
Circular motion

Aug. 22, 2017

Until now, we have been observers to Newtonian physics through inertial reference frames. From
our discussion of Newton’s laws, these are frames which obey Newton’s first law–they don’t accelerate
and therefore move at constant velocity. Here the rules of vector analysis apply and we can change
reference frames so that the frame is not moving. In the context of momentum conservation, we saw
that particularly nice inertial frames are those in which one object isn’t moving and the frame in which
the center of mass is not moving. However, we regularly encounter situations where inertial frames
don’t apply–for instance when we accelerate. Recall that the acceleration is the change in velocity with
respect to time,

~a =
d~v

dt
. (1)

The change in velocity can be a change in magnitude, as we saw in one dimensional motion, but it also
may be a change in direction with no change in magnitude. This occurs in circular motion. Let’s see
how this works!

A circular worldline for a particle can be written

~x(t) = R(cos(2πt/T ), sin(2πt/T ), 0). (2)

Every ∆t = T , the particle returns to its starting point. The velocity of this worldline is

~v(t) =
2πR

T
(− sin(2πt/T ), cos(2πt/T ), 0), (3)

and its acceleration is

~a(t) =
4π2R

T 2
(− cos(2πt/T ),− sin(2πt/T ), 0) = −4π2

T 2
~x(t). (4)
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Notice that the last equation is the same differential equation as we saw in the static friction case and
the spring–hmm, I wonder if there is a differential equation that describes periodic motion. Now, let’s
calculate the norm of each of these quantities,

x(t) = |~x(t)| =
√
R2(cos2(2πt/T ) + sin2(2πt/T )) = R (5)

v(t) = |~v(t)| =
√

(
2πR

T
)2(sin2(2πt/T ) + cos2(2πt/T )) =

2πR

T
= ωR (6)

a(t) = |~a(t)| =
√

(
4π2R

T 2
)2(cos2(2πt/T ) + sin2(2πt/T )) =

4π2R

T 2
= ω2R. (7)

Here we defined the angular velocity ω = 2π/T as the rate at which the particle changes by 1 radian.
Let’s interpret the norms. The first says that the the norm of particle’s position vector is fixed to be
the radius of the circle R. This makes sense as the particle is fixed to a circular trajectory. The norm
of the velocity, or speed, is a constant which is proportional to the angular velocity. Here we see that
it is the direction of the velocity which changes, but not the norm. Finally, the angular acceleration is
proportional to the angular velocity squared multiplied by the radius and is constant. How can we have
constant acceleration but no change in speed? Let’s check the dot products

~a(t) · ~v(t) = ω3R2 [cos(2πt/T ) sin(2πt/T )− cos(2πt/T ) sin(2πt/T )] = 0. (8)

While the norm of the acceleration is constant, it always acts exactly perpendicular to direction of motion.
Its only impact is to change the direction of the particle. Had it acted in the direction tangential to the
worldline, the speed would change. Let’s also calculate

~v(t) · ~x(t) = ωR2 [− cos(2πt/T ) sin(2πt/T ) + cos(2πt/T ) sin(2πt/T )] = 0 (9)

~a(t) · ~x(t) = −ω2R2
[
cos2(2πt/T ) + sin2(2πt/T )

]
= −ω2R2. (10)

The first of these equations tell us that the velocity is also perpendicular to the particle’s position. Since
this is motion in a plane, a two-dimensional surface, there are only two basis vectors. If two vectors are
perpendicular to the same vector they must be proportional. Thus the acceleration and position vectors
are aligned. The last equation tells us that the acceleration vector points in the opposite direction to
the position and is larger by a factor of ω2R.

The constant norms of these vectors and the fact that the velocity is always perpendicular to the
position and acceleration are hints that circular motion is simpler than our description. Let’s define two
new coordinates, r and θ,

x = r cos θ, y = r sin θ ⇒ r =
√
x2 + y2, θ = tan−1(y/x). (11)

In terms of these coordinates, the circular worldline is

r(t) =
√
x(t)2 + y(t)2 = R (12)

θ(t) = tan−1 [tan(2πt/T )] =
2πt

T
. (13)

In these coordinates, circular motion is one dimensional–the radial coordinate does not change. The an-
gular coordinate changes linearly with time, similar to constant velocity motion in rectilinear coordinates.
In fact, the angular velocity

ω =
dθ

dt
=

2π

T
(14)

2



is the same as we saw before and is constant! Furthermore,

α =
dω

dt
= 0 (15)

showing that the particle doesn’t speed up as it goes around the circle. For fun, let’s investigate what
linear motion looks like in these coordinates

~x(t) = (x0, y0 + vt, 0). (16)

Then,

r(t) =
√
x20 + (y0 + vt)2 (17)

θ(t) = tan−1
y0 + vt

x0
(18)

This is complicated. There is both an angular and radial velocity. The radial velocity is

dr

dt
=
v(y0 + vt)

r(t)
(19)

and the angular velocity

dθ

dt
=

v

x0

(
(tv+y0)2

x20
+ 1
) . (20)

Linear motion is complicated in these coordinates (a good sign that this is not and inertial reference
frame). For physics problems, a good sanity check is to look at limits. Let’s take the t → ∞ limit of
the above expressions.

lim
t→∞

r(t) = y0 + vt+O(1/t) (21)

lim
t→∞

θ(t) = π/2 +O(
1

t2
) (22)

lim
t→∞

dr

dt
= v +O(

1

t2
) (23)

lim
t→∞

dθ

dt
= 0 +O(

1

t2
). (24)

In other words, after a long time, no matter the inital x0, the particle is confined very close to the y-axis
in circular coordinates and its angle changes slower and slower with time. It moves along the axis at
constant speed where r and y serve as basically the same coordinate.

