
Forces and Newton’s Laws

Aug. 16, 2017

In the last lecture, we derived the equations governing constantly accelerating motion. Why did we stop at
constant acceleration? It’s because this is related to a constant force. How is it related to force? Like this:

~F = m~a. (1)

The quantity m appearing in this equation is the mass, or inertial mass. The distinction is not important, but for
a time there was a debate over whether or not this mass was equivalent to the gravitational mass appearing in
the famous law of gravitation between two bodies,

ag =
GMm

r2
(2)

where M and m are the gravitational masses between the two bodies. The fact that the two are related helped
Einstein realize that there is nothing special about gravity. It is just the curvature of spacetime and as such the
gravitational mass must be related to the inertial mass. In a sense, mass is just the proportionality between force
and acceleration, though it often does help quantify things–for instance knowing the mass of a chunk of aluminum
can tell you how many aluminum atoms there are in the chunk.

Equation 1 is called Newton’s second law. In the limit of zero force, it reduces to Newton’s first law which
states that in an inertial reference frame an object moving at constant velocity remains at constant velocity unless
acted upon by a force. The third and final of Newton’s laws states that when one body exerts a force on a second
body, the second body exerts an equal and opposite force on the first body.

There are a few standard forces in Newtonian mechanics that all physics students are required to learn. They
are the force of a ramp, the force of a pulley, and the force of gravity. Given these forces, it is surprising that
physicsts don’t have more broken bones. Despite the bad humor, these examples go a long way into illustrating
the utility of Newton’s laws and help in defining free body diagrams. A free body diagram is a tool to help
understand both the direction and magnitude of a sum of forces acting on a body. It is the net force which ends
up causing motion and so we will become masters of this tool.

Let’s do a ramp problem first. These are also called inclined planes for the less radical. Consider the ramp in
figure 1. A 10 kg mass sits at the top of this ramp. This mass experiences both static and kinetic friction. The
coefficient of static friction is µs = .4 and the coefficient of kinetic friction is µk = .2.

a) What is the required angle of the ramp so that the block moves?
b) If the ramp is 2 m long, how long does it take for the block to slide down the ramp at twice this angle? Assume
that the ramp is infinitely heavy and does not slide.

In this problem, there are a few new concepts. The first is fricition. Friction is a force that always opposes
the direction of motion. To find this force, we multiply the normal force by the friction coefficient. In this case,
there are two friction forces,

Fs = µsFN (3)

Fk = µkFN . (4)

In these equations, everything is written in terms of scalars. These are the norms of the respective force vectors.
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One force vector you are probably wondering about is ~FN . Recall from Newton’s third law that for every force
from one body there is an equal and opposite force on that body. When we place the block on the ramp, it is
“stuck” to the surface. While it can slide along the surface, it does not pass through the ramp and it similarly
does not jump off the ramp. Gravity is keeping it stuck to surface. Gravity exerts a force on the block which in
turn exerts a force on the ramp and the third law tells us that there is an equal force in the opposite direction.
These are the only forces perpendicular(normal) to the plane of the ramp and they cancel.

The block can slide if it overcomes the static friction force. To find when this occurs, we note that there are
also two forces in this direction, gravity and friction. How can gravity act to keep the block stuck to the ramp
and make it move? This is because the normal and tangential axes of the ramp are not aligned with gravity.
Hence the gravitational force is a vector which has components along both directions. The static friction force
obtained in equation 4 is the maximum force the ramp can apply to the block before it slips. The block will slip
when the tangential component of the gravitational force exceeds the maximum static friction force. We increase
the gravitational force by increasing the slope of the ramp, making it more aligned with gravity. For smaller
angles, the static friction force is equal to the tangential component of the gravitational force because there is no
acceleration (Newton’s first law–no net force equals no acceleration).

For angles above this maximum angle, the box slides and the tangential force is greater than the friction force.
Now we must be careful because the friction force is given by the kinetic friction force. The net force divided by
the mass gives the acceleration (Newton’s second law). It is just a matter of applying the formulae obtained in
lecture 2 to find the time it takes for the block to reach the bottom. Let’s do it!

To start, we need to pick a reference frame. A particularly convenient reference frame is one in which mo-
tion occurs in only one dimension. Let’s choose x̂ to be tangent to the ramp with positive x̂ pointing toward the
top of the ramp. Then ŷ points in the perpendicular direction away from the ramp.

a) In this reference frame, we can decompose the gravitational force vector as

~Fg = −|~Fg| (sin θx̂+ cos θŷ)

The minus sign is because gravity points in both the −x̂ and −ŷ directions, but the norm of a vector is always
positive. In this case |~Fg| = 98N . We said that the normal force balances the perpendicular gravitational force
and so

Fg,y + FN = 0⇒ FN = Fg cos θ.

Now we look at forces in the tangential direction. The maximum angle without motion is when the maximum
static frictional force and gravity balance

µsFN = Fg,x ⇒ µs = tan θ.

Plugging in numbers (something you should always wait until the end of a problem to do) gives

θ = .38 = π/8.26.

b) Now, to find how long it takes for the block to slide, we use Newton’s second law,

ax =
1

m

∑
Fx =

Fg

m
(µk sin θ − cos θ) = g(µk sin θ − cos θ).

