
ature operation, we consider phonon temperatures suf-
ficiently low that no quasiparticles exist due to thermal
generation. The non-equilibrium quasiparticles are gen-
erated with an unknown mechanism, and then relax their
energy via the emission of phonons. The quasiparticles
typically have energy E close to the gap, from which
they eventually decay via recombination. From electron-
phonon physics, we know that the qusiaparticles relax to
energies very near the gap, as calculated in Ref. [4].

The factor of 2 in the definition of nqp comes from in-
tegration only over positive energy, whereas excitations
arise from both electron states above and below the Fermi
energy. Note this integral already contains the two pos-
sible spin states in the definition of D(Ef ).

QUASIPARTICLES IN COPLANAR
RESONATORS

The relationship between quasiparticle damping and
frequency shift may also be tested in superconducting
resonators. Here microwave transmission is measured to
extract the resonance frequency f and the quality fac-
tor Q, with the quasiparticle density changed by simply
increasing the temperature [1]. As shown in Fig. 1, we
find that with increasing quasiparticle density, dissipa-
tion increases and the resonance frequency decreases, in
a similar manner as for junctions.

To compare with theory, we use solutions to the
Mattis-Bardeen conductivity that is valid for the regime
kT ∼ ~ω ¿ ∆ [2, 3]. These results can be expressed in
terms of an admittance function discussed in the main
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FIG. 1: Parametric plot of fractional frequency shift δf/f
versus dissipation 1/Q, for various quasiparticle occupations
nqp changed by varying the the sample temperature. The de-
vice is a aluminum coplanar resonator fabricated on sapphire.
The slope of the data is in good agreement with predictions
(gray line) at temperatures above 250 mK. Deviations at low
temperature are believed to come from the two-level states.

article, but with a modification of the the 1+i term
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∆
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∆
~ω

, (1)

dR = 2
√

2x/π sinh(x)K0(x) , (2)

dI =
√

2πx exp(−x)I0(x) , (3)

where x = ~ω/2kT . The theoretical prediction, indicated
by the gray line in Fig. 1, is in reasonable agreement with
the data at high temperatures. The experimental slope
at temperatures above 200 mK is 0.77 times that given
by theory. The deviation is largest below about 120mK,
and believed to arise from two-level states that are not
included in this model.
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NUMERICAL SOLUTION OF QUASIPARTICLE
RECOMBINATION

For numerical computations of non-equilibrium quasi-
particle density from relaxation and recombination [4],
the integrals over energy have to be put into discrete
form. For a binning size given by dε in energy, we define
the number of excitations in bin i as

ni ≡ dερ(εi)f(εi) . (4)

Using this definition, the total quasiparticle density is

nqp

ncp
=

2
∆

∑

i

ni (5)

The scattering and recombination rates of Eqs. (6) and
(7) of Ref. [4] can then be expressed in a discrete form

Γs
i→j =

∑

j

[ (εi − εj)2

τ0(kTc)3
(
1− ∆2

εiεj

)
Np(εi − εj)dερ(εj)

]

(6)

≡
∑

j

Gs
ij , (7)

Γr
i,j =

∑

j

[ (εi + εj)2

τ0(kTc)3
(
1 +

∆2

εiεj

)
Np(εi + εj)

]
dερ(εj)f(εj)

(8)

≡
∑

j

Gr
ij nj , (9)

where the phonon occupation factor is Np(E) =
1/| exp(−E/kTp) − 1| and the bracketed terms are the
G factors. We have also assumed small occupation, so
that in Eq. (6) we use 1− f → 1.

The coupled differential equations for the change in the
excitation number are

d

dt
ni = Gs

jinj −
∑

j

Gs
ijni −

∑

j

(1 + δij)Gr
ijnjni , (10)

where δij is the Kronecker delta and accounts for the
annihilation of 2 quasiparticles when in the same bin (i =
j). With the physics expressed in matrix form, a solution
can be readily solved numerically.