How did I arrive at these limits? I used a Taylor expansion. Recall from your calculus class that
a function can be defined completely in terms of its derivatives at a point. We want to express any
function as a polynomial (of which is easy to take derivatives) whose derivatives exactly match the
function at a point. Near this point, the polynomial expansion should be a good approximation to the
real function and is often times exact. Consider a function f(x). Near x = x0, we write

f(x) ≈ f(x0) +
df

dx

∣∣∣∣
x=x0

(x− x0) +
1

2

d2f

dx2

∣∣∣∣
x=x0

(x− x0)2 + ... (25)

= f(x0) +

∞∑
n=1

dnf

dxn

∣∣∣∣
x=x0

(x− x0)n

n!
. (26)
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Let’s check that the derivatives match. At x = x0, any factor of (x − x0)m with m > 0 will vanish.
Taking l derivatives of (x− x0)m with l > m also vanishes. Thus, we can look at the lth derivative of
this expression

dlf

dxl
=

∞∑
n=1

dnf

dxn

∣∣∣∣
x=x0

(x− x0)n−ll!
n!

, (27)

and plugging in x = x0,

dlf

dxl

∣∣∣∣
x=x0

=
∞∑
n=1

dnf

dxn

∣∣∣∣
x=x0

δnl =
dlf

dxl

∣∣∣∣
x=x0

X. (28)

So the expansion works. For the expansion above, we expanded in t around t = ∞ and kept only the
terms that did not vanish in this limit. The notation O(tn) says that the terms we do not write down
are a series in t that start at tn and are smaller than the terms that we did write down.

Circular motion obeys the same equations as linear motion. For instance, for a particle moving at
constant angular acceleration, we can find its angular position by replacing x→ θ, v → ω, a→ α,

θ(t)− θ0 = ω0t+
1

2
αt2. (29)

Obviously, a particle moving in a purely radial direction is the same as linear motion, because we can
always rotate our coordinate system so that the rectilinear coordinates align with the direction of motion.

Earlier we argued that symmetries of space(time) lead to conservation laws–for instance conservation
of energy and conservation of momentum. Along a circular path, we are free to define θ = 0 anywhere
along the path. This is a rotational symmetry. Such a symmetry also leads to a conservation law–
conservation of angular momentum. Like linear momentum, angular momentum is a vector. It is
defined as

~L = ~r × ~p. (30)

Let’s find a simple angular momentum to gain some insight. Consider a particle of mass m moving in
the circular trajectory of eq. 2. The particles momentum is

~p = m~v(t) = m
2πR

T
[− sin(2πt/T )x̂+ cos(2πt/T )ŷ] . (31)

The angular momentum is

~L = m
2πR2

T

[
− sin(2πt/T ) cos(2πt/T )(x̂× x̂) + sin(2πt/T ) cos(2πt/T )(ŷ × ŷ) (32)

+ cos(2πt/T ) cos(2πt/T )(x̂× ŷ)− sin(2πt/T ) sin(2πt/T )(ŷ × x̂)

]
(33)

= m
2πR2

T

[
cos2(2πt/T )ẑ + sin2(2πt/T )ẑ

]
= m

2πR2

T
ẑ (34)

= mωR2ẑ (35)

To arrive at this result, we had to realize x̂i × x̂i = 0 and x̂ × ŷ = −ŷ × x̂ = ẑ. An easy way to
remember these results is the “right-hand rule” from earlier. Notice also that the angular momentum,
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Figure 1: A gyroscope stays standing because it tries to conserve angular momentum along the
vertical axis. If it fell over, angular momentum would move to a different axis and not be conserved.
Eventually it falls because friction slows down the wheel’s rotation (image credit: wikipedia)

defined through a cross product, obeys the right hand rule–point your fingers in the radial direction
and sweep them in the direction of motion (counterclockwise). The direction your thumb points is the
direction of angular momentum. We can simplify this expression by defining the angular momentum
vector, which is a vector that has magnitude ω and points along the axis of rotation. In this case,

~ω = ωẑ (36)

and

~L = mR2~ω. (37)

It may seem surprising to you that the angular momentum is not in the plane defined by the radial
vector and the velocity. In fact it is always perpendicular to to this direction. Consider, however, a
gyroscope (figure 1). A spinning wheel can remain standing on its rotational axis because the universe
tries to conserve angular momentum along this direction. For completeness, let’s also find the angular
momentum in circular coordinates. We will actually do this in a roundabout way to derive the basis
decomposition of a vector in circular coordinates. Because angular momentum is aligned perpendicular
to the plane of the circle, it can’t depend on our choice of coordinates.