Now the time that it takes to travel the length of the plane is

t =

√
2∆x

ax
= .59s (5)
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It is good when doing these problems to have some built in checks. One check is on orders of magnitude. The
fastest an object could drop one meter is if it did so vertically with no other force but gravity. It would then take
.45s. Our block moved slightly slower as expected. Another check is that our final answer does not depend on
the mass. This makes sense as the force due to friction (and normal force) are proportional to the gravitational
force and we already established that inertial mass and gravitational mass are the same. Hence, they cancel and
there is no mass dependence.

Now consider the same ramp as in part (b), but attached to the block is a rope which is connected to another
mass attached to the other side of a pulley (see figure 2). How heavy can the new mass be so that there is no
motion?

This is a sneaky problem. There are now three forces acting on the block–the tension of the rope transmit-
ting the hanging mass’s force, the static friction, and gravity. Since the hanging mass is trying to pull the block
up the ramp, static friction and gravity are opposing this motion. The effect of the pully is to efficiently transfer
the full gravitional force from the hanging mass to the block (think about Newton’s third law). Now, it is simple
to balance forces,

Fs + Fg + FT = 0⇒ g [−m1(µs cos θ + sin θ) +m2] = 0. (6)

Plugging in numbers gives a hanging mass of 11.38 kg.

We have now looked at gravity, pulleys, and ramps–are we experts? Not quite. Suppose we put some in-
teresting textures on the surface of the ramp so that the kinetic friction coefficient is not constant. Then we must
use calculus. As a simple example, consider instead

µk(x) = .2(1− x

L
) (7)

where L is the length of the ramp. The origin is the bottom of the ramp which maximizes the kinetic friction.
Now, we have the net force as a function of position

Fx(x) = Fg[µk(x) sin θ − cos θ].

Rewriting this in terms of x(t) gives

d2x

dt2
= g[(.2 sin θ)(1− x)− cos θ] (8)
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This is an inhomogeneous linear differential equation. To simplify things, write

d2x

dt2
= −ax+ b

The solutions to this equation are

x(t) = A cos(
√
at) +B sin(

√
at) +

b

a
.

In our case,

a = .2g sin θ and b = g(.2 sin θ − cos θ).

The initial condition is the block at the top of the ramp at rest. This tells us A = L− b/a and B = 0. Thus we
have

x(t) =

(
1− .2 sin θ − cos θ

.2 sin θ

)
cos(

√
.2g sin θt) +

.2 sin θ − cos θ

.2 sin θ
.

Aside: relativity Last time we learned about the effects of spacetime boosts on inertial observations. One
peculiar effect of the boost is the relativity of simultaneity. Consider two events, separated in space but not in
time, ~x1 = (t1, x1, 0, 0), ~x2 = (t1, x2, 0, 0). The invariant length of these two events is

s1 =
√
x21 − c2t21, s2 =

√
x22 − c2t21. (9)

After a boost, the events occur at

t′1 = s1 sinh η, t′2 = s2 sinh η. (10)

Because s1 6= s2, t′1 6= t′2. Since simultaneous events don’t remain simultaneous, boosts mix space and time. We
would like to understand how the separation in space and in time are related in the two frames. Write(

∆x
∆t

)
=

(
A B
C D

)(
∆x′

∆t′

)
. (11)

The motivation for this ansatz is that a boost should be a linear transformation on the space-time position vectors.
Linear transformations between vector spaces are given by matrices. Now, to find the matrix, we can take limits
where we look at just time dilations, just length contractions, or differences in simultaneity. These lead to

A = D = γ, B = γv, C = γv/c2. (12)

To summarize, we have the Lorentz transformations

∆x = γ(∆x′ + v∆t′) (13)

∆t = γ(∆t′ + v∆x′/c2) (14)

∆y = ∆y′ (15)

∆z = ∆z′. (16)

Note that the determinant of the matrix defining the transformation is

AD −BC = γ2(1− v2/c2) = 1. (17)
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Furthermore,

−c2∆t2 + ∆x2 = γ2(−c2∆t′2 − v2∆x′2/c2 + ∆x′2 + v2∆t′2 + v∆t′∆x′ − v∆t′∆x′) (18)

= −c2∆t′2 + ∆x′2. (19)

Now, let’s ask a question. Suppose an object moves with some speed v1 relative to a frame S′ and the frame S′

moves at a speed v2 relative to a frame S. What is the speed of the object in frame S? The speed is easiest
answered by considering two events along the path. Since everything moves at constant velocity, we can calculate
the object’s speed as

u =
∆x

∆t
. (20)

We also know that in the frame S′,

v1 =
∆x′

∆t′
(21)

Now use the Lorentz transformations,

u =
γ(∆x′ + v2∆t′)

γ(∆t′ + v2∆x′/c2)
=

v1 + v2
1 + v1v2/c2

. (22)

This is the velocity-addition formula.
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Figure 1: A block on a ramp with friction.
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Figure 2: A block on a ramp with friction and a pulley.

7