QUASIPARTICLE DECAY

The physics of quasiparticle relaxation and recom-
bination was discussed in Ref. [4]. Although the arti-
cle described solutions for the non-equilibrium occupa-
tion f(E) using numerical methods, quasiparticle de-
cay physics can be understood in the case of low den-
sity where they are mostly occupied at the gap. The

electron-electron recombination rate of a single quasipar-
ticle, starting from Eq. (7) of Ref. [4], can be well approx-
imated using

Γr ' 1
τ0

∫ ∞

∆

dε′
(ε + ε′)2

(kTc)3
(1 +

∆2

εε′
)ρ(ε′)f(ε′) (11)

' 1
τ0

(2∆)2

(kTc)3
(1 +

∆2

∆2
)
∫ ∞

∆

dε′ρ(ε′)f(ε′) (12)

=
4
τ0

(1.76)3
nqp

D(EF )∆
(13)

=
21.8
τ0

nqp

ncp
, (14)

where we have used the BCS result ∆/kTc = 1.76. Here,
D(Ef )/2 is the single-spin density of states, and we define
the Cooper pair density ncp ≡ D(EF )∆.

The time dependence of the quasiparticle density can
be understood via the rate equation

d

dt
nqp = −2Γrnqp + rqp (15)

d

dt

nqp

ncp
= −43.6

τ0

(nqp

ncp

)2

+
rqp

ncp
, (16)

where a recombination event removes 2 quasiparticles,
rqp is the single particle quasiparticle injection rate. The
second equation is for the normalized quasiparticle den-
sity, and has a recombination rate that is proportional
to n2

qp because of the two-body electron-electron interac-
tion.

The equilibrium quasiparticle density is given by set-
ting dnqp/dt = 0, yielding density and recombination
rates

(nqp)eq

ncp
=

[ τ0

43.6
rqp

ncp

]1/2

=
τ0

43.6
(Γr)eq , (17)

(Γr)eq =
[43.6

τ0

rqp

ncp

]1/2

=
43.6
τ0

(nqp)eq

ncp
. (18)

The first equation is close to what was found numerically
in Ref. [4]. The second is given by the geometric mean of
the normalized injection and the characteristic electron-
electron interaction rates.

We compared the results of this simple calculation with
numerical solutions for a range of injection rates and
found excellent agreement for nqp/ncp . 0.001. Even
at large density nqp/ncp = 0.1, Eq. (17) is a reasonable
approximation as its prediction is only 40% larger than
that obtained via numerics.

For no injection of quasiparticles rqp = 0, the differen-
tial equation can be integrated to give

nqp

ncp
=

τ0/43.6
t− t0

(19)

where t is the time and t0 is an integration constant,
which is approximately the time at which the quasiparti-
cles start to cool. The solution to the differential equation
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for a finite injection rate is

nqp = (nqp)eq coth[ (Γr)eq(t− t0) ] , (20)

where the coth term is replaced by tanh if the quasiparti-
cle density increases with time. At short times the term
coth Γrt = 1/Γrt, which then gives Eq. (19) and a time
dependence that scales only with the electron-phonon
coupling time τ0. There is a relatively sharp crossover
to the long time behavior where the quasiparticle den-
sity neq

qp is constant with time. The crossover time is
given by 1/(Γr)eq.

The inverse of the crossover time thus gives the equi-
librium recombination rate (Γr)eq, which is related to the
density using Eq. (17) and the parameter τ0. Comparing
this density with that found from the qubit decay rate
allows one to determine whether quasiparticles are the
limiting decay mechanism for the qubit.

QUASIPARTICLE DECAY WITH DIFFUSION

The analysis in the last section assumes a bulk (uni-
form) model where there is no diffusion of quasiparticles.
Here, we describe a numerical solution for quasiparticle
decay including relaxation, recombination, and diffusion
using the simple geometry of a thin superconducting disk
of radius 5 mm. We use constant quasiparticle injection
throughout the disk and a large injection pulse into the
center of the disk at time t = −200 µs to t = 0. Because
diffusion depends on the quasiparticle energy, the calcu-
lation keeps track of the occupation probability for both
the radius and energy variables.