~x(t) = Rr̂ and ~p =
[
prr̂ + pφφ̂

]
. (38)

We have two unknowns–ωr and ωφ. To find these, we need two equations. Fortunately, we have two,

~L = mωR2ẑ and |~p| = mωR. (39)

Now,

|~p|2 = m
[
p2r r̂ · r̂ + p2φφ̂ · φ̂

]
(40)
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and

~L = Rpφ(r̂ × φ̂) = Rpφẑ, (41)

where we again used the right hand rule (φ̂ always points counterclockwise). Then

pφ = mωR. (42)

Clearly, to satisfy |~p| = mωR, pr = 0. Along the way, we learned the transformation law between the
cartesian and circular basis vectors. We did? Recall that vectors are exist independent of coordinate
choices (though their components along basis vectors may look very different). For instance

~p = mωR [− sin(2πt/T )x̂+ cos(2πt/T )ŷ] = mωRφ̂. (43)

To find the relationship, we notice a bizarre feature that the x − y coordinates have time dependent
components and the r − φ coordinates do not. This is because there is a time dependence hiding in φ̂.
In switching between coordinate systems, there is a simple transformation law,

x̂ =
∂x

∂φ
φ̂+

∂x

∂r
r̂ (44)

ŷ =
∂y

∂φ
φ̂+

∂y

∂r
r̂. (45)

Notice that this can be written in a simple way as(
x̂
ŷ

)
=

(
∂x
∂φ

∂x
∂r

∂x
∂φ

∂x
∂r

)(
φ̂
r̂

)
(46)

The matrix in this transformation is called the “Jacobian” of the transformation. Let’s check that this
works for our rotating particle.

∂x

∂φ(t)
= − sin(φ(t)),

∂y

∂φ(t)
= cos(φ(t)) (47)

∂x

∂r
= cos(φ(t)),

∂y

∂r
= sin(φ(t)). (48)

Then

~p = mωRφ̂ = mωR[− sin(2πt/T )x̂+ cos(2πt/T )ŷ]X. (49)

We can also invert the Jacobian to go from x̂, ŷ to φ̂, r̂. Try this for fun.

Newton’s laws also apply to circular motion but in a slightly surprising way. Pretending for a mo-
ment that we are Isaac Newton (he was only 24 when he invented calculus, so about our ages) let’s ask
about the rate of change of the angular momentum. Recall that this was how he defined linear force.

d~L

dt
=
d~r

dt
× ~p+ ~r × d~p

dt
. (50)
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The first term in this equation vanishes. This is because ~p = md~r/dt and the cross product of a vector
with itself. This angular force is called torque. For our circularly moving particle, the torque vanishes.
This is most easily seen in circular coordinates where it is obvious that

d~r

dt
= 0. (51)

In cartesian coordinates,

d~p

dt
= −mω2R [cos(2πt/T )x̂+ sin(2πt/T )ŷ] . (52)

Taking the cross product of this with r̂ gives

~τ = −mω2R2 [cos(2πt/T ) sin(2πt/T )ẑ − cos(2πt/T ) sin(2πt/T )ẑ] = 0X (53)

Let’s look at an example which does not have vanishing torque. Consider

~r(t) = (R,
R

2
αt2, 0). (54)

Now,

~p(t) = mR(0, αt, 0) and
dp

dt
= mRαθ̂ (55)

so that

~τ = mR2αẑ = mR2~α (56)

This looks like ~F = m~a if we define that angular mass, called the moment of inertia, I = mR2. Note
that, like the angular momentum, the torque is perpendicular to the plane defined by the position and
velocity vectors, and we defined the angular acceleration vector ~α, as the vector with norm α pointing
along this axis. In general, when we have a complicated mass distribution, m(~r), spinning about some
axis, the moment of inertia is

I =

∫
r2dm (57)

As an example, let’s consider a disk of radius R and mass M . It’s mass density is constant, just the
total mass divided by the total area:

m(r) =
M

πR2
(58)

Its moment of inertia is

I =
M

πR2

∫
disc

r2dA =
M

πR2

∫ 2π

0
dθ

∫ R

0
r3 =

MR2

2
. (59)
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It is easier to spin a disc of mass M and radius R than it is to rotate a particle of the same mass at
this radius. This is because the mass is distributed about the rotational axis. If you have ever watched
the shotput event in the olympics, where do the athletes hold the weight? Why?

Written in terms of the moment of inertia, the angular momentum is

~L = I~ω. (60)

As before, the cross-product makes things a little messier, but otherwise this looks just like the linear
momentum.

Important distinctions The centripetal force is the force required to maintain an object in constant
circular motion. Its magnitude is

Fc =
mv2

r
= mω2r. (61)

The centrifugal force is an imaginary force which does not exist. Because of the equivalence principle, we
are used to thinking in terms of inertial frames. Constant angular velocity is not an inertial frame. It is
accelerating and because Newton’s first law makes us want to move in a straight line, in the non-inertial
frame this feels like a force. It is not.
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