In Fig. 2 we plot quasiparticle density versus settling
time in a manner similar to that in the main paper, but
for 4 radii. We find differing behavior depending on the
ratio of the radius with the diffusion length ∼ 1mm, as
computed for e-e diffusion in Fig. 3 of Ref. [4]. For small
radii, we see a dependence on time that matches closely
with the bulk theory, as described in the main paper. For
a radius much larger than the diffusion length, the quasi-
particle density does not change. For the radius close to
the diffusion length, we observed behavior between the
two limits - a reduced peak density but a relaxation to
the steady state value that has a similar time scale than
for a small radius.

We note that the actual qubit device has interruptions
in the ground plane due to the device geometry, so that
this computation will not exactly match the experimental
data. However, the model mimics the time dependence
of the data fairly well above 10 µs, so it is reasonable to
compare to the simple bulk analysis for the behavior at
long times & 250 µs.
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FIG. 2: Plot of quasiparticle density versus settling time for a
superconducting disk of radius 5 mm with quasiparticle injec-
tion at the center. Points are for the simulation at four radii, r
= 0 (black), 0.5 mm (red), 1.25 mm (green), and 5 mm (blue).
Large changes are observed for small radii, which show a time
dependence close to that predicted by the full theory of Eq. (9)
of main article (black line) and for the zero background of Eq.
(8) (cyan line). At large radii much greater than the charac-
teristic diffusion length of ∼ 1mm, no change in quasiparticle
density is seen. The simulation for radius 1.25mm is in rea-
sonable agreement with experimental data.

DEPENDENCE OF GAP ON QUASIPARTICLES

The change in the superconducting gap ∆ with quasi-
particles can be calculated starting from the BCS gap
equation, but assuming a small non-equilibrium popula-
tion f(E)

∆ =D(Ef )V
∫ θD

∆

dE ρ
∆
E

(1− 2f) , (21)

1 =D(Ef )V
( ∫ θD

∆

dE√
E2 −∆2

−
∫ θD

∆

dE ρ
1
E

2f
)

(22)

'D(Ef )V
(

log
2θD

∆
− nqp

D(Ef )∆

)
(23)

where V is the attraction potential and θD is the Debye
energy. Solving for the gap, one finds

∆ =2θD exp
(
− 1

D(EF )V
− nqp

D(EF )∆

)
(24)

=∆0 exp
(
− nqp

D(EF )∆

)
(25)

'∆0

(
1− nqp

ncp

)
, (26)

where ∆0 is the normal expression for the BCS gap with
no quasiparticles.
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FIG. 3: Plot of a = f(∆)/(nqp/ncp) versus nqp/ncp, found
from numerical simulation. Based on the values of nqp/ncp

in Fig. 2b in the paper, we find a ' 1.2. For a wide range of
injection rates, a can be well approximated by the power law
a ' 0.12 (nqp/ncp)−0.173.

NUMERICAL DETERMINATION OF
OCCUPATION PARAMETER

To determine the effect of non-equilibrium quasiparti-
cles, both the quasiparticle density nqp and the occupa-
tion probability at the gap f(∆) must be calculated. We
plot in Fig. 3 the quantity a = f(∆)/(nqp/ncp) versus
nqp/ncp obtained from numerical computations for wide
range of injection rates. We find the results are well ap-
proximated by a line on the log-log plot, implying that
the dependence can be well approximated by the power-
law formula a ' 0.12 (nqp/ncp)−0.173.

CURRENT-PHASE RELATIONSHIP WITH
QUASIPARTICLES

The current-phase relationship from Josephson tunnel-
ing is given by

I(φ) = I0 sin φ
[
1− nqp

ncp

][
1− 2f(∆)

]
, (27)

where I0 = π∆0/2eRn and the dependence of ∆ on quasi-
particles is now explicitly shown. To first order, the frac-
tional change in critical current is

δI0

I0
= −(1 + 2a)

nqp

ncp
. (28)

An interesting question is whether the quasiparticle
tunneling terms should also be included in the current-
phase relation. For the junction current to only be a func-
tion of phase, it must arise for a purely inductive com-
ponent of the junction admittance, which corresponds
to terms with a frequency dependence that scales as
1/iω. Tunneling of free quasiparticles should not be in-
cluded since it has an additional frequency dependence

(nqp/ncp)
√

∆/~ω. The Andreev bound states of the
quasiparticles have an inductance, so the AC Josephson
relation can then be used to find the current

IABS(φ) = −Φ0

2π

∫ φ

0

Im{ωYABS(φ)} dφ (29)

= I0[φ + sin φ]f(∆) . (30)

Note that this term increases the critical current, and if
one replaces φ → sin φ it cancels out the decrease coming
from Josephson tunneling. Since many experiments have
shown the temperature dependence of the current-phase
relation is given by only Josephson tunneling, we do not
use this Andreev bound state term in our calculations.
In addition, our data is not consistent with including this
term since it has the effect of reducing 2a in Eq. (28) to
a value below a.

RELATING DISSIPATION AND THE
FREQUENCY CHANGE

Since both dissipation and the fractional critical-
current change are proportional to nqp, the magnitude
of these effects are related. The fractional change in the
qubit resonance frequency E10/h can be calculated know-
ing that its dominant scaling is E10/h ∝ (I0 − I)1/4,
where I is the qubit bias current, giving

δ(E10/h)
E10/h

=
1
4

δ(I0 − I)
I0 − I

(31)

=
1
4

I0

I0 − I

δI0

I0
(32)

= −1 + 2a

4
I0

I0 − I

nqp

ncp
. (33)

Quasiparticle dissipation can be likewise written in
terms of the quasiparticle density, provided we first re-
express the capacitance C into qubit parameters. Using
the Josephson inductance LJ0 = Φ0/2πI0, the qubit res-
onance frequency is given by

E10

h
' 1

2π

1√
LJ0C

[2(I0 − I)/I0]1/4 . (34)

We thus calculate the decay rate of the qubit

Γ1 ' 1 + cos φ√
2

2eI0

π∆C

( ∆
E10

)3/2 nqp

ncp
(35)

=
1 + cos φ√

2
h

2π2∆
1

LJ0C

( ∆
E10

)3/2 nqp

ncp
(36)

' 1 + cos φ√
2

h

2π2∆
(2πE10/h)2√
2(I0 − I)/I0

( ∆
E10

)3/2 nqp

ncp
(37)

= (1 + cos φ)
E10

h

( I0

I0 − I

)1/2( ∆
E10

)1/2 nqp

ncp
. (38)
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By taking the ratio of Eqs. (33) and (38), the quasipar-
ticle densities cancel out, and we can relate the dissipa-
tion to the frequency shift

δ(E10/h)
Γ1

= −1
4

1 + 2a

1 + cosφ

( I0

I0 − I

)1/2(E10

∆

)1/2

. (39)

JOSEPHSON EFFECT FOR ARBITRARY
QUASIPARTICLE OCCUPATION

Here we calculate the effect of a non-equilibrium pop-
ulation of quasiparticle states on Josephson tunneling, as
appropriate for qubit devices. The current proportional
to cos δ is also evaluated for the case of gaps that are not
equal. The results are readily obtained using standard
second-order perturbation theory and simple integration
of intermediate formulas.

The work expands on Ref. [5], which calculated the
Josephson effect at zero temperature. In the paper, the
section on Josephson tunneling is the starting point of
this calculation.

The Josephson effect is derived by calculating the
second-order change in energy to a superconducting state
from a tunnel junction. The tunneling Hamiltonian in
second-order perturbation theory is given by

H
(2)
T =

∑

i

HT
1
εi

HT , (40)

where εi is the energy of the intermediate state i. Be-
cause the terms in HT have both γ† and γ operators,
the second-order Hamiltonian has terms that transfers
charge across the junction but does not change the su-
perconducting state, thus giving a change in the energy of
the state. This differs from first-order tunneling theory,
which produces current only through the real creation of
quasiparticles.

Because HT has terms that transfer charge in both
directions, HT HT will produce terms which transfer two

electrons to the right, two to the left, and with no net
transfer. With no transfer, a calculation of the second-
order energy gives a constant value, which has no physical
effect. We first calculate terms for the transfer of two
electrons to the right from (

−→
HT+ +

−→
HT−)(

−→
HT+ +

−→
HT−).

Nonzero expectation values are obtained for only two out
of the four terms, as given by

−−→
H

(2)
T =

∑

i

−→
HT+

−→
HT− +

−→
HT−

−→
HT+

εi
(41)

=
∑

i

|t|2 (cLc†R)(c−Lc†−R) + (c−Lc†−R)(cLc†R)
εi

(42)

=
∑

i

|t|2 (cLc−L)(c†Rc†−R) + (c−LcL)(c†−Rc†R)
εi

(43)

The pairs of electron creation and annihilation opera-
tors can be computed, giving

ckc−k = (uγ0 + veiφγ†1)(uγ1 − veiφγ†0) (44)

→ uveiφ(−γ0γ
†
0 + γ†1γ1) , (45)

c−kck → uveiφ(−γ†0γ0 + γ1γ
†
1) , (46)

c†kc†−k = (uγ†0 + ve−iφγ1)(uγ†1 − ve−iφγ0) (47)

→ uve−iφ(−γ†0γ0 + γ1γ
†
1) , (48)

c†−kc†k → uve−iφ(−γ0γ
†
0 + γ†1γ1) , (49)

where we have only included pairs of quasiparticle opera-
tors γ that leaves the superconducting state unchanged,
as needed for a calculation of the energy change from
tunneling. Inserting these operators into Eq. (43) and
defining the phase difference δ = φL − φR, we find

−−→
H

(2)
T =

∑

i

|t|2eiδ(uLvL)(uRvR)
(−γL0γ

†
L0 + γ†L1γL1)(−γ†R0γR0 + γR1γ

†
R1) + (−γ†L0γL0 + γL1γ

†
L1)(−γR0γ

†
R0 + γ†R1γR1)

εi

(50)

=
∑

i

|t|2eiδ(uLvL)(uRvR)
[−γL0γ

†
L0γR1γ

†
R1 − γL1γ

†
L1γR0γ

†
R0

EL + ER
+
−γ†L1γL1γ

†
R0γR0 − γ†L0γL0γ

†
R1γR1

−EL − ER

+
γL0γ

†
L0γ

†
R0γR0 + γL1γ

†
L1γ

†
R1γR1

EL − ER
+

γ†L1γL1γR1γ
†
R1 + γ†L0γL0γR0γ

†
R0

−EL + ER

]
, (51)

where we have computed the intermediate energy εi using a positive (negative) energy E for the creation (annihilation)
of a quasiparticle. The quantity u v = ∆/2E describes the amplitude for the virtual quasiparticle to be both electron-
and hole-like, which allows a net transfer of charge by two electrons.
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We now change the sum to an integral over electron states according to

∑

i

→ N0L

∫ ∞

−∞
dξL N0R

∫ ∞

−∞
dξR = 2N0L

∫ ∞

∆L

ρL dEL 2N0R

∫ ∞

∆R

ρR dER , (52)

where N0 is the normal density of states, and ρ = E/
√

E2 −∆2 is the (normalized) superconducting density of states.
By describing the superconducting state with an occupation probability of quasiparticles f = f(E), the quasiparticle

operators for the creation then destruction of a quasiparticle is weighted by 1 − f , while the process of destruction
then creation is weighted by f . The tunneling Hamiltonian is then given by

−−→
H

(2)
T = |t|2eiδN0LN0R 2

∫ ∞

∆L

ρLdEL 2
∫ ∞

∆R

ρRdER
∆L

2EL

∆R

2ER
2G , (53)

G = − (1− fL)(1− fR)
EL + ER

− fLfR

−EL − ER
+

(1− fL)fR

EL − ER + iε
+

fL(1− fR)
−EL + ER + iε

(54)

= −1− fL − fR + fLfR

EL + ER
+

fLfR

EL + ER
+

fR − fLfR

EL − ER + iε
+

fL − fLfR

−EL + ER + iε
(55)

= −1− fL − fR

EL + ER
+ P

fR − fL

EL − ER
+ iπ(fL + fR − 2fLfR)δ(EL − ER) (56)

= − 1
EL + ER

+ P
2fREL − 2fLER

E2
L − E2

R

+ iπ(fL + fR − 2fLfR)δ(EL − ER) , (57)

where G comes from quasiparticle operators (bracket
terms in Eq. (51)) after removing a factor of 2 because
of the pair of states 0 and 1. We take ε → 0+, and the
integration over the zero of energy in the denominator is
performed using 1/(x + iε) = P(1/x) + iπδ(x), where P
is the principle part and δ(x) is the Dirac δ-function.

The total second-order Hamiltonian for the tunneling
of 2 electrons in both directions is

H
(2)
T =

−−→
H

(2)
T +

←−−
H

(2)
T (58)

=
−−→
H

(2)
T + h.c. (59)

= 2Re{
−−→
H

(2)
T } , (60)

where h.c. is the Hermitian conjugate.
This result can be expressed in more physical terms by

noting that the junction resistance can be written as

1
Rn

=
4πe2

~
|t|2N0RN0L . (61)

In addition, The Josephson tunneling current is given by

Ij =
2e

~
∂〈H(2)

T 〉
∂δ

. (62)

Combining all of these equations, the total Josephson
current is given by the integrals

Ij =
2

πeRn

{
sin δ P

∫ ∞

∆L

ρLdEL

∫ ∞

∆R

ρLdER
∆L

EL

∆R

ER

[ 1
EL + ER

− 2
fREL − fLER

E2
L − E2

R

]

−π cos δ

∫ ∞

max(∆L,∆R)

ρLρRdE
∆L∆R

E2
(fL + fR − 2fLfR)

}
, (63)

We note that the sin δ term in Eq. (63) corresponds to
Eq. (22) of the Ambegaokar-Baratoff calculation [6].

We evaluate these integrals by first considering, with-
out loss of generality, that ∆L < ∆R. Using ρ∆/E =
∆/
√

E2 −∆2 and y = ER/∆L > 1, we compute that the
temperature independent term 1/(EL +ER) gives for in-

tegration over EL

I1L =
∫ ∞

∆L

dEL
∆L√

E2
L −∆2

L

1
EL + ER

(64)

=
∫ ∞

1

dx
1√

x2 − 1
1

x + y
(65)

=
arccosh y√

y2 − 1
. (66)
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The remaining integration over ER gives [7]

I1LR =
∫ ∞

∆R

dER
∆R√

E2
R −∆2

R

∆Larccosh(ER/∆L)√
E2

R −∆2
L

(67)

= π
∆L∆R

∆L + ∆R
EllipticK

∣∣∣∆L −∆R

∆L + ∆R

∣∣∣ (68)

=
π2

4
∆ (for ∆L = ∆R = ∆), (69)

where the last equation uses EllipticK(0) = π/2. From
numerical integration, we have found that Eq. (68) is only
approximate for ∆L 6= ∆R.

For the next term in Eq. (63) that has the principle
part of EL/(E2

L −E2
R), we first integrate over EL. With

the assumption ∆L < ∆R, the integral always passes
across the pole at ER giving

I2L = P
∫ ∞

∆L

dEL
∆L√

E2
L −∆2

L

EL

E2
L − E2

R

(70)

= P
∫ ∞

1

dx
1√

x2 − 1
x

x2 − y2
(71)

= − 1√
y2 − 1

×




arctanh
√

y2−1
x2−1 (x > y)

arctanh
√

x2−1
y2−1 (x < y)

∣∣∣∣∣∣

∞

1

(72)

= 0 . (73)

We thus find no contribution for fR in the total integral.
We next compute the ER integral for the ER/(E2

L −
E2

R) term. We define w = EL/∆R, and note that the
integration over ER depends on whether EL is greater or
less than ∆R

I2R = P
∫ ∞

∆R

dER
∆R√

E2
R −∆2

R

ER

E2
L − E2

R

(74)

= P
∫ ∞

1

dz
1√

z2 − 1
z

z2 − w2
(75)

= − 1√
1− w2

×
{

0 (w > 1)

arctan
√

x2−1
1−w2 (w < 1)

∣∣∣∣∣

∞

1

(76)

= −π

2
1√

1− w2
θ(∆R − EL) . (77)

This result implies that when integrating over EL, no
contribution comes from ∆R to infinity, so the full inte-
gral is

I2RL =
∫ ∆R

∆L

dEL
∆L√

E2
L −∆2

L

2fLI2R (78)

=− π

∫ ∆R

∆L

fL dEL
∆L√

E2
L −∆2

L

∆R√
∆2

R − E2
L

.

(79)

In the limit where ∆L is close to ∆R such that fL is
constant over the region of integration, the integral can

be evaluated

I2RL = −πfL(∆L) ∆LEllipticK[1− (∆L/∆R)2] (80)

' −π2

4
∆ 2fL(∆) , (81)

where in the last equation we have taken the limit ∆L →
∆R = ∆.

For the case of equal gaps ∆, the first two integrals
give a Josephson current with a sin δ dependence

Ijs =
2

πeRn
(I1LR + I2RL) sin δ (82)

=
π

2
∆

eRn
[1− 2fL(∆)] sin δ (83)

=
π

2
∆

eRn
tanh[∆/2kT ] sin δ (thermal) . (84)

The last equation assumes a thermal population of
quasiparticles given by f(E) = 1/[1 + exp(E/kT )],
which yields the Ambegaokar-Baratoff formula [6] for the
Josephson current.

The Josephson current can also be calculated for an
arbitrary quasiparticle occupation under the assumption
that the difference of the gaps ∆R − ∆L is much larger
than the typical width of the quasiparticle distribution.
The contribution from the principle part for the fR term
is zero, as discussed before. The contribution from fL

(the lower gap side of the junction) is given by Eq. (79).
Noting that fL is peaked at EL = ∆L, we find the current
change from quasiparticles is given by

Ij2 '− 2 sin δ

eRn

∆R√
∆2

R −∆2
L

∫ ∆R

∆L

fL dEL
∆L√

E2
L −∆2

L

(85)

'− sin δ

eRn

∆R∆L√
∆2

R −∆2
L

nqpL

N0L∆L
, (86)

Note that these equations have a contribution from quasi-
particle occupation only from the left electrode, which
has lower gap. This makes sense since a more exact the-
ory of Andreev bound states has suppression of the crit-
ical current from occupied states in the gap, which has
to have energy below that of the lowest gap.

For the cos δ term, we first note that the current di-
verges logarithmically for ∆L → ∆R. Assuming the
quaisparticle density is constant with f = fl +fR−fLfR,
numerical integration gives the approximate formula

Ijc ' −2 cos δ

eRn

[− 0.1 +
∆L

∆R
− 0.5 ln

(
1− ∆L

∆R

) ]
f (87)

For the case where the gaps greatly differ, and in the
limit discussed in the previous paragraph, the current is

Ijc ' −2 cos δ

eRn
ρL(∆R)

∆L∆R

∆2
R

∫ ∞

∆R

ρR dE fR (88)

= −cos δ

eRn

∆2
L√

∆2
R −∆2

L

nqpR

N0R∆R
, (89)
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which has a form and magnitude similar to the thermal
current.

Note that for the cos δ current, quasiparticles con-
tribute from the higher gap side of the junction. This
contrasts the behavior of the sin δ current, which has con-
tribution from the superconducting electrode with lower
gap.
